Recent Progress in Long-Term Variability of Solar Activity

Leif Svalgaard Stanford University, California, USA

Keynote Talk, SCOSTEP-13, Xi'an 西安, China 13th October, 2014

Classic Method since 1846

Using variation since 1830s of the Earth's Magnetic Field as a measuring device ²

Typical Recording over 36 Hours

Three simultaneous features:

- 1: A Regular Daily Variation [it took ~200 years to figure out the cause]
- 2: Shorter-term [~3 hour] fluctuations ['substorms' recognized in 1960s]
- 3: Large disturbances ['geomagnetic storms' explained in the 1930-1960s]

The complicated, simultaneous effects withstood understanding for a long time

Electric Current Systems in Geospace

Magnetosphere relationships...

'Different Strokes for Different Folks'

- The key to using geomagnetism to say something about the sun is the realization that geomagnetic 'indices' can be constructed that respond differently to different solar and solar wind parameters, so can be used to disentangle the various causes and effects
- The IDV [Interdiurnal Variability Index] and Dst measure the strength of the Ring Current
- The IHV [Interhourly Variability Index] and aa/am/ap measure the strength of the auroral electrojets [substorms]
- The PCI [Polar Cap Index] measures the strength of the Cross Polar Cap current
- The Sq current system measures the strength of the solar EUV flux
- The Svalgaard-Mansurov Effect measures the polarity of the Solar Wind Magnetic Field
- In the last decade of research this insight (e.g. Svalgaard et al. 2003) has been put to extensive use and a consensus is emerging

27-day Bartels Rotation showing *B* and *Kp* peaks

Correlation between Heliospheric **BV**ⁿ and several geomagnetic indices as a function of *n*

The IDV and Dst indices thus depend on **B** only (n = 0).

Substorm indices [e.g. *aa* and *IHV*] depend on **BV**²

Bartels' u-measure and our IDV- index

Different Groups have now Converged on a Consensus of HMF *B* near Earth

Progress in Reconstructing Solar Wind Magnetic Field back to 1840s

Even using only ONE station, the 'IDV' signature is strong enough to show the effect

IDV measures the same as the Negative part of Dst Index

Coronal Mass Ejections (CMEs) add (closed) magnetic flux to the IMF. CMEs hitting the Earth create magnetic storms feeding energy into the inner magnetosphere ("ring current"). The Dst-index is aimed at describing this same phenomenon, but only the negative contribution to Dst on the nightside is effectively involved. We therefore expect (negative) Dst and IDV to be strongly related, and they are

We used a derivation of Dst by J. Love back to 1905. Similar results are obtained with the Dst series by Mursula et al. (to 1932) or with the "official" Dst series (to 1957). The very simple-to-derive IDV series compares favorably with the much more elaborate Dst(< 0).

The *IHV* Index gives us BV²

The Many Stations Used for IHV in 14 'Boxes' well Distributed in Longitude, Plus Equatorial Belt

IHV is a Measure of Power Input [in GW] to the Ionosphere (Measured by POES)

IHV is directly proportional to the power input (*Hp*) to the upper atmosphere:

We can thus get Hp [and also Ap, for people who are more familiar with that] back to the 1840s

Cross Polar Cap Hall Current

100 80

40

20

-20

-80

20

СВВ

-20

RES -40

ALE

-40

-80

-100

J [A/m]

Cross Polar Cap Potential Drop

17

We can even reconstruct HMF B and Solar Wind V on a 27-day basis

Determination of Solar Wind Density

The ratio between Magnetic Energy B^2 and kinetic energy nV^2 is found to depend slightly on the sunspot number R_z [Obridko et al.'s Quasi-invariant]

> Pulling everything together we can construct the average solar cycle behavior of solar wind parameters from the 11 cycles for which we have good geomagnetic data.

Radial Magnetic Field ('Open Flux')

Since we can also estimate solar wind speed from geomagnetic indices [IHV, Svalgaard & Cliver, JGR 2007] we can calculate the radial magnetic flux from the total *B* using the Parker Spiral formula:

There seems to be both a Floor and a Ceiling and most importantly no longterm trend since the 1830s. Thus no Modern **Grand** Maximum.

Open Heliospheric Flux

Magnetic Flux Balance in the Heliosphere Schwadron et al. ApJ 722, L132, 2010

Closed loop CMEs connecting with polar flux reduces the latter, moving it to lower latitudes

CMEs eject loops that open up and increase the HMF flux and increase polar holes

Disconnection leads to removal of HMF flux and shrinkage of polar holes

Determining Total Hemispheric Flux

The integral solution for the ejecta-associated [CME] magnetic flux is

$$\Phi_{\rm ej} = \int_{-\infty}^{t} dt' \exp\left(-\frac{t-t'}{\tau_c}\right) f(t')(1-D)\phi_{\rm CME}$$

Where the characteristic loss-time of the closed [CME] flux is

$$\frac{1}{\tau_c} = \frac{1}{\tau_{ic}} + \frac{1}{\tau_o} + \frac{1}{\tau_d}$$

And where the CME rate f(t) is derived from the Sunspot Number SSN: f(t) = SSN(t) / 25

The integral solution for 'open' heliospheric magnetic flux is

$$\Phi_0 = \Phi_{\rm flr} + \int_{-\infty}^t dt' \exp\left(-\frac{t-t'}{\tau_d}\right) \frac{\Phi_{\rm ej}}{\tau_o}$$

The total flux becomes $\Phi_{tot} = \Phi_0 + \Phi_{ej} = \oint \mathbf{B}_P \cdot \hat{n} dS = 4\pi R^2 |B_P|$

Which evaluated for R = 1 AU allows you to infer the HMF field strength, *B*, at Earth. The subscript *P* in B_P stands for the 'Parker Spiral Field'.

A Parameter Set Example

0.04	Number	Number of CMEs per day per unit sunspot number
15	Days	Timescale for interchange reconnection
4.0	Years	Timescale for opening of closed flux
3.0	Years	Timescale for loss of flux by disconnection
1	10^13 Wb	Magnetic flux per CME
56	10^13 Wb	Magnetic flux over whole sphere for a Floor in radial B
0.6	Fraction	Fraction of flux closing on ejection
1.5	Factor	Factor to convert computed, ideal 'Parker' spiral B to messy, total B

von Neumann: "with four parameters I can fit an elephant, and with five I can make him wiggle his trunk"

This model has about eight parameters...

So perhaps we can also make him wiggle both ears and the tail \bigcirc

Schwadron et al. (2010) HMF B Model with my set of parameters

Svalgaard-Mansurov Effect

INFERRED SOLAR MAGNETIC SECTOR STRUCTURE DURING FIVE SUNSPOT CYCLES

Re-evaluation of Cosmic Ray Data

Still problem with the 1880-1890s and generally with low values

The Effect of Solar EUV

The EUV causes an observable variation of the geomagnetic field at the surface through a complex chain of physical connections.

The physics of each link in the chain is well-understood in quantitative detail and can be successfully modeled.

We'll use this chain in reverse to deduce the EUV flux from the geomagnetic variation.

The magnetic effect of this system was discovered by George Graham in 1722

Composite rY Series 1840-2014

From the Standard Deviation and the Number of Station in each Year we can compute the Standard Error of the Mean and plot the ±1-sigma envelope

Since the ionospheric conductivity, Σ , depends on the number of electrons N, we expect that Σ scales with the square root of the overhead EUV flux (the Chapman function: N = $\sqrt{(J/\alpha \cos(\chi))}$, J = ionization rate, α = recombination rate, χ = Zenith angle for the dominant plasma species O⁺₂ for λ < 102.7 nm) ³⁴

Correcting the SEM-series for Degradation Comparing with F10.7 and Mg II Indices

rY and F10.7^{1/2} and EUV^{1/2}

Reconstructed F10.7 [an EUV Proxy]

Reconstructed EUV Flux 1840-2014

This is, I believe, an accurate depiction of true solar activity since 1840

How About the Group Sunspot Number?

The main issue with the GSN is a change relative to the ZSN during 1880-1900. This is mainly caused by a drift in the reference count of the standard (Royal Greenwich Observatory)

The ratio between the Group Sunspot Number reveals two major problem areas. We can now identify the cause of each

RGO Groups/Sunspot Groups

Early on RGO counts fewer groups than Sunspot Observers

The SSN Workshops

A series of workshops have led to a critical reassessment of the Sunspot Number series: Clette et al., Space Science Reviews, 2014

An official revised series is scheduled for 2015

Abstract

Over the past decade there has been significant progress in the study of solar variability on the time scale of centuries. New reconstructions of Sunspot Numbers, Extreme Ultraviolet and Microwave proxies, Solar Wind Physical Parameters, Total Solar Irradiance, Solar Polar Fields and Cosmic Ray Modulation have provided a wellconstrained and consistent consensus of solar variability over the past two centuries. The new insights promise further progress in modeling solar activity much further back in time.