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The orbital motion of the planets in the Solar System is chaotic. As a result, initially
close orbits diverge exponentially with a characteristic Lyapunov time of 5 Ma. This
sensitivity to initial conditions will limit the possibility of obtaining an accurate
solution for the orbital and precessional motion of the Earth over more than 35–
50 Ma. The principal sources of uncertainty in the model are reviewed here. It appears
that at present the largest source of error could reside in the lack of knowledge of the
value of the precession due to the oblateness (J2) of the Sun. Nevertheless, for the
calibration of geological time-scale, this limitation can be overcome to some extent
if one considers in the geological data the signature of the outer planets’ secular
orbital motion which is predictable on a much longer time-scale. Moreover, it should
be possible to observe in the geological records the trace of transition from the
(s4 − s3)− 2(g4 − g3) secular resonance to the (s4 − s3)− (g4 − g3) resonance. The
detection and dating of these passages should induce extremely high constraints on
the dynamical models for the orbital evolution of the Solar System.
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1. Introduction

The insolation at a given point on Earth depends on the position of the Earth in
space, and on the orientation of the Earth relative to the Sun. In order to make
precise computations of the past climatic evolution of the Earth, one thus needs
first to have an accurate solution for the orbital evolution of the Earth, and then to
compute the evolution of the orientation of the axis of the Earth.

The orbital computation is a difficult task since the Earth’s motion is perturbed
by all the other planets of the Solar System. The first approximate solution of this
problem was given by Le Verrier (1856), and was used by Milankovitch for his studies
on the astronomical origin of the ice ages. Le Verrier’s solution consisted of linearized
equations for the mean evolution of the orbits of the planets. It was completed later
on by Hill (1897), who recognized that higher-order terms, coming from the mutual
interactions of Jupiter and Saturn, can significantly change the solution of Le Verrier.
The solution of Brouwer & Van Woerkom (1950) is essentially that of Le Verrier, with
the addition of the terms computed by Hill. It provides a solution which represents
in a very reasonable way the evolution of the orbit of the Earth over a few hundred
thousand years, and was used for insolation computations by Sharav & Boudnikova
(1967a, b) with updated values of the parameters. The next major improvement was
given by Bretagnon (1974), who computed terms of second order and degree 3 in the
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secular (mean) equations. This solution was then used by Berger (1976, 1978) for
the computation of the precession and insolation quantities for the Earth following
Sharav & Boudnikova (1967a, b). All of these solutions assumed implicitly that the
motion of the Solar System is regular, and that the solution could thus be obtained
as quasi-periodic series, using perturbation theory.

In Laskar (1984, 1985, 1986), I computed in an extensive way the secular equations
giving the mean motion of the whole Solar System, including all terms up to order
2 with respect to the masses, and up to degree 5 in the eccentricity and inclination
of the planets (thus also including all the terms of Hill). It was clear from these
computations that the assumed practical convergence of the perturbative series was
vain, and strong evidence of divergence becomes apparent in the system of the inner
planets (Laskar 1984).

This difficulty was overcome by a numerical integration of the secular (i.e. aver-
aged) equations, which could be performed in a very efficient way, using a stepsize of
500 years. The outcome of these computations was to provide a much more accurate
solution for the orbital evolution of the Solar System (Laskar 1986, 1988), which also
included a full solution of obliquity and precession usable for insolation computation.
But at the same time, I demonstrated the chaotic behaviour of the orbits of the plan-
ets of the Solar System, and more specifically of the inner planets, thus destroying
the hope of obtaining an astronomical solution to use to develop a palaeoclimate
time-scale for the Earth over several hundreds of millions of years (Laskar 1989).

Later on, and shortly after the publication of the direct numerical integration over
3 Ma of Quinn et al . (1991), we published an improved solution for the precession
and obliquity solution, aimed to help palaeoclimate computation over 20 Ma (Laskar
et al . 1993a). This solution was made widely available through the Internet (requests
for these files should be addressed to laskar@bdl.fr), together with a set of routines
allowing changes to the model of precession. This solution was limited to 20 Ma,
that is the time span over which we assumed that the exponential divergence due
to chaotic behaviour was not sensitive. Due to the improvement of the geological
techniques, several groups are now studying sedimentary cores extending over more
than 20 Ma, and there is a demand for astronomical solutions extending further in
time. This requires a closer look at the real precision of the solutions, and the aim
of the present paper is to clarify this point, by setting more precise bounds on the
limits of Earth orbital calculations for geological time-scale use.

2. Chaotic motion of the Solar System

The main result from the long-term integration of the secular Solar System equations
was the discovery that the full Solar System, and especially the inner Solar System is
chaotic (Laskar 1989) with a Lyapunov time of ca. 5 Ma. This means that the distance
of two planetary solutions, starting in the phase space with a distance d(0) = d0,
evolves approximately as†

d(T ) ≈ d0eT/5, (2.1)

† The distance here corresponds to the variables used in the integration of the problem, which are
either similar to an eccentricity, or to an inclination. In both cases, if the inclinations are expressed in
radians, they are relative distances in physical space, but for an easier comparison of the results for the
inclinations, we prefer to use degrees in the figures instead of radians.
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or, in a more straightforward way, and which is even closer to the true value,

d(T ) ≈ d010T/10, (2.2)

where T is expressed in millions of years. Following this formula, an initial error of
10−10 leads to an indeterminacy of ≈ 10−9 after 10 Ma, but reaches the order of 1
after 100 Ma. From these results, it was clear that the planetary solutions can be very
accurate for 10–20 Ma, and probably irrelevant for precise predictions after 100 Ma.

Nevertheless, the Lyapunov time of 5 Ma, which is given here, is a global constant
for the whole Solar System. This is valid, as due to coupling, all solutions will undergo
the effects of the chaotic component; but as this coupling is small, the effect on some
of the planets could also be small over a limited time span.

For the practical purpose of calibrating the astronomical time-scale for the terres-
trial sediments, it is thus necessary to look more closely at the specific solution of the
Earth’s orbital elements. This is done in the present work through several numerical
experiments.

(a) Experiment 1

In the first experiment, I changed the initial argument of perihelion of the Earth
by an amount between 10−2 and 10−9 rad. After integrating the orbits over 100 Ma,
the eccentricity and the inclination of the Earth are compared directly in figures 1
and 2. In figure 1, the propagation of the error in eccentricity is plotted versus time,
while in figure 2, the error in inclination is given in degrees.

In all of these plots, it is clear that after a time span during which the difference of
the solutions is barely seen, there is a brutal increase in the error, reaching the total
amplitude of the variation of these elliptical elements. This change, which results
from the dominance of the exponential chaotic component, results in a complete
loss of the phase relationship at the corresponding angles of precession of node and
perihelion, and thus strictly limits the use of the astronomical solution as a time-scale
for geological records.

From figures 1 and 2, one gets the following simple approximate relation between
the time of validity of the orbital solution TV and the absolute error in the angles
determining the initial position of the orbit of the Earth in space δ$,

TV ≈ − log10 δ$ × 10 Ma, (2.3)

which is actually equivalent to equation 2.2, the validity time TV being obtained for
an error d(TV) = 1.

(b) Experiment 2

In this second experiment, the same change of 10−5 rad is made successively for
the perihelions of all of the planets. This induces an error in the orbit of the Earth
due to the coupling of the solutions. The errors in eccentricity and inclination are
plotted in figures 3 and 4, respectively. From these plots, it appears that some errors
in the perihelion of Mercury, Venus, Mars, Jupiter and Saturn have the same effect
as an equivalent initial error in the perihelion of the Earth. So the same relation (2.3)
will apply.
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For Uranus and Neptune, the induced error is not so large, and we can see an offset
of 30 Ma with respect to the previous relation. The time of validity of the orbit will
thus be something more like

TV ≈ − log10(10−3δ$)× 10 Ma, (2.4)

which means that for Uranus and Neptune we can accept an error 1000 times larger
than that for the other planets.

(c) Experiment 3

Here we start with an offset in the orbit of one of the planets, and examine the
resulting effect for the solution of all the other planets. This is done successively for
the Earth (figure 5), Jupiter (figure 6), and Neptune (figure 7). For brevity, only the
results for eccentricity are plotted, but the results for inclination are very similar.

It is quite clear that all the inner planets have the same chaotic behaviour, while
all of the solutions for the outer planets behave much more regularly. There are still
some chaotic effects, especially in figure 5, but the resulting error over 100 Ma is still
very small. With an initial error for an outer planet (figures 6 and 7), the errors in
the outer planets grow regularly and do not show exponential trends over 100 Ma.

(d) Conclusions

From these computations, it appears clearly that the solution for the Earth fol-
lows strictly the exponential relations given in (2.1) and (2.2), and that the time of
validity for the orbital solution will be given by the relation (2.3). These numerical
experiments will now be used to estimate the propagated error due to the uncertainty
in the initial conditions and parameters of the model.

3. Constants of the planetary solution

If one sets aside the problems due to the model, the accuracy of the orbital solution
depends on the planetary masses and on the precision of the initial positions and the
determination of velocities.

(a) Planetary masses

The precision with which masses are known has been greatly improved by the
Voyager Spacecraft missions, and the latest values for the planetary masses are given
in table 1. The uncertainties are obtained from the latest adjustment of the JPL
ephemeris DE405 (Standish 1998).

(b) Planetary positions

The uncertainty of the observations for the positions of the planets should be
better than 0.1′′ ≈ 0.5×10−6 rad, and this will not be a limiting factor for obtaining
a solution over an extended time span.

If we assume in general a precision of 10−6 for the planetary masses and positions,
using the relation (2.3), one sees that the maximum validity time for the orbital
solution will be

TV ≈ 60 Ma. (3.1)
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Figure 1. Error in the eccentricity of the Earth resulting from an initial change of 10−n rad in
the perihelion of the Earth at the origin. After about n × 10 Ma, the exponential divergence
of the orbits dominates, and the solutions are no longer valid. Error in eccentricity is plotted
versus time (in Ma).

This is somewhat optimistic, as the previous section shows that this precision of 10−6

needs to be achieved for all the planets from Mercury to Saturn to reach this validity
time for the solution. If this were all, the situation would be quite encouraging. A

Phil. Trans. R. Soc. Lond. A (1999)



1740 J. Laskar

0

2

4

in
cl

in
at

io
n

0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

100 80 60
time (Ma)

40 20 0–––––

10

10

10

10

10

10

10

–9

–8

–7

–6

–5

–3

–2

– 4

10

Figure 2. Error in the inclination of the Earth resulting from an initial change of 10−n rad in
the perihelion of the Earth at the origin. After about n× 10 Ma, the exponential divergence of
the orbits dominates, and the solutions are no longer valid. Error in inclination (in degrees) is
plotted versus time (in Ma).

solution valid over 100 Ma would still be out of reach, but from this naive analysis,
a solution valid over 50 Ma would appear to be consistent with the present accuracy
of the determination of the planetary initial conditions and mass values.
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Figure 3. Error in the eccentricity of the Earth resulting from an initial change of 10−5 rad in
the perihelion of the various planets at the origin. It is clear that an error in the position of
Mercury, Venus, Mars, Jupiter, Saturn, has the same impact as the same error in the perihelion
of the Earth. For Uranus and Neptune, due to the smaller coupling, the error becomes important
only 30 Ma later. Error in eccentricity is plotted versus time (in Ma).
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Figure 4. Error in the inclination of the Earth resulting from an initial change of 10−5 rad in the
perihelion of the various planets at the origin. It is clear that an error in the position of Mercury,
Venus, Mars, Jupiter, Saturn, has the same impact as the same error in the perihelion of the
Earth. For Uranus and Neptune, due to the smaller coupling, the error becomes important only
30 Ma later. Error in inclination (in degrees) is plotted versus time (in Ma).
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Figure 5. Error in the eccentricity of the various planets resulting from an initial change of
10−5 rad in the perihelion of the Earth at the origin. One can see that the effect of the chaotic
behaviour is the same for all the terrestrial planets (Mercury, Venus, Earth, Mars), but due to
the small coupling, it is much smaller for the outer planets, for which the effect is negligible
(notice the change of scale) over 100 Ma. Error in eccentricity is plotted versus time (in Ma).
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Figure 6. Error in the eccentricity of the various planets resulting from an initial change of
10−5 rad in the perihelion of Jupiter at the origin. One can see that the effect of the chaotic
behaviour is large for all the terrestrial planets (Mercury, Venus, Earth, Mars). There is an
increase of the error for the outer planets, but it follows a very regular rate, which is what
we could expect in a regular problem. For the outer planets, the effect is still very small over
100 Ma. Error in eccentricity is plotted versus time (in Ma).
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Figure 7. Error in the eccentricity of the various planets resulting from an initial change of
10−5 rad in the perihelion of Neptune at the origin. The effect of the chaotic behaviour is still
present for all the terrestrial planets (Mercury, Venus, Earth, Mars), but of lower amplitude, as
it manifests itself only after ca. 75 Ma. The error for the outer planets is also much smaller, and
follows a very regular rate, which is what we could expect in a regular problem. For the outer
planets, the effect is extremely small over 100 Ma. Error in eccentricity is plotted versus time
(in Ma).
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Table 1. Value of the ratio M�/m for the planets of the Solar System given by IAU 1976,
IERS 1992, DE405, and estimated relative precision ∆m/m

∆m/m
IAU 1976 IERS 1992 DE405 ∆m ×106

Mercury 6 023 600 6 023 600 6 023 600 250 40
Venus 408 523.5 408 523.71 408 523.71 0.06 0.15
Earth+Moon 328 900.5 328 900.56 328 900.5614 0.02 0.06
Mars 3 098 710 3 098 708 3 098 708 9 3
Jupiter 1 047.355 1 047.3486 1 047.3486 0.0008 1
Saturn 3 498.5 3 497.90 3 497.898 0.018 5
Uranus 22 869 22 902.94 22 902.98 0.03 1.5
Neptune 19 314 19 412.24 19 412.24 0.04 2
Pluto 3 000 000 135 000 000 135 200 000 7 000 000 52 000

In fact, the situation is not so good, as the simple following analysis will show.

4. Precision of the secular frequencies

An error in the initial values of the planetary positions and masses also induces an
error in the secular frequencies, or in an equivalent manner, in the precession rates,

$̇j =
d$j

dt
, Ω̇j =

dΩj
dt

, (4.1)

which we can also assume to be of the order of 10−6. Let us look at the effect of an
error of δν in one of the precession frequencies, or angular velocities.

The error in the angle will increases as δν × T at first, but then the exponential
divergence due to the chaotic behaviour will also be important. The error will thus
grow approximately as

d(T ) = δν × T1e(T−T1)/5. (4.2)

The value of T1 which gives the maximum value for this error is T1 = 5 Ma, so the
final error will be

d(T ) = 5δνe(T−5)/5). (4.3)

One can look at this estimate in another way: the value of the precession frequencies
is ca. 20′′ a−1, which is ca. 10−4 rad a−1. So the relative error of 10−6 gives

δν = 10−4 rad Ma−1. (4.4)

After 5 Ma, the error reaches 5×10−4 rad, and from equation (2.3) we get TV−5 Ma ≈
33 Ma, i.e.

TV ≈ 38 Ma, (4.5)

which is much smaller than (3.1).
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Table 2. Change of precession of the planets due to the presence of the satellites

a (km) mS/mP ∆$̇ (arcsec a−1)

Moon 383 398 1.230× 10−2 0.076 632
Callisto 1 883 000 5.668× 10−5 0.000 027
Ganymede 1 070 000 7.804× 10−5 0.000 012
Europe 670 900 2.527× 10−5 0.000 001
Io 421 600 4.705× 10−5 0.000 001
Titan 1 221 850 2.367× 10−4 0.000 006

5. Uncertainty of the orbital model

We have seen that the relative uncertainty of 10−6 in the planetary masses and initial
conditions will already limit the time of validity of the solution to ca. 38 Ma, but this
is without mentioning the errors coming from the modelling. Let us assume that the
equations of motion are integrated exactly. We estimate here the effects not included
in our model and which can reduce the time of validity of the solutions.

(a) Effect of the satellites

As was computed by Le Verrier (1858), the satellites of the planets induce a sup-
plementary precession of their perihelion, which in a first-order computation gives

d$
dt

∣∣∣∣
S

=
3
4

m0m1

(m0 +m1)2

(
a

a′

)2

n′, (5.1)

where m0,m1 are the masses of the planet and the satellite, a, a′ the semi-major
axis of the satellite around the planet, and of the planet around the Sun, and n′
is the mean motion of the planet. The values of these contributions for the large
satellites of the Solar System are given in table 2. For the Moon, this first-order
computation is not sufficient, and significant correction is due to higher-order terms.
With a numerical integration of the Sun–Earth–Moon problem, we obtained ∆$̇ =
0.065 74′′ a−1, while Bretagnon (1984) obtained ∆$̇ = 0.065 85′′ a−1 in his semi-
analytical theory of the planets. This latter value was the one used in La93 (Laskar
et al . 1993a).

The contribution of the Moon is already included in the orbital solution La93, but
in order to get a more accurate solution over extended time, the higher-order part
should be put in a completely analytical form. It can also be noted that the total
contribution of the large satellites of the Solar System is 0.000 047′′ a−1. After 5 Ma,
this will reach 10−3 rad, which will limit the validity of the solution to

TV ≈ 35 Ma. (5.2)

(b) Tidal dissipation

Due to the tidal dissipation in the Earth–Moon system, the Moon is receding at
a rate of 3.82 cm a−1 (Dickey et al . 1994). This will thus change the value of the
precession rate of the perihelion of the Earth–Moon barycentre given in table 2.
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Table 3. Change of precession of the planets due to the presence of small bodies

P (a) m/m0 ∆$̇ (arcsec a−1)

Pluto 247.69 74.0× 10−10 0.11× 10−6

Ceres 4.6 5.9× 10−10 27.10× 10−6

Pallas 4.61 1.1× 10−10 5.03× 10−6

Vesta 3.63 1.2× 10−10 8.85× 10−6

From equation (5.1), we obtain the acceleration of the longitude of perihelion of the
Earth due to this tidal dissipation as

γM =
d2$

dt2

∣∣∣∣
M

= 2
$

a

da
dt
. (5.3)

The error due to the omission of this contribution can be estimated, as previously,
as

d(T ) = 1
2γM × T 2

1 e(T−T1)/5 (5.4)

and its maximum value will be obtained for T1 = 10 Ma, and reaches d(T1) ≈ 700′′ ≈
0.0035 rad. This will limit the length of validity of the solution to

TV ≈ 35 Ma. (5.5)

Of course, this contribution could be added to the model, but over the past 50 Ma
there is uncertainty about the value of this tidal contribution, which is about one-
third of the total contribution. In this case, this uncertainty will still limit the solution
to

TV ≈ 40 Ma. (5.6)

(c) Effect of small bodies

The contribution of a small planet of mass m′ and mean motion n′ can be given
by a first-order approximation, which will give

d$
dt

∣∣∣∣
A

=
3
4

m′

m0 +m+m′

(
n′

n

)
n′ (5.7)

and the perturbation of the longitude of the node is roughly the opposite of this
value.

We can see here that Pluto has practically no effect on the Earth’s orbit. This is
not the case for the minor planets, the total contribution of which amounts to 41×
10−6′′ a−1. Moreover, the effect on Mars will be about double at ca. 77× 10−6′′ a−1,
i.e. ca. 0.002 rad after 5 Ma, which will limit the validity of the solution to

TV ≈ 32 Ma. (5.8)

(d) Mass loss of the Sun

The mass loss of the Sun due to solar radiation is
ṁ

m
= −2.2× 10−21 s−1, (5.9)
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Table 4. Change of precession of the planets due to general relativity for t = J2000

(J2000 is the astronomical conventional origin of time. It is 1 January 2000 at 12 p.m. It also
corresponds to the beginning of the Julian day 2451 545.0.)

∆$̇ (arcsec a−1)

Mercury 0.429 805
Venus 0.086 246
Earth 0.038 387
Mars 0.013 509
Jupiter 0.000 623
Saturn 0.000 137
Uranus 0.000 024
Neptune 0.000 008

which leads to ṁ/m = −0.35× 10−6 after 5 Ma. This will induce the same variation
ȧ/a = 0.35× 10−6 in the semi-major axis of the planets, which is below the present
precision of the determination of the planetary initial conditions. The mass loss of
the Sun is thus not an obstacle to the search for a planetary orbital solution over
50 Ma.

(e) General relativity

In the post-Newtonian formalism, the relativistic change of the perihelion velocity
is

d$
dt

∣∣∣∣
R

=
3nG(M +m)
a(1− e2)c2

=
3n3a2

(1− e2)c2
. (5.10)

The computed values at the origin of time are given in table 4. It should be noted
that this is uniquely the field due to the Sun. The field due to the other planets needs
to be considered, but the effect of the planets on Mercury should be about 10−4 the
value of the effect of the Sun. It should thus not be larger than 50 × 10−6′′ a−1

and thus of less importance than other sources of error, but it should still limit the
solution to less than 35 Ma if it is not taken into consideration.

The terms of higher order in the general relativistic contribution will give to the
previous expression a multiplying factor of the order of

GM

ac2
≈ 2.5× 10−8 (5.11)

for Mercury, and are thus completely negligible.

(f ) Lens–Thirring effect

This relativistic effect is due to the rotation of the Sun, which, according to Soffel
(1989), amounts to 0.0001′′ a−1 in the longitude of perihelion of Mercury. Neglecting
it will limit the solution to 31 Ma.
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Table 5. Change of precession of the planets due to the effect of a solar J2 = 2× 10−6

∆$̇ (arcsec a−1) ∆Ω̇ (arcsec a−1)

Mercury 0.002 435 −0.002 435
Venus 0.000 261 −0.000 261
Earth 0.000 084 −0.000 084
Mars 0.000 019 −0.000 019

(g) J2 of the Sun

The J2 value of the Sun is not well known (see next section), but it is supposed to be
small. Contrary to general relativity, the quadrupole moment of the Sun (J2) affects
both the longitude of node and perihelion (this is a way to discriminate between the
two contributions). The rate of the perihelion due to the J2 of the Sun is given by

d$
dt

∣∣∣∣
J2

= 3
4J2

(
R�
a

)2 5 cos2 i− 2 cos i− 1
(1− e2)2 n, (5.12)

where R� is the radius of the Sun, n the mean motion of the planet, and i the
inclination of the planet’s orbit with respect to the equator of the Sun. The change
in the rate of the node is

dΩ
dt

∣∣∣∣
J2

= −3
2J2

(
R�
a

)2 cos i
(1− e2)2n, (5.13)

which gives for the various planets the values given in table 5 for J2 = 2× 10−6. For
this value of J2, the precession due to the J2 of the Sun is of ca. 0.003′′ a−1. This
would lead to an error of ca. 0.075 rad after 5 Ma, which would limit the validity of
the solution to

TV ≈ 16 Ma. (5.14)

If the uncertainty on this term, which is the largest one considered so far, is reduced
by a factor of 10 to 2×10−7, the error would be 0.01 after 5 Ma, which will still limit
the validity of the solution to

TV ≈ 26 Ma. (5.15)

(h) Uncertainty in the measurement of the J2 of the Sun

A precise measurement of the J2 of the Sun has not yet been achieved. A compi-
lation of some values in the literature gives until recently very large variations of the
estimated values.

Campbell & Moffat (1983) Motion of the inner planets and Icarus:

J2 = (5.5± 1.3)× 10−6. (5.16)

Landgraf (1992) Motion of Icarus:

J2 = (0.6± 5.8)× 10−6; J2 < 2× 10−5. (5.17)
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Paternó et al . (1996) Measure of the flattening of the Sun:

≈ 10−7 < J2 < 5× 10−7. (5.18)

Bois & Girard (1998) Indirect measurement of the effect on the Moon’s motion,
for which very accurate observations are obtained with lunar laser ranging:

J2 < 3× 10−6. (5.19)

Pijpers (1998) SOHO and GONG helioseismic data:

J2 = (2.18± 0.06)× 10−7. (5.20)

Jurgens et al . (1998) Mercury radar ranging. Value of J2 not yet determined but
should be smaller than a few 10−7.

These measurements appear to be quite different and not very conclusive, although
they seem to converge to a value of a few 10−7. The latest measurement of Pijpers
(1998) is very precise, but it is not clear for me whether all the uncertainties of his
model were taken into account in the computation of errors.

A direct measurement of the dynamical effect of the J2 component of the Sun is
thus welcome. The measurement of Bois & Girard (1998) through the lunar laser
ranging data is interesting, but the intricate motion of the Moon, which is subjected
to many other perturbations, should make it more difficult than direct measurements
on Mercury. In this respect, as long as a drag-free solar probe is not used, the radar
measurements made by Jurgens et al . (1998) should be at present the most effective
way to obtain a direct determination of the J2 of the Sun’s gravity field, and in any
case to bound its possible value.

6. First conclusions

Quite surprisingly, we have found that, at present, the main source of uncertainty for
the construction of an accurate orbital solution for the Earth is the uncertainty in
the determination of the J2 value of the Sun. Even if there is some improvement in
the near future, and if this error goes down to 10−7, the validity time of the solution
will be limited to 26 Ma. If this error decreases to 10−8, the solution could be valid
over 36 Ma, but we have seen that for this time span, there are several other sources
of uncertainty which will limit the validity of the solution. At present, I would say
that an attainable goal is to provide an accurate solution over 35 Ma. It can also be
said that the present solution La93 is certainly not valid over more than 10–20 Ma,
as was stated in Laskar et al . (1993a).

7. Precession and obliquity

Once the orbital solution of the Earth is known, one can compute the solution for the
evolution of the Earth’s precession and obliquity. The uncertainty resulting from this
computation is of a different nature. Indeed, the motion of the obliquity is essentially
stable, despite the proximity of a small resonance induced by the perturbation of
Jupiter and Saturn (Laskar et al . 1993a, b). On the other hand, the rotational motion
of the Earth is subject to various dissipative effects for which the amplitude and
correct method of modelling are not known precisely (see Néron de Surgy & Laskar
(1997) for a more complete review).
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(a) Change in the dynamical ellipticity of the Earth

Although the possibility of changes in the dynamical ellipticity of the Earth was
known for a long time, attention was drawn to it recently by Laskar et al . (1993a),
when we demonstrated the proximity of the precession–obliquity solution of the
Earth with a resonance with the s6−g6 +g5 term of perturbation due to Jupiter and
Saturn. Although this excitation term is small, we demonstrated that it induces some
important effects in the present solution of the obliquity of the Earth. Moreover, we
showed that a very small change in the dynamical ellipticity of the Earth, of about
0.002 in relative size, could allow for a passage into resonance, thus inducing larger
changes in the obliquity. In Laskar et al . (1993a), based on calculations by Thomson
(1990), we mentioned that such a small change in the dynamical ellipticity of the
Earth could be obtained by passage through an ice age, because of the change in the
repartition of the mass loads on the Earth.

These findings were followed by new computations yielding improved estimates for
the possible change in dynamical ellipticity when entering into an ice age (Peltier &
Jiang 1994; Mitrovica & Forte 1995), which reveals the effects to be much smaller
than the previous estimate used in Laskar et al . (1993a). With these new values, the
passage into the resonance s6 − g6 + g5 could no longer be obtained during an ice
age. Nevertheless, the proximity of the resonance should still have a singular effect
on the obliquity solution, and it should be noted that, due to the tidal evolution
of the Earth–Moon system, we will surely enter into this resonance in the near
future.

Recently, Forte & Mitrovica (1997) demonstrated that mantle convection could
also have induced some small decrease in the dynamical ellipticity in the past, on a
longer time-scale, which could reach about 0.01 within 20 Ma. They argued that this
could allow again for a passage into the small Jupiter–Saturn resonance, but this is
not clear since tidal evolution will have the opposite effect on this time-scale.

A different effect can also result from multiple passages into ice ages. Provided a
certain time lag exists between the forcing of the obliquity and the ice age response
(i.e. also the change in dynamical ellipticity), then a secular trend can occur in the
variation of the obliquity of the Earth (Rubincam 1990, 1995; Bills 1994; Ito et
al . 1995; Williams et al . 1998). Nevertheless, these effects occur only on very long
time-scales, and their actual amplitude is still very controversial.

(b) Tidal dissipation

Due to the non-elasticity of the Earth, and to the fact that the Earth rotates
faster on its axis than the Moon around the Earth, there will exist an offset between
the tidal deformation of the Earth and the Earth–Moon direction. This induces
a breaking couple on the rotation of the Earth, and by conservation of angular
momentum, a slow increase in the Earth–Moon distance.

The first understanding of the tidal evolution of the Earth–Moon system was
obtained by Darwin (1880), while modern developments are due to Kaula (1964),
MacDonald (1964), Goldreich & Peale (1966), Goldreich (1966), Goldreich & Soter
(1966), Lambeck (1979), Mignard (1979, 1980, 1981), Ward (1982), Laskar & Robutel
(1993), Laskar et al . (1993b), Touma & Wisdom (1994) and Néron de Surgy & Laskar
(1997).
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The introduction of these tidal terms in the computation of the evolution of the
precession and obliquity of the Earth over several millions of years was made in
Quinn et al . (1991), Laskar et al . (1993a) and Néron de Surgy & Laskar (1997),
while the resulting change in insolation was discussed in Berger et al . (1989).

In the La93 solutions, it was recognized that the uncertainty left in the value of
the tidal dissipation, as well as the possible change of dynamical ellipticity, were the
major sources of uncertainty for the precession and obliquity solution over 10–20 Ma.
These two parameters were thus left free in the solutions, so that one could adjust
them in the light of geological data. This was done in particular by Lourens et al .
(1996).

(c) Core–mantle interactions

Another source of dissipation occurs at the core–mantle limit, due to the difference
of the precessing rate of the core and the mantle (Rochester 1976; Goldreich & Peale
1966, 1967; Greenspan & Howard 1963; Lumb & Aldridge 1991; Néron de Surgy &
Laskar 1997).

The exact value of this dissipation is largely unknown, as it depends on the effective
viscosity of the outer core, but comparisons with available geological data for the
evolution of the length of the day (Néron de Surgy & Laskar 1997) allow boundaries
to be set on the possible value of this dissipation, which would not very much affect
the solutions over 10–20 Ma. More precisely, since the value of the viscosity cannot be
very large, it is difficult to discern the difference between a dissipation due to core–
mantle interaction, and a tidal dissipation inducing the same effect on the breaking
of the Earth’s rotation (although the effects on the evolution of the obliquity are
different).

(d) Conclusions

The uncertainty of the dissipative effects due to tidal dissipation, core–mantle
interactions, and changes in dynamical ellipticity are real, but if the geological data
are precise enough, this should not be a real problem for the orbital solution. Indeed,
the behaviour of obliquity is stable, and fitting the dissipative contribution to the
geological data should be possible, as has already been done in Lourens et al . (1996).

8. Beyond chaos

In the previous sections we have seen that in order to obtain an accurate solution
for the orbital motion, we are practically limited to 35 Ma, due to the exponential
divergence of the solutions. On the other hand, the dissipative effects present a large
uncertainty, but they can be adjusted in the light of the geological data. The question
which remains is how to cope with the chaos, or more precisely, is it possible without
pretending to have an accurate solution for the Earth to still get some information
in an astronomical solution to use to obtain a geological time-scale over much longer
times, extending over 250 Ma, which correspond roughly to the time-scale for which
geological data are available?

In order to address this problem, one needs to look more closely at the expected
signal which can be extracted from the geological data.
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Table 6. Principal terms in the astronomical solution La93(1,0) analysed over 4 Ma

(It should be noted that the values of the frequencies and periods are given here only as internal
indications. As they are determined over only 4 Ma, they are not as accurate as the ones provided
in Laskar (1990), especially for the g2 − g5 component.)

e =
∑
i ai cos(νit+ φi)

ν νi (arcsec a−1) period (a) ai φi (deg)

0.0000 0.028 159
g2 − g5 3.1906 406 182 0.010 851 168.02
g4 − g5 13.6665 94 830 0.009 208 121.71
g4 − g2 10.4615 123 882 0.007 078 −36.79
g3 − g5 13.1430 98 607 0.005 925 −86.17
g3 − g2 9.9677 130 019 0.005 295 115.55

ε =
∑
i ai cos(νit+ φi)

ν νi (arcsec a−1) period (a) ai φi (deg)

0.0000 0.406 657 0.00
p+ s3 31.6132 40996 0.011 168 86.26
p+ s4 32.6799 39657 0.004 401 89.28
p+ s3 + g4 − g3 32.1827 40270 0.003 010 103.74
p+ s6 24.1277 53714 0.002 912 −46.03
p+ s3 − g4 + g3 31.0981 41674 0.002 625 −117.31
p+ s1 44.8609 28889 0.001 452 −175.78

e sin$ =
∑
i ai cos(νit+ φi)

ν νi (arcsec a−1) period (a) ai φi (deg)

p+ g5 54.7064 23690 0.018 839 −52.51
p+ g2 57.8949 22385 0.016 981 113.26
p+ g4 68.3691 18956 0.014 792 71.29
p+ g3 67.8626 19097 0.010 121 −131.00
p+ g1 56.0707 23114 0.004 252 −3.96

(a) The astronomical solution

In the sedimentary data, it is not unusual to detect the signature from eccentricity
e, obliquity ε, and climatic precession e sin($̂), where $̂ is the longitude of perihelion
from the moving equinox. In table 6, the first terms of these quantities, obtained by
frequency analysis from the La93(1,0) nominal solution, are given, together with
their correspondence as a combination of the fundamental secular frequencies gi, si
of the Solar System, and of the precession frequency p. The reader should refer to
Laskar (1988, 1990) and Laskar et al . (1993a) for more details.

It should be remembered that the motion of the outer planets is very stable. This
is also the case for their corresponding secular frequencies. Indeed, in Laskar (1990)
it was shown that g5, g6, g7, g8, s6, s7, s8 are practically constant over 200 Ma. The
associated argument can most certainly be used for establishing the time-scale of the
geological data, provided its signature actually appears in the data.
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1992).

On the contrary, the arguments associated with g1, g3, g4, s1, s2, s3, s4 are
quite unstable (Laskar 1990). The last frequency g2 is moderately unstable, but
the behaviour of its associated angle needs to be studied further over extended time-
scales.

This frequency is very interesting, as the g2 − g5 terms appear with a period of
ca. 406 ka and large amplitude in the eccentricity solution, and also in the modu-
lation of the amplitude of the 22 ka term, due to the beat between the p + g5 and
p + g2 terms in the climatic precession e sin $̂. For establishing long time-scales,
this term should be preferred to the other ones involving either unstable frequen-
cies, g1, g3, g4, s1, s2, s3, s4, or the precession frequency p, the evolution of which will
depend very much on dissipative effects, which are not so well known.

9. Detection of chaos in the geological data

A very important observation can be made by looking at table 6: in the obliquity
signal, the two terms p + s4 and p + s3 appear with very large amplitudes. They
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will thus induce a modulation in the amplitude of the 40 ka signal, with frequency
of s3 − s4 ≈ 1.0667′′ a−1 (period ca. 1.215 Ma). Such a signal seems to be present in
the ODP 154 record (see Shackleton et al ., this issue).

On the other hand, in the climatic precession, the two terms p+g4 and p+g3 should
induce also a modulation of frequency g4−g3 ≈ 0.5236′′ a−1 (period ca. 2.475 Ma) in
the 19 ka term of the climatic precession, as well as in the 95 and 125 ka terms in the
eccentricity. For these two last terms, it should be noted that even if the resolution of
the data does not make it possible to discriminate between the 95 and 125 ka terms,
the modulation of the amplitude of these terms is the same, and thus could still be
discernible in the geological record.

If it were possible to obtain these two modulations from the geological data, this
would have important consequences. Indeed, in Laskar (1990) it was demonstrated
that the resonance

(s4 − s3)− 2(g4 − g3) = 0 (9.1)

is one of the main sources of the chaotic behaviour in the motion of the planets.
Moreover, I could show that presently we are in a librational state with respect to
this resonance, but this can evolve in a rotational state, and even slowly move to
libration in a new resonance, namely

(s4 − s3)− (g4 − g3) = 0. (9.2)

The transition from this 1:2 resonance of s4 − s3 and g4 − g3 to the 1:1 resonance
should be possible to detect. If this is the case, this would be the signature of the
chaotic motion of the planets. Moreover, the dating, even in a very approximate
manner of these transitions, would provide very precise constraints on the dynamical
model for the evolution of the Solar System. It would be even more important to find
the first transition in the past, as this would be the event which could be actually
used for adjusting (or at least testing) the parameters of the orbital solution. One
should realize that in this case the exponential divergence of the solution will be used
in the reverse way to that in which it was used in the first sections of this paper, and
could make it possible to obtain very precise information on the initial conditions
and (or) parameters of the model. One could even dream that if the succession of the
transitions from the 1:2 to the 1:1 resonance were found and dated over an interval
of 200 Ma that this could be the ultimate test for the gravitational model. It would
make it possible, for example, to obtain the J2 value of the Sun with high accuracy,
or to test the model of general relativity.

10. Conclusion

Due to the chaotic behaviour, the time of validity for a precise orbital solution
of the Earth will be in practice limited to 35–50 Ma. Moreover, one of the main
sources of uncertainty at present is the imprecision in the measurement of the J2
value of the Sun which could even bring this limit down to a much shorter time
span. Nevertheless, it can be forecast that within five years much more accurate
knowledge of this quantity should be obtained. In this case, there are still numerous
sources of uncertainty which will limit the solution to 35–50 Ma.

There are also several sources of uncertainty for the dissipative effects in the evo-
lution of the rotational and precession motion of the Earth, but comparison with
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the geological data should permit adjustment of these quantities. It should also be
possible to use the astronomical time-scale beyond the limit of 35–50 Ma if one
acknowledges the unavailability of an accurate solution for the orbital motion of the
Earth, but searches in the data for the signature of frequencies related to the motion
of the outer planets, which is predictable over much longer time-scales.

Moreover, the s4−s3 and g4−g3 frequencies induce some modulation in the ampli-
tude of the obliquity and eccentricity or climatic precession. It should thus be possible
to observe in the geological data the trace of transition from the (s4−s3)−2(g4−g3)
secular resonance to the (s4 − s3) − (g4 − g3) resonance. The detection and dating
of these passages, which are the signature of the chaotic behaviour of the planets,
should induce extremely high constraints on the dynamical models for the orbital
evolution of the Solar System. This gives a unique and challenging opportunity for
palaeoclimate records to provide some of the ultimate constraints on the dynamical
models for the evolution of the Solar System.

Many discussions with colleagues have been very helpful in the preparation of this paper. The
author is particularly grateful to L. Blanchet, E. Bois, A. Correia, N. Shackleton, M. Slade
and E. M. Standish for discussions. The integration of the Earth–Moon system was performed
by R. Michelsen in his Master’s thesis, and technical help was given by M. Gastineau. The
computations were performed at CNUSC–CNRS, and this work benefited from the help of the
CEE contract CHRX-CT94-0460.
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