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Moos [1910] noted that: “perhaps the sum of all ordinates of the inequality without 

regard to signs which gives the average ordinate in 24 hours, may be considered as a 

more appropriate factor representing the variation due to disturbing effects”. Now, did he 

mean the ordinates of the daily inequalities or of the monthly [or yearly] inequality? 

Bartels’ [1932] interpretation was: “s is derived from the mean diurnal variation of H at 

Bombay for each single month, expressed in departures from the average, and is the sum 

of these departures, summed without regard to sign”. Continuing with Moos describing 

his effort of making a list of days classified as quiet or disturbed (page 421): “[for] a list 

of the kind … involving a large personal equation, some additional data are clearly 

essential in order to make the classification more mathematically definite. The daily 

range, or preferably the summed ranges, figures of the diurnal inequality of each day 

would probably serve as the most appropriate data for this purpose...” Here we shall build 

on that intuition [based on Moos’ extensive knowledge of the phenomenon]. 

To make things explicit, Figure 1 illustrates our interpretation of Moos’ prescription: 

 

Figure 1: Average diurnal variation of Declination (expressed in force units, nT) at 

Niemegk. On any given day, the variation consists of a pattern as shown here 

[although varying a bit from day to day] with superposed ‘noise’ from geomagnetic 

activity, thus increasing the variance; this increase is what we are interested in. The 

signed deviations [blue bars determined every hour – either from an instantaneous 

value on the hour or from the hourly mean] from the daily mean are converted to 

unsigned departures [red bars] which are then summed over the day giving [as 

Moos expressed it] the Summed Ranges for each day, denoted by s.  
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We calculate s for both Declination, s(D), and for the Horizontal Force s(H) initially for 

the German station Potsdam (POT, 1890-1907) and its replacement stations Seddin (SED, 

1908-1931) and Niemegk (NGK, 1932-2012), Figure 2. Geomagnetic conditions were 

essentially the same at all three stations, because they were carefully placed with that in 

mind, so we can treat them as a single station. 

 

Figure 2: Summed Ranges derived from daily departures for Declination s(D) [red 

curve] and Horizontal Force s(H) [blue curve] for the combined POT-SED-NGK 

series. Each station’s yearly value is marked with a different symbol [POT diamond, 

SED square, NGK circle]. The break in 1945 was caused by interruptions 

stemming from the Battle for Berlin during the final phase of WWII. 

By inspection it is clear that the two series are strongly correlated. Formal analysis bears 

that out, Figure 3. The coefficient of determination [here and in plots to come] is 

calculated from the linear correlation coefficient between logarithms of the data as we are 

fitting a power law. 

 

Figure 3: The average s(H) for each year is plotted against the average s(D) for that 

year. The data can be fitted to a power law as shown which ‘explains’ 96% of the 

correlation. We use power laws because later Figures show somewhat curved point 

clouds [‘rivers’ is probably a more descriptive term]. 
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Using the result from the regression we can scale s(D) to s(H) and then average the scaled 

and the observed s(H)s to obtain a composite s(H,D) normalized to s(H), Figure 4: 

 

Figure 4: Summed Ranges derived from daily departures for Declination s(D) [red 

curve] and Horizontal Force s(H) [blue curve] for the combined POT-SED-NGK 

series as in Figure 2, but with the composite s(H,D) added over s(H) as a black line. 

It is difficult to distinguish between the blue and the black lines. It is rare in this 

business to find such close agreement.  

We illustrate the processing steps so far with the following diagram: 

 

Figure 5: The observed [yellow boxes] series of Summed Ranges over a day s(H) 

and s(D) are correlated [orange circle with cross]. The fit is used to normalize 

[orange triangle] s(D) to the scale of s(H) [light blue box] which when averaged 

with s(H) [orange hexagon] yields the composite series s(H,D) [light green box]. 

Even just a cursory look at Figure 4 suggests a close correlation with the InterDiurnal 

Variation index, IDV. The IDV index for a given station is calculated as the average 

[usually over a year] unsigned differences between the hourly value [mean or 

instantaneous on the hour] for the hour following local solar midnight of the horizontal 

component of the geomagnetic field. We shall denote that quantity by IDVn [‘n’ for 

‘night’] in what follows. We emphasize that IDVn for a given station is local to the 

station, depending on corrected geomagnetic latitude and local underground conductivity 

and, in some cases, distance from the sea. We normalize s(D) to s(H) because IDVn is 
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calculated for the horizontal force, H. Figure 6 shows the correlation [and power law and 

linear fits] between s(H,D) and IDVn. 

 

Figure 6: Correlation between yearly values of IDVn [midnight] and the Average 

Summed Ranges for the day for H and D, s(H,D) for the POT-SED-NGK 

composite series 1890-2012. The dashed line is the linear relation extrapolated to 

vanishing IDVn. 

Figure 7 shows the time variation of IDVn and IDV calculated from s(H,D) using the 

power-law relation of Figure 6: 

 

Figure 7: IDVn for POT-SED-NGK [green line] compared to IDV computed from 

s(H,D) [blue dashed line]. Because the two curves are so close to at times be 

indistinguishable, each yearly value is also marked with a symbol: green circle for 

IDVn and blue plus sign for IDV(s(H,D)). From now on, we shall use the simpler 

designation IDV(s) for IDV(s(H,D)). 

The RMS difference between IDVn and IDV(s) is 0.27 nT out of an average value of IDV 

of 9.9 nT, i.e. less than 3%. The coefficient of determination (R
2
) going from the average 

of IDVn and IDV(s) to IDV09 [Svalgaard & Cliver 2010], is a remarkably high 0.9704. 

As before, we illustrate the (now additional) processing steps with the following diagram: 
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Figure 8: The observed [yellow box] series of the average Summed Ranges over a 

day determined from H and D are correlated [orange circle with cross] with IDVn 

[other yellow box]. The fit is used to normalize [orange triangle] s(H,D) to the 

scale of IDVn [light blue box] to give us an alternative series IDVs [light green box]. 

As we have already shown a decade ago [AGU Fall Meeting 2003 Poster SH21B-0108; 

Svalgaard & Cliver 2010: 2009JA015069] IDV can with good results be computed for 

any hour, h, of the day, IDV(h), with due allowance for the extra variability cause by the 

(irregular) regular diurnal variation. Figure 9 shows the variation over time of the 24 

hourly series of IDV(h) [the hour h varying from 0 to 23]. Blue [cold] colors are used for 

nighttime hours changing through green to red [warm] colors for the daytime: 

 

Figure 9: Yearly averages of IDV(h) for each hour h from 0 to 23 (local time) for 

POT-SED-NGK. Blue [cold] colors are used for nighttime hours changing through 

green to red [warm] colors for the daytime. Nighttime values asymptotically 

approach IDV09 scaled down by a factor 0.88. 
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Figure 10: xxx 
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