

The Olsen Rotating Dipole Revisited

Leif Svalgaard¹, Douglas O. Gough², Phil H. Scherrer¹

¹ Stanford University

² University of Cambridge

AGU Fall 2016, SH31B-2548, 14 Dec. 2016

The Story Begins Here at Godhavn, Greenland in 1926

The variation of the Horizontal Component in the minimum year 1932. The recurring 'dips' are not magnetic storms. In fact, nobody knew what they were at the time.²

Johannes Olsen (1894-1991) drew Attention to those Recurrent Dips

PERSISTENT SOLAR ROTATION-PERIOD OF 26 7/8 DAYS AND SOLAR-DIURNAL VARIATION IN TERRESTRIAL MAGNETISM

By Johannes Olsen

Summary—An examination of the daily means of the horizontal force at Godhavn Greenland, during the years 1926 to 1941 shows that there seems to exist a recurrence-tendency for the mean values of H with a period of 26 7/8 days during that epoch, the values being rather low in the first half of the period and rather high in the latter half.

Terrestrial Magnetism and Atmospheric Electricity [now JGR], **53**(2), 123-134, doi:10.1029/te053i002p00123

Olsen concluded:

The persistence of a fixed period during 15 years points to the possibility that the origin of the effect is to be found in a layer on the Sun with a fixed rotation-period during a long time.

And there the finding languished for 23 years with no citations at all

Discovery of Sector Structure

Quasi-Stationary Corotating Structure in the Interplanetary Medium John M. Wilcox & Norman F. Ness (1965), JGR, **70**, 5793.

R9	Rot -	1St day	C9	
	-		155 1166 11 166 15 156 651 11	DEC 5
455 6 22 44 2	19	128	651	JAN 28
11116512	73	F24	766 755 64 . 61 222 24 57 777 777 665	FEB 24
174 565 431	1910	M23	TTT 665 446 \$76	MAR 23
255 435 42.	11	A 19	777 764 466 675 432 2.4 443 2 576 665 567	APR 19
366 62 33	12	M16	665 557 57	JUN 12
433344334	14	19	2	JUL 9
32	15	A5	232 2 2	AUG 5
775 3 . 7 745	15	\$1	36, 1.7 6, 1. 3 6, 36, 76, 7666,	SEP I
5522 . 2 2	17	528		OCT 25
453 2 2	10	N71	5., 675 4 64.32, 522 46665	NOV 21
34434	1920	018	16665 .35446,3443 2.4 14446,	DEC 18
543	19	174	144 46, 44. 7665 555 431 2123. 466 53	JAN 14
176 23 1 2 2	76	F 10		MAR 9
131 111 . 11	192/	MS	S65 116 5	APR 5
666 4	25	MZ	566 6.4 22 166 655 555 664 242 126 655	MAY 2
35543 12.	26	MZ	1 , 66 655 , , 666 556 46 , 25 , 2 , 77 654	MAY 29
2664 > 344	27	12	5 77 656 337 67 666 565 353 77 32 211 550	JUN 25
443 3 13 454	28	172	C 444 62, 556 256 425 542 2 6 77 56	AUG 18
55	1930	SK	77 56 676 166 661 156 622 12 . 362 . 17 67	SEP 14
667	31	01	1 7 677 776 724 . 65 666 522 2 256 277	OCT II
1 233.2 -	32	N7	256 271 663 443 355546 543	NOV 7
2 2 2 3 3 - 1	1900	0.3	4, , , , , , , , , , , , , , , , , , ,	DEC 3I
	19	JZ	43. 146 573 414 136 666 656 443 111 645 1.3	JAN 27
111	/5	F23	645 3 53 3 ,65 , 776 665 644 34 34 246	FEB 23
	1937	MZ	2 . 34 . 34 6 65 2 3 2 2 4 66 766 665 2	MAR 22
222 -	30	MI	5 66 365 333 45 3. 3. 5 633 33	MAY 15
13.12	40	11	664 332 332 652 3 664 5.2	JUN II
111 111 11	3 41	18	664 5. 2 443 442 6 533 62 . 44	JUL 8
665). ,	42	A4	62.444 .45.2.44.22.2	
	14	S2	74, 1, 667 66, 233, 342,	SEP 27
	45	02	6 5, 677 523 65 47 4 257 . 14	OCT 24
1 21 .	. 46	N2	0 157 144 1 666 622 1 542	NOV 20
	1947		7	DEC 17
	19	FS	66,155 1565 11 656 566 16 65 155	FEB 9
4. 33	76	MI	676 666 344 554 37 K443 34 766 664	MAR 7
	, 1951	A3	766 66 4 23 , 34 5, 4, . 334 7.7 \$54	APR 3
	52	A3	7 7 54 . 7 . 35 234 . 45 4.	MAY 27
	54	12	7 45 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	JUN 23
	55	120	7 .455	JUL 20
	56	AN	· 66 652 2. 25 26 127	AUG 16
· · · ·	57	1 514	()) 65/543 533 3745 , 4 j 4, j	OCT 9
	59	NS	.55664	NOV 5
1	1960	02	4 254274. 2362 2 2 7224	DEC 2
	19	025	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DEC 29
- 44	77	F21	542 5 55 53 655 634 132 . 14 543	FEB 21
	1964	M2	0123 4314 44 367765442, 224 74	MAR 20
· .	, 65	A16	4 76, 15 5.474511 ,55 4551	APR 16
31.	65	ME	45534 .	MAY 13
155	67 68	19	1. 3.3 22 . 3 44 4 765 56 .	JON 9
	69	A2	145543 35 64 preti-	
		-	· •	

Rotation Plots of the Sector Polarity

Where did W&G get the Idea to look at the IMF Polarity?

Two Common Recurrence periods: 27-day 28.5-day

Long-term Evolution of Sector Structure (Hand-drawn)

INFERRED SOLAR MAGNETIC SECTOR STRUCTURE DURING FIVE SUNSPOT CYCLES

26.84 DAYS CALENDAR SYSTEM STARTING FEB 19, 1926

Can We Extend the Sector Data to Before 1926?

Yes: M. V. Vokhmyanin and D. I. Ponyavin

Sector structure of the interplanetary magnetic field in the nineteenth century, Geophysical Research Letters, **40**, 3512–3516, doi:10.1002/grl.50749, 2013

Both '27-day' and '28.5-day' Structures in the Early Data

Are the early data (including mine) reliable? This we investigate next 12

Using the Inferred Sector Structure we [the computer] can make a List of Well-Defined Sector Boundaries

+,-	1844	07	14	21	9	-,+	2016	02	26	11	9
-,+	1844	07	23	9	8	+,-	2016	03	06	9	6
+,-	1844	08	09	7	14	-,+	2016	03	22	7	11
-,+	1844	08	23	14	14	+,-	2016	04	02	11	6
+,-	1844	09	06	14	14	-,+	2016	04	08	6	4
+,-	1844	10	04	10	17	+,-	2016	04	12	4	6
-,+	1844	10	21	17	10	-,+	2016	04	18	6	12
+,-	1844	10	31	10	16	+,-	2016	04	30	12	15
-,+	1844	11	16	16	11	-,+	2016	05	15	15	12
+,-	1844	11	27	11	17	+,-	2016	05	27	12	15
-,+	1844	12	14	17	13	-,+	2016	06	11	15	11
+,-	1844	12	27	13	4	+,-	2016	06	22	11	9
-,+	1845	01	11	9	11	-,+	2016	07	07	4	13
+,-	1845	01	22	11	13	+,-	2016	07	20	13	

Covering the entire period from 1844 to the present (2016)

Geomagnetic Activity Data

P.-N. Mayaud has derived the well-known aa-index using magnetograms from two antipodal observatories. The index is available from 1868 to the present (2016).

H. Nevanlinna has extended the series back in time to 1844-1897 using the data from Helsinki, Finland.

Data from Russian observatories 1850-1862 is also available, although slightly less reliable.

Mayaud's superb am-index (1959-Present) is available too.

I have constructed a composite of all available data for the entire interval 1844-2016. The data consists of 3-hour K-values with a third-unit resolution (00, 0+, 1-, 10, 1+, 2-, 20, 2+, ..., 8-, 80, 8+, 9-, 90).

Superposed Epoch of Semiannual Geomagnetic Activity around Sector Boundaries During Space Age 1963-2016

5

6

7 8 9 10 11 12 13 14

-10

0

2 3 4

8

3

2

0

5 6 7

4

9 10 11 12 13

20

We see the same pattern in each subset of the Sector Polarity Data

I interpret that to mean that the data is good

Justifying Calculating the FFT

FFT of IMF Sector Polarity 1844-2016

For the entire interval 1844-2016

Average Recurrence Period in Solar Wind Data

Figure 5. The difference between the highest and the lowest values of $B_r(-1)^N$ for the time-averaged $B_r(-1)^N$ versus longitude curves as a function of solar rotation period from 25 to 31 days.

Neugebauer et al., 2000

"On average, solar magnetic field lines in the ecliptic plane point outward on one side of the Sun and inward on the other, reversing direction approximately every 11 years while maintaining the same phase. The data are consistent with a model in which the [equatorial] solar magnetic dipole returns to the same longitude after each reversal."

Using a 'Test Function' to Ferret out Persistent Patterns

We construct a time series of 37 27-day rotations with a two-sector structure and cross-correlate that with the [noisy] observed sector polarities sliding one day at a time. Where the observed structure matches the synthetic structure the correlation coefficient will be high. The 'nodes' of zero correlation mark the sector boundaries [the phase of the structure within the 27-day system]. ¹⁹

The Test Function Approach finds the Olsen Pattern

Red = Match Test function (-) polarity

Blue = Match Test Function (+) polarity

In this plot we show two rotations side-by-side. As the matching areas with high correlation slants to the left as we move forward [up] in time, the 'ridge' of correlation has a recurrence time of less than 27 days. From the Figure we readily find 26.9 days, compatible with Olsen. 20

Extending the analysis to all the data 1844-2016 we find intermittent matches

21

Alignments are Easy, but not always Meaningful

Conclusions

- The 'Olsen' Dipole can be seen intermittently
- Instances of the Dipole may 'line-up', but are interrupted by times where the Dipole is not prevalent
- The Dipole seems to be long-lasting through solar cycles 9-10-11, 16-17, and 21-22
- At all times the sector structure lives longer than random variations would suggest and may have a deep-rooted cause
- A long list of sector polarities for each day since 1844 is available for critical analysis at http://www.leif.org/research/POLDAT.TXT

Abstract

Olsen (1948) and Wilcox & Gonzales (1971) reported evidence of a solar equatorial magnetic dipole with a stable (synodic) rotation period of 26 7/8 days maintaining its phase over 15 years (1926-1941, Olsen) and possibly to 1968 as well (1963-1968, Wilcox & Gonzales). Using a composite series of Interplanetary Magnetic Sector Polarities covering the interval 1844-2016 (derived from geomagnetic data before the space age and direct measurements during 1963-2016) we find that

- the response of geomagnetic activity to passage (at Earth) of a sector boundary has been consistently the same in every solar cycle from 9 through 24, thus validating the inferred times of sector boundary passages over the past 173 years, and
- 2) the 'Olsen' dipole can be traced back intermittently the 16 cycles to the year 1844, albeit with a slightly different synodic rotation period of 26.86 days (431 nHz). Olsen ended his paper with "The persistence of a fixed period during 15 years points to the possibility that the origin of the effect is to be found in a layer on the Sun with a fixed rotation-period during a long time" and Wilcox & Gonzales noted that "A rotating magnetic dipole may be lurking within the sun". We revisit the evidence for those suppositions and suggest that the long-lived recurrences of the sector structure deserves further study.