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To predict Extreme Events we
need to understand Ordinary
Events and Ordinary ‘Background’
In the historical setting



How do we Infer HMF B?
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Progress In Reconstructing Solar
Wind Magnetic Field back to 1840s

InterDiurnal Variability Index IDV and Reconstructed Heliospheric Magnetic Field B
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Even using only ONE station, the ‘IDV’ signature is strong enough to show the effect
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After a Decade of Struggle, Lockwood et al. (2014) are Fast
Approaching the Svalgaard et al. Reconstructions of 2003
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This is a healthy development and LEA should be congratulated for their achievement,
although their , based on a flawed Sunspot Number series, is not doing too well 3
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Schwadron
et al. (2010)
HMF B
Model,
with my set of
parameters

von Neumann: “with
four parameters | can
fit an elephant, and
with five | can make
him wiggle his trunk”

This model has about
eight parameters...

“It is not clear if the version
of the code obtained from
the original authors is
incomplete or in some
other way inaccurate” 6



My Parameter Set

1 Svalgaard Goelzer Unit Description

2 0.04 0.04 Number Number of CMEs per day

3 per unit sunspot number

4 0 0 Number Offset in calculating ejection frequency

5 = offset + CMEs per day * Sunspot Number

b 15 20 Days Timescale for interchange reconnection

7 4.0 2.5 Years Timescale for opening of closed flux

8 3.0 6.0 Years Timescale for loss of flux by disconnection
9 1 1 10713 Wb Magnetic flux per CME

10 56 0 10713 Wb Magnetic flux over whole sphere for a Floor
11 in the HMF radial B

12 0.6 0.5 Fraction Fraction of flux closing on ejection

13 1.5 N/n Factor Factor to convert computed, ideal 'Parker’
14 spiral B to messy, total B

15 N/A 0.5-2.4 nT Offset to convert computed, ideal 'Parker’
16

spiral B to messy, total B

Equally good fit with only 2% parameters <B(year)> nT = 4 + 0.318 SSN?®>




The Tale of Two Models...
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The models operate with the ‘open [radial] flux’, so it is important to get that right g



Finding the Radial Component of B

2009 OMNI, 480796 1-minute data,
Bin-width 0.1 nT

Radial Component of B
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Radial Component of B 4 2001 OMNI, 484662 1-minute data,
¥ Bin-width 0.1 nT
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Treat the observed radial component as the sum of two Gaussians, one
positive and one negative using high-resolution [1-minute] data.




Ratio |Br|/B Is Nearly Constant

Radial component HMF at Earth
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Lockwood 2014: “At the last three solar minima, the near-Earth IMF B were
5.55 nT, 5.10 nT, and 3.87 nT while |Br|1day were 2.28 nT (|Br|/B = 0.41),
1.91 nT (0.37), and 1.14 nT (0.29)". These are clearly seriously too low.

10




Comparing with ‘Data’
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As the Sunspot Number Is used as

Input It IS iImportant to get that right

Four recent Sunspot Number Workshops (2011-2014)
have critically examined the historical sunspot number
record(s)

There is now broad consensus among the participants
that we have identified the major problems with the SSN
series:

A) Error in Wolf-Wolfer calibration for the GSN before
~1882

B) Weighting of sunspot counts for the Int. SSN starting
In 1940s

A preliminary new series [the Wolf Number] is being
constructed [ETA 2015]
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Normalization Procedure for GSN

Number of Groups: Wolfer vs. Wolf 1 Number of Groups
9
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For each Backbone we regress each observers group counts for each year against
those of the primary observer, and plot the result [left panel]. Experience shows that
the regression line almost always very nearly goes through the origin, so we force it
to do that and calculate the slope and various statistics, such as 1-o uncertainty
and the F-value. The slope gives us what factor to multiply the observer’s count by
to match the primary’s. The right panel shows a result for the Wolfer Backbone:
blue is Wolf’s count [with his small telescope], pink is Wolfer’s count [with the larger
telescope], and the orange curve is the blue curve multiplied by the slope. H&S
have an incorrect normalization factor close to unity for Wolf-Wolfer. 13
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Double-Blind Test of My Re-Count

Comparison Locarno Weighted Sunspot Counts with Svalgaard/Cagnotti Unweighted Counts

120

Locarno * 34.04 1.554
100 ~ Svalgaard O 21.59
Cagnotti 3 22.23

gl -
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Aug. 2011

For typical number of spots
the weighting increases the

‘count’ of the spots by 30-60%
15

| proposed to the Locarno
observers that they should
also supply a raw count
without weighting




Number of Spots per Day by Locarno, Svalgaard, & Cagnotti
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| have recounted
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Effect on the Wolf Number

Wolf Number observed at Locarno
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Weight Factor depends on SSN

Weight Factor Follows Sunspot Number
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re f— ‘ — Counting 1593 [real] spots in 1981 [the

i . SRS first year where drawings from Locarno
S S DU S TN /45 are readily available on the Internet at
http://www.specola.ch/e/drawings.html ]
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when the raw sunspot number was 155
yielded a weight factor of 1.25
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http://www.specola.ch/e/drawings.html

The Difficulty in Counting Groups
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On one day out of five
Locarno has at least one
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Combined Effect of Weighting
and More Groups is an Inflation
of the Relative Sunspot Number
by 20+% 19



Modern Counts have too Many Groups

The Waldmeier Classification lead to Better Determination of Groups

Counting spots Is easy; counting groups is HARD
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Can we see the Effect of Weighting

of Spot Count In
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Can we see the Effect of Weighting

In other Indices, |17
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The Strong Geomagnetic Connection

Variation of Diurnal Range of East Component of Geomagnetic Field
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Wolf’'s Discovery (1852): rD =a + b R,
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A current system in the ionosphere is created
and maintained by solar FUV radiation

Y = H sin(D)
dY = H cos(D) dD For small dD

The magnetic effect of this system was discovered by George Graham in 1722
24




Effects of Solar FUV known back to the
1840s and even into the 18" century

- Comparison Number of Groups and Diurnal Range of Geomagnetic East Component
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An Aside: Debunking a Myth

Original sources show that Wolf introduced the 1.25 factor with the 1860-1861
[and thereafter] tables of his relative sunspot numbers and that the factor was
not determined using the ‘magnetic needle’, but by comparisons with other
observers and consistent with Schwabe’s use of a weaker instrument. Now, it is
true that Wolf in 1874 got the Milan data from Schiaparelli and found that they
corroborated his 1.25 factor for Schwabe leading to an overdue recalculation of
the entire series.

But, to reiterate: Wolf’s adjustment was not determined by comparison in

1874 with the ‘magnetic needle’ data as assumed by Hoyt and Schatten [in
Geophysical Research Letters, Vol. 21, No. 18, Pages 2067-2070, September 1, 1994,
doi/10.1029/94GL01698 Hoyt and Schatten write:

“Curiously, our Group Sunspot Numbers are similar to the Wolf Sunspot Numbers published by Wolf
prior to 1868. In 1874, Wolf revised his original sunspot numbers by multiplying them by a factor of 1.25
for 1826 to 1848 and by about 1.2 to 1.5 for the earlier years. Wolf's correction was apparently
determined using variations of the magnetic needle at Milan. Based upon our analysis, this correction is

erroneous.”] and others, but by comparison with Carrington and Hornstein in
1860-1861, and consistent with Schwabe’s use of a smaller telescope at
lesser magnification.
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Wolf Spot to Group Ratio

Group and Spot Counts by R. Wolf SIDC Rz
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The Procession of Echternach
1L 1F 1R 1B 1F

1883 %  s

Month Day Wolf G Wolf S Wolf R Wolfer G Wolfer S Wolfer R
8 16 3 4 34 7 29 99

8 17 3 6 36 11 29 139

8 18 3 6 36 7 31 101

8 19 3 5 35 8 30 110

8 20 2 3 23 7 18 88

8 21 2 3 23 7 40 110

8 22 2 4 24 7 41 111

8 23 2 4 24 5 37 87

8 24 2 4 24 6 35 95

8 25 2 4 24 5 32 82

8 26 4 8 48 4 55 95

8 27 3 9 39 4 60 100

8 28 4 12 52 5 91 141

8 29 4 10 50 5 62 112

8 30 6 12 72 7 82 152

8 31 6 16 76 6 88 148

9 1 5 15 65 8 81 161
Average 3.29 7.35 40.29 6.41 49.47 113.59

_ »Xx15 GRatio SRatio x0.6
To place on Wolf’s scale with the 80mm 1.95 6.73
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SSN4: No Modern Grand Maximum

Composite Group Number Series
Staudach 3 Schwabe 1.55 Wolfer 1 Koyama 1 SIDC 1]
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The preliminary new sunspot record expressed in terms of the number of
sunspot groups. The ‘old’ SSN record was constructed as R = 0.6 * (10g+s),
where [for Wolf] 10g+s =1.5 * (10G+S). The new SSN record will be simplified
to W = 10G+S with no weighting of spots S.

The new Wolf Number should be used as model input and we should understand
the behavior and the fit of the model to the new perspective and to HMF B before
we can extrapolate with any degree of confidence to the Maunder Minimum. g




‘Modern Grand Maximum’
sometimes portrayed as Extreme
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Summary of Talks and
Discussions to follow
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Progress In Reconstructing Solar
Wind Magnetic Field back to 1840s

InterDiurnal Variability Index IDV and Reconstructed Heliospheric Magnetic Field B
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Even using only ONE station, the ‘IDV’ signature is strong enough to show the effect
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As the Sunspot Number is used as Model
Input It IS Important to get that right

Four recent Sunspot Number Workshops (2011-
2014) have critically examined the historical
sunspot number record(s)

There is now broad consensus among the
participants that we have identified the major
problems with the SSN series:

A) Error (65%) in Wolf-Wolfer calibration for the
GSN before ~1882

B) Weighting of sunspot counts (20%) for the Int.
SSN starting in 1940s
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Effect on the Wolf Number

Wolf Number observed at Locarno
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SSN4: No Modern Grand Maximum

Composite Group Number Series
Staudach 3 Schwabe 1.55 Wolfer 1 Koyama 1 SIDC 1]
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The preliminary new sunspot record expressed in terms of the number of
sunspot groups. Of note is that there is a maximum in every century, none of
them particularly ‘Grand’.

The new Wolf Number should be used as model input and we should understand
the behavior and the fit of the model to the new perspective and to HMF B before
we can extrapolate with any degree of confidence to the Maunder Minimum.
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No Rising Background ‘Base Level’
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Perhaps the Maunder Minimum was
Less Extreme than we Thought
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The emergence of ‘ephemeral regions’ does not show any solar cycle
dependence [e.g. Hagenaar, 2008], thus no ever-increasing background 3zq
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Ing [Riley et al.

MHD Model
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Computed Radial HMF at 1 AU

Model Description Open Flux
(a) CR 2085 (06/26/09-07/23/09) 1.0 nT
(b)  Parasitic polarity (£10 G) + Large-scale dipole (3.3G) 2.4 nT
(c) Large-scale dipole only (3.3G) 2.2 nT
(d) Parasitic polarity (10 G) + Large-scale dipole (1G) 1.2 nT
(e) Parasitic polarity only (£10 G) 0.29 nT P_Olar
Fields
(f) Parasitic polarity only (+3.3 G) 0.08 nT needed
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NGRIP FLUX (x 100)
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We do not understand the 10Be modulation

“we have an upper limit to the
absolute maximum 10Be flux
which is only ~1.25 times the
recent average maximum
intensity of 10Be measured.
This value corresponds to the
lowest bound of the shaded
region in Figure 5. This lower
bound includes many other
earlier time periods with 10Be
flux values that exceed those
possible from 10Be
production alone from the full
LIS spectrum. Indeed this
implies that more than 50%
the 10Be flux increase
around, e.g., 1700 A.D., 1810
A.D. and 1895 A.D. is due to
non-production related
increases! “

“Other influences on the ice core measurements, as large as or larger than the production changes
themselves, are occurring. These influences could be climatic or instrumentally based. We suggest
new ice core measurements that might help in defining more clearly what these influences are and-if

possible-to correct for them. “ Webber et al. arXiv:1004.2675 (2010) 44



http://arxiv.org/abs/1004.2675

‘Burning Prairie’ => Magnetism

Figure 1 An early drawing of the “burning prairie” appearance of the Sun’s limb made by C.A. Young, on
25 July 1872. All but the few longest individual radial structures are spicules.

It is now well known (see, e.g., the overview in Foukal, 2004) that the spicule jets move
upward along magnetic field lines rooted in the photosphere outside of sunspots. Thus the
observation of the red flash produced by the spicules requires the presence of widespread
solar magnetic fields. Historical records of solar eclipse observations provide the first known
report of the red flash, observed by Stannyan at Bern, Switzerland, during the eclipse of

nung, 1883). The second observation, at the 1715 eclipse in England, was made by,
among others, Edmund Halley —the Astronomer Royal. These first observations of the red

flash imply that a significant level of solar magnetism must have existed even when very few
spots were observed, during the latter part of the Maunder Minimum.

Foukal & Eddy, Solar Phys. 2007, 245, 247-249
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Birth of an Active Region

NOAA 11158, February, 2011
Solar Dynamics Observatory (SDO)
“All the Sun, All the Time”

Sunspots grow by the accumulation
of smaller spots and pores.

You may have to click on
the area to play the movie.

It may not play on a Mac.

Visible Light
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My Personal Working Hypothesis

The Maunder Minimum was not a serious
deficit of magnetic flux, but

A lessening of the efficiency of the process
that compacts magnetic fields into visible
spots

This may now be happening again soon

If so, there is new solar physics to be
learned
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Perhaps like this

Magnetic Field
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The Maunder Minimum IS

as Mysterious as Ever
(but so was the notion a decade
ago that we would ever
successfully reconstruct the
solar wind properties for the
past 170 years...)
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