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A Systems Approach: Everything Must Fit
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Faraday wrote to R. Wolf on 27th August, 1852: “| am greatly obliged and delighted by
your kindness in speaking to me of your most remarkable enquiry, regarding the
relation existing between the condition of the Sun and the condition of the
Earths magnetism. The discovery of periods and the observation of their accordance
in different parts of the great system, of which we make a portion, seem to be one
of the most promising methods of touching the great subject of terrestrial magnetism...

“everything must fit” is a lofty goal and we are not there yet, but it should be a guiding princ%le



| have studied this issue for

OUtline (Where the polar four solar cycles by now and

even though we have made

flelds are a key paramEter) some progress there are still

many mysteries and myths

« Solar Magnetograph Measurement Problems

* The Open Flux Problem and the Polar Fields In
Centuries past

* The 3D Heliosphere and Cosmic Rays

« EUV, Microwave Flux, and Magnetic Flux in Time
* The Polar Fields in 17GHz Microwave Flux

* The Polar Field Precursor Hypothesis

* Prediction of Solar Cycle 25 and Beyond

« Caveat Auditor



Solar Magnetograph
Measurement Problems




Earliest Measurements of ‘Polar Fields’
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Fig. 1. Representing on a graph the separate determinations of the polarity and magnitude of the

general magnetic field of the Sun. [1] = Hale ef al., 1918; [2] = Langez, 1936; [3] = Adams, 1934;

[4] = Babcock, 1948; [5] =Thiessen, 1946, 1952; [6] = Adams, 1949; [7]= Von Kliiber, 1951;

[8] =Babcock and Cowling, 1953; [9] = Kiepenheuer, 1953; [10] = Babcock, 1959; [11] = Howard,

1965; [12] =Von Kliiber, 1965; [13] =Severny, 1966; [14] = Severny, 1967; [16] = Stenflo, 1968;
[17] = Stenflo, 1968; [18] =Babcock and Babcock, 1955; [37] =Stenflo, 1970*.— @

A.B.Severny, The Polar Fields, etc [Howard, ed. Solar Magnetic Fields, IAU, 1971]
Doubted that the reversals were real...



Early MWO Observations

after Babcock Invented the Magnetograph “by doing everything right”
Weak Polar Fields.

Strong Polar Fields
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MWO Magnetogram 1953

Fi.:z. ]—The Solar Magnetogram for 21 July 1961.
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Magnetograph Principles

Zeeman splitting of spectral lines

Profile-type Magnetograph
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WSO Observations since 1976
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We found the Polar fields to be Radial and
strongly Concentrated towards the poles
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Rl [ne Structure of
0. kG Polar Fields

The polar magnetic ‘landscape’
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Calibration of WSO Magnetograph
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For weak fields (< 50 mT) the
magnetic signal is linear with
the field strength. As the field
Increases, the response
weakens and at 143 mT, the
magnetograph is saturated
and any further increase
actually decreases the
magnetic signal. If the field
strength of the magnetic
elements is 150 mT (1500 G)
the reading would be only 83
mT (arrow); hence the effect
of magnetograph saturation
due to the strong fields in the
elements is to reduce the

Fig. 7. Calibration curve for the Stanford magnetograph for the Fe 1 line A 525.02 nm and for exit slits measured ﬂUX by a factor

A 7.5pm wide separated by A 1.8 pm. A magnetic field produces a Zeeman splitting of AA =
38.6 pm/T. This relation is shown as the dotted line and is also used to calibrate the scale along the
upper right boundary of the figure frame. Slit dimensions are shown in the middle of the figure,

150/83 = 1.8

We found that the line-of-sight field’ is a simple projection of a radial field and is
underestimated by a factor 1.8 for magnetic elements with field strength 150 mT
(1500 G) which is independent of the heliocentric angle [if the kG elements are]. 14



Our Shiny New Satellite

SDO

and

HMI

«— HMI Optics
Package

HMI Electronics
Box

Replacement of the MDI on SOHO that
observed in the Ni | line at 676.8 nm.

The Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) was
launched in 2010 and measures the magnetic field [actually ‘flux’] in the Fe | line at 617.3 nm
every 45 seconds with 1” resolution.

Instead of just looking at the ‘wings’ of the line, HMI samples the line in six wavelengths
spanning the line to reconstruct the profiles of the Zeeman-split circularly polarized
components. Thus avoiding most of the saturation of the 525 nm line used at WSO and MWO.

Note: WSO, HMI, and MDI all observe in different lines with different magnetic sensitivity formed at different depths:l'2



Mean Field (Gauss)

MDI and HMI Confirm the WSO ~1.8 Factor
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In spite of the different lines and different observing techniques 13



All Observatories see the Same Mean Fleld
(Net Flux), but on Different Scales
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There exists a set of constant factors that when applied to the raw data puts them

all on the same scale. Here we used WSO, but which is the ‘correct’ one?

14



All Observatories see the Same

Mean Field, but on Different Scales

Obs. Line g Get HMI Get WSO

SOLIS Fel630.2 167 106 062
CrAO |Fel525.0 3.00 104 061 Sameline,so
MWO | Fel525.0 3.00 4.00 235 differences must,

WSO | Fel525.0 3.00 1.70 100 beinstrumental |

MDI Ni 1676.8 1.43 1.20 0.71
HMI Fel617.3 250 1.00 0.59 Data for the

GONG Ni 1676.8 1.43 1.15 0.68  Past20 years
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What Happened in 19827

Solar Mean Field Normalized to WSO

Average MF

MWO disk avg

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Before 1982, the Mean Field [or better: the net flux] measured by the
MWO magnetograph matched that computed by averaging the field

over the disk, and could be scaled to that of the other observatories

[CrAO, WSO]. After an ‘upgrade’ in 1982 this is no longer the case and
the field from MWO has to be scaled up by a factor of =2.5. 16



MWO Magnetic Plage Strength Index

For each magnetogram taken at the 150-Foot Solar Tower at Mount Wilson Observatory
(MWO), a Magnetic Plage Strength Index (MPSI) value is calculated: the magnetic field
strengths for all pixels where the absolute value of the magnetic field strength is between
10 and 100 gauss are summed. This number is then divided by the total of number of
pixels (regardless of magnetic field strength) in the magnetogram. Here are the monthly
means of the MPSI and F10.7 radio flux since 1970.

Monthly Average Index Values 1970-2007

1970 1975 1980 1985 1990 1995 2000 2005

- 300

- 250

+ 200

+ 150
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MPSI Correlation with (F10.7-63.5)

y = 0.0257x
R? = 0.0578

1970-1982.5

y = 0.0191x
1982.5-2007.5 RZ = 0.9231

100 150 F10.7-63.5 200

It is clear that highly correlated short time scale variations from month to month are present
in both time series, but also that there are significant differences in the long-term behavior,
e.g. that cycles 21 and 22 are similar in F10.7, but very different in MPSI. This is an
indication that the calibration of the MWO magnetic data is not constant over time.

17




MWO, Further Inhomogeneity
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Sunspot number and F10.7 agreed well, so F10.7 is likely not at fault

18



The Dangers of Cherry Picking
in Order to Get a Better Fit...

Comparing Observed F10.7 and F10.7 Calculated from MP3SI

1982.5

Corrected
MWO MPSI
compared to
F10.7
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Wang, Y.-M. and N. R.

Sheeley Jr., Sunspot

- activity and the long-

term variation of the

Sun's open magnetic
N flux, J. Geophys. Res.,

USING PFSS - ottt s ey | 107(A10), 1302, 2002
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Wang and Sheeley scaled both the MWO and WSO [Carrington Synoptic Maps] data upward
by the same factor, which varied from 4.5 at the equator to 2 at the poles. This factor, while
appropriate for MWO after 1982, is not applicable for WSO for which a constant factor of 1.8
has been found or for MWO before 1982. Their argument was that that improved the fit...1°

MWO




Magnetic Fields Across the Disk
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A simpler procedure is just computing the average unsigned field for the equatorial strip. This introduces a
noise component, showing up as an offset, but with still a cos (L) dependence above the noise.
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Lack of Center-to-Limb Weakening for MWO

NSO /SOLIS—VSM 630.2 nm

SOLIS

Longitudinal

15:50 UT

The lack of center-to-limb weakening by projection at MWO can be easily 1
discerned by eye; actually helps in seeing polar fields! MWO left and SOLIS right.



1

- WSO '
g Synoptic Maps
=2
T © " Many models use the
% w . .
% 9 o synoptic maps as input,
T ——— | so it is of interest to know
5 o feQONG 7 oms T the conversion factors,
he) - .
.% . _&&};, + e.g. for each pixel of the
D o [P map. The ranges for the
@ 7 64800~ color bars were set to
"= oﬂs +5xM,where M is the
i g median of the absolute
§ o f== value of each map
T o [IETA
" B “we find no evidence that
g ST - the MWO saturation
I - correction factor should
R be applied to WSO data”.
497152 | _
- ;;l “the models predict
% 3T= _ fo [open] field strengths
S G .
§ .9:’3’“‘5‘ . oy 2 that are substantially (2-3
T w© % RN TR : ; LAt o |times) lower than are
T e oy - lobserved at 1 AU. This i
SO e AR SR P SN PN e e bt L observed a . This is
0 60 120 180 240 300 w0 G the ‘open flux problem’.

——> Riley et al. 2014  Longitude (degrees)  For CRot 2047 22



What is the True Magnetic Field Strength?

il

Normalized Intensity
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Since 2001 Livingston and Penn have measured field strength and brightness
at the darkest position in umbrae of 5800+ spots using the Zeeman splitting of
the Fe | 1564.8 nm line. Livingston measured the absolute [true] field strength
averaged over his [small: 2.5"x2.5"] spectrograph aperture, and not the Line-of-
Sight [LOS] field. The true field is independent of the angle of view. 23



N We can find the
- sunspots on the
. W / HMI intensity and
Magnetic maps

Livingston‘Drawing®

2010-06-22-13:51UT* LU l A
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O e AT AR HMI (and other) magnetograms
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HMI-LOS| Magnetogram magnetic field strength recorded

B} ’ by HMI (and MDI as well).




And compare with the measured
Line-of-Sight magnetic fields

Comparison HMI with Livingston
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HMI LOS fields [corrected for simple projection] is only 63% of Bill Livingston’s.

SOLIS and HINODE (and HMI) Vector fields agree with Bill. That is: vector fields are
considerably larger than LOS fields, even if corrected for projection. We don’t know why.25



Vector Field Larger than LOS Field

Recent paper: Linker et al. https://arxiv.org/pdf/1708.02342.pdf

Unsgn | Polar | Polar | Dipole | PFSS | HMF | HMF | MHD
Mode | Instrument Flux Field | Field | N—-S | R=25| G Fit | abs | calc.
10Mx | NG | SG | Gauss | BrnT | BrnT | BxnT | BrnT
LOS | GONG 11.4 |-2.40|2.60 [-5.00 | 0.63
LOS | HMI 13.4 |-2.70 {2.85 |-5.55 | 0.66
LOS |average 124 |-255(2.73 |-5.28 | 0.65 | 2.18 | 2.36 | 1.34
VECT | SOLIS 16.3 |-3.70 [ 3.50 |-7.20 | 0.80
VECT | HMI 15.1 |[-3.40(3.25 |-6.65 | 0.79
VECT | average 15.7 |[-3.55(3.38 |-6.93 | 0.80 | 2.18 | 2.36 | 1.38
Ratio | VECT/LOS | 1.27 1.39 1124 | 1.31 | 1.23 | 3.38 | 3.66 | 1.69
Liv/HMILos | 1.58 Field above 2.74 | 2.97 | 1.64
Liv/MDILos | 1.26 latitude 65° Open Flux Excess

Based on Synoptic Maps 2010-05-30 to 2010-08-18 (CRots ~2097-2100).

The Open Flux Problem: the modeled Br [PFSS and MHD] is 2-3 times too small.

26




Even HMI Vector Fields Seem
to Have Systematic Errors

G. V. Rudenko, I.S. Dmitrienko: Examination of artifact in vector magnetic field
SDO/HMI measurements, Arxiv 1711.08156, 23 November 2017

20F

1.5

8% /1Bl

0.0 0.2 0.4 0.6 0.8 1.0

LOS LOS
B2 /1Bl = —— /B,
COS
where Byns = B. is projection of vector B along the line of sight., 4 is the angle
between the line of sight and the radius-vector of the knot location on the disk
(BLFPS = |B,| = |B| when the field is exactly radial);

The vector field of strong magnetic elements (assumed radial) corrected for projection still
shows a marked decrease (by a factor of two) with increasing distance from disk center
which must be instrumental. This obviously (if corroborated) has implications for the

measured polar fields. 27



Point 4: Current Synoptic Maps of the Solar
Magnetic Field are Generally Fiction

Conclusions

1. We confirm earlier results regarding intercalibration of solar magnetograms, namely
"Determining scaling factors to intercalibrate magnetograms from different sources is challenging, and finding
universal scaling factors which apply for all flux ranges, disk positions, spatial resolutions, and seeing conditions
is unattainable.” |Pietarila et al., 2013]

2. However: for some instruments, at the current scale of synoptic magnetogram maps (1° ~ 3x10% km), and when using
maps processed post-facto with the same synoptic map algorithm, scaling factors may become nearly linear and the
polarity asymmetry may disappear. This implies that the most important factor in magnetogram cross-calibration is spatial
resolution.

Question: will we ever need higher spatial resolution synoptic maps? If so, then mixing space- and ground-based
magnetograms will likely not be possible.

3. The largest source of error in solar wind forecasting models are the magnetic field boundary conditions. Inclusion of
new active regions off the Sun-Earth line or more accurate polar fields significantly improves predictions.

In this study, better representation of polar fields via the ADAPT flux-transport model captures a HSS peak that is
missed by current synoptic map inputs.

g of Ground-based and Space-based
ms: Applications to Solar Wind Modeling
and L5 Mission Studies 4. Current synoptic maps of the solar magnetic field are generally fiction. They do not represent the solar magnetic field
accurately at any time.
Corollary: the only way to make a true synoptic magnetic field map with current technology is to have at least 2
magnetographs at off-Sun-Earth line positions, For Lagrangian point missions you need L4, L5, and L3 in
order to measure the whole Sun simultaneously.

Accurate measurement of the full magnetic field of the Sun, including the poles, is best (only?)
accomplished with a seres of 3—4 drifters in Earth’s ecliptic orbit (STEREO++) and 34 out-of-the- 28
ecliptic “polar constellation” satellites, all with identical magnetograph instruments,




Summary | (Magnetographs)

Different Observatories report differing values for solar
magnetic fields. There is as yet no agreed upon ‘Ground
Truth’

Vector data is significantly larger than LOS data
corrected for projection, but still may have systematic
errors (at least for HMI)

There is no evidence that the MWO saturation correction
factor can be applied to WSO data

We do not really know what the ‘true’ field strength or
even the flux is (except perhaps Livingston’s data).

This is not important for the PFSS models, but is fatal [?]
for MHD models

“Current Synoptic Maps of the Solar Magnetic Field are
Generally Fiction”

29



The ‘Open Flux’ Problem
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The ‘Open Flux’ Problem

If we understand how the solar wind originates and how it drags the solar magnetic
field out into interplanetary space and if our measurements of the magnetic field on
the Sun and in space [e.g. at 1 AU] are correct there should not be an Open Flux
Problem. But we do have a problem [or more than one...]

Our measurements of magnetic fields on the Sun give results that depend
strongly on the resolution of the instruments and thus on how the data are
binned, and are uncertain [too low?] by about at least a factor of two.

And our measurements of magnetic fields in space also give results that depend
on how the data is binned and on the ‘averaging’ window. The longer the window
IS, the smaller the flux becomes because of cancellation of oppositely directed
fields. On the other hand, the magnitude of the scalar field is not degraded much
by field cancellation, but is instead dependent on the winding [‘spiral’] angle of the
field and thus on the solar wind flow speed. So, determining the ‘open flux’
[basically the radial component of the field] is not trivial and is subject to hard-to-

verify assumptions. And some of that flux is not ‘open’ at all [e.g. in CMESs].
31



Determining the Radial Component
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| shall assume there is a slowly varying Large-Scale structure [LSS] in the Heliospheric Magnetic
Field [HMF, the Sector structure] organized around the Heliospheric Current Sheet [HCS] with the
field rooted in opposite polarity solar [or coronal] fields in opposite sides of the HCS. The LSS is
perturbed by turbulence, CMEs, and CIRs so the observed Radial Field, Br, has a noise component
that broadens the Br-distribution which can now be described as the sum of two Gaussians (with 32
varying shape parameters) about the peaks for the two polarities, that | take to be the ‘true’ Br.




Solar Cycle Variation of Br and B
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1-minute data is available since 1981, so we can get Br and scalar = since then.
The ratio |Br|/2 is surprisingly constant [middle box] especially if for flow
speed. B is in the range 4-6 nT [Br in range 2-3 nT] at solar minima. Where does
that flux come from? The ‘traditional’ answer is “the polar fields”. How does that
hold up? 33



Hindcasting Polar Fields in Time

300 WSO Polar Fields vs. 5N max 300 WSO Polar Fields vs. GN max BUHVSD Polar Fields vs. HMF B min
250 {1 PF 250 1 PF 250 1 PF
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B nT @min Polar Fields in Time Polar Fields pT If we can forecast cycle

maximum activity from the
polar fields, we should be
able to hindcast the polar
fields from the cycle’s
_ maximum activity. If HMF
i WSO B at minimum (proxy for
~ | polar fields) forecasts

GN SN B ' 100 activity maximum, then

: N xima hindcast
1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 HME B. How do we B
34
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. We get B from Geomagnetic Measurements
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Solar Wind and Solar EUV create
Electric Current Systems in Geospace

Different Current Systems =>Different Magnetic Effects <. MAGNETOSPHERIC FIELD

o o A
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We have learned to invert the Solar Oppositely charged particles trapped in the

Van Allen Belts drift in opposite directions

Wind — Magnetosphere relationships...
9 P P giving rise to a net westward ‘Ring Current?



We Deal With all that Complexity by
Devising New Geomagnetic Indices

« Day-to-Day Variation, IDV-index, gives us
solar wind B

* Hour-to-Hour Variation, IHV-index, gives
us solar wind BV?

* Polar Cap Diurnal Variation, PC-index,
gives us solar wind BxV = BV

« Mid-latitude Diurnal Variation, rY, gives us
EUV [and indirectly solar magnetic flux]

Over-determined system allows us to separate B and V and to verify the result
37



Getting and Verifying B and V

1DV independent of Solar Wind Speed
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The IDV index has the useful property of
being essentially ‘blind’ to the solar wind
speed, but robustly correlated with IMF B.
So, from IHV we get product BV *; dividing
by B from IDV we can now get V-

U
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From the amplitude of daily variation of the
polar cap current sheet we can get the
product BV |LeSager&Svalgaard, 2004]| and
can use that as independent confirmation.
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Applying these relations we can reconstruct
HMF magnetic field B with Confidence:

InterDiurnal Variability Index IDV and Reconstructed Heliospheric Magnetic Field B
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After a decade of struggle Lockwood et al. finally agree with our reconstruction 3°




Blowup of Previous Slide to Show How Well IDV-
derived B (pink curve) matches Observed HMF B

S0
R
ik A A A + 80
.
1 70
:
sl =+ 60
f::- A . 1 50
- ’, Iy e I:l-'t‘ 1"'.'i; PO ¥ \ -
h ‘I."'n. 0y = lHi-Il % | 40
|'l 'a.'; HIFE X - b
/ Y e ol - 30
" r.-;. e El:]
H 10
StDev 1
.+-rh‘r=**'+'h--.-l—r*1—l-'="*-1ﬂ'+*';t—|—r " I-=""'ﬂ +'+"'-.-|—|—-"'"T_'_"“"|'"I",h|-+" '=ﬁ-l.'*'."'1—|—r"'="' v u
1960 1970 1980 1990 2000 2010

40




Radial Magnetic Field (‘Open Flux’)

Since we can also estimate solar wind speed from geomagnetic indices [IHV,
Svalgaard & Cliver, JGR 2007] we can calculate the radial magnetic flux from
the total B [from IDV] using the Parker Spiral formula:

Radial Component of Heliospheric Magnetic Field at Earth

BrnT
5 Ceiling o

1

Year

O T T T T T T T T T T T T T T T T T T
1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

There seems to be both a Floor and a Ceiling and most importantly no long-
term trend since the 1830s. Thus no Modern Grand Maximum (claimed by

some to be the largest in the last 12,000 years).
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HMF B Dependence on Sunspot Number

1(I}-I!\.!‘IF Strength B as a Function of SQRT(Sunspot Number) The main sources of the equatoria|

g{ BT . . 4 |components of the Sun’s large-scale
8 4 5 magnetic field are large active regions.
7 $ If these emerge at random longitudes,
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4 4 T = ] 2184y = Iy . . .

. R S number. Thus their contribution to the
. Observed Inferred average HMF strength will tend to

1963-201 1845-2013 . 1/2 . W d
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0 | . : | . . ~ |Sheeley [2003]; Wang et al. [2005]).
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A Relation Between Polar Fields
and HMF Strength at Minimum

B nT @min Polar Fields in Time

[ ] — (%] [ E= [ (s3] -
1 1 1 1 1
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Polar Fields pT

+ 300
-+ 200
+ 100

From geomagnetic IDV-index we
get HMF B. From GN and SN we
get the polar field DM

< |

We can thus establish a relationship
between B and DM and estimate the

=

value of the ‘floor’

Polar Fields Relate to HMF at Minima?
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There is enough room for speculation about the cause of the floor,

but eventually it all has to fit




The Claimed More than Doubling of the
Coronal Open Flux Did Not Happen
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The Claimed More than Doubling of the
Coronal Open Flux Did Not Happen
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Summary Il (The Open Flux
and HMF in time)

We have learned how to infer and reconstruct
the Heliospheric Magnetic Field with confidence
pack to the 1830s

HMF B at minima seems to be related to the
Polar Flelds

The is no long-term trend in HMF since the
1830s

Thus no Modern Grand Maximum

There seems to be both a ceiling and a floor in
the open flux

which is still too ‘large’ by a factor of two or more
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The 3D Heliosphere Sculpted
by the Polar Fields
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The 3D-Sun Into the Heliosphere

Svalgaard et al.: Solar Phys. 1974
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Wang et al.: Science 1996
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The Structured Hale Boundaries
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Rhessi Flares, Hannah et al. 2015
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The Un-tilted Hehospherlc Current Sheet
Schulz; Svalgaard; Saito (1974) B4 St The Boundary through the Cycle

Near the sector boundary the solar
wind is denser and slower. As the
Sun rotates this builds up spiraling
layers of denser plasma wrapping
around the Sun many times:

Sector boundary
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Cosmic Rays from the Milky Way Galaxy

Minimum Maximum Cosmic Ray
1AU] (a) o=10" active = MOd Ulation
A v"u“uﬁL —— caused by

RN e solqr _cycle
¢ variation of
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solar storms
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Svalgaard &
Wilcox, 1976

At maximum, more Cosmic Rays are deflected out
e — of the solar system and do not reach the Earth:
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The Misnamed ‘Tilt’ of the HCS

Maximum Inclination of the Current Sheet (N-S Mean): 1976-2017
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The HCS is not ‘tilted’ but warped and what is computed is the latitudinal extent
of the fictitious ‘dipole’ warping. At polar field reversal the warping should be 99;
by definition



Cosmic Ray Modulation in Time

Cosmic Ray Modulation vs. HMF Strength Modulation Parameter vs. Sunspot Number
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Heliospheric Magnetic Field from °Be

Comparison of HMF Derived from Geomagnetic Data (red) and Radionuclide Data
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Cosmic Ray Modulation During
the Maunder Minimum

Berggren et al. 2009

W

1400 1500 1600 1700 1800 1900 2000

Band pass (8-16 yrs) filtering of sunspot and 10Be data around the length of the
Schwabe cycle. (d) NGRIP 10Be flux and H&S Group Sunspot Number. The
large variation during the M.M. is helped by non-linear response of modulation.

. The solar dynamo was apparently working producing magnetic fields
% and a solar wind (causing long and straight comet ion tails), but few

8 visible sunspots. 56




Red Flash => ‘Burning Prairie’ =>
Network Magnetism

\

Figure 1 An early drawing of the “burning prairie” appearance of the Sun’s limb made by C.A. Young, on
25 July 1872. All but the few longest individual radial structures are spicules.

It 1s now well known (see, e.g., the overview in Foukal, 2004) that the spicule jets move
upward along magnetic field lines rooted in the photosphere outside of sunspots. Thus the
observation of the red flash produced by the spicules requires the presence of widespread
solar magnetic fields. Historical records of solar eclipse observations provide the first known

eport_of the red flash, observed by Stannyan at Bern;-Switzerland, during the eclipse of
Dung, 1883). The second observation, at t @ lipse in England, was made by,
among others, Edmund Halley —the Astronomer Roya ese first observations of the red

flash imply that a significant level of solar magnetism must have existed even when very few
spots were observed, during the latter part of the Maunder Minimum.

Foukal & Eddy, Solar Phys. 2007, 245, 247-249 -



Perhaps There was a Base-level Solar
Magnetic Field Even During the M. M.

Total Magnetic Flux on Sun (Schrijver, Livingston, Woods, Mewalt, GRL 2011)
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“Estimate of the unsigned surface
magnetic flux based on a surface flux-
transport model that uses the sunspot
number records to determine flux
emergence with 2D surface dispersal
based on observed properties of the
solar field. This model has no free
parameters, assuming only that the
frequency of active-region emergence
changes over time in direct proportion

2008-2009 HMF B = 4.14 1901-1902 HMF B =4.10 nT to the yearly-averaged sunspot £g
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“Polar Cap Flux Key Driver of
Heliospheric Magnetic Field”
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Polar Cap (above 65° North) Magnetic Flux [1022 Mx] for half-life of 2.8 years are just
about 1% of the total measured flux that itself is probably much smaller than the real flux?



How do we Know that the Poles
Reversed Regularly before 19577

1926- 197}
In any case, our result over a 45-year interva

iz probably the most direct evidence for a
continuing change of the predominant polarity
of the large-scale solar-magnetic field with a
period equal to the sunspot magnetic cycle, i.e.,
~20 years during this century. Wilcox & Scherrer, 1972
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The predominant polarity = polar field
polarity (Rosenberg-Coleman effect)
- - 100 annually modulated by the B-angle.
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2 3 4 5 & 7 8 5 101 McPherron effect [geomagnetic activity
YE_AH,OF SUNSPOT C.YCLE - enhanced by the Southward Component
“Seasonal variations of the ratio of positive of the HMF] predicts a 22-year cycle in
and negative sectors give clear evidence of geomagnetic activity synchronized with
solar magnetic field reversals starting from polar field reversals, as observed

the second half of the nineteenth century”.

Vokhmyanin & Ponyavin, JGR 2013 (now for 1840s-Present). 60



Cosmic Ray Modulation Depends
on the Sign of Solar Pole Polarities
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lon-chamber data do not show
the peaks and flat tops...
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The shape of the
modulation curve
[alternating ‘peaks’
and ‘flat tops’] shows
the polar field sign.

Ice cores contain a long
record of 10Be atoms
produced by cosmic
rays. The record can be
inverted to yield the
cosmic ray intensity.
The technique is not yet
good enough to show
peaks and flats, but
might with time be
refined to allow this.
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Coronal Holes are Not Polar Cap
‘Extensions’ but Flux on its Way to the Poles
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Fine-Structured Polar Field Reversals
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Flux of both polarities
move towards the pole.

Poleward Migration of Flux
There is no evidence

M " mﬂi
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of flux crossing the
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This Is No News, of Course

B.1 Polar Crown Filaments and the Polar Magnetic
Field, K. TOPKA and R. L. MOORE, Caltech, BBSO, and

B. J. LABONTE and R. HOWARD, Mt. Wilson Cbs., Carnegie
Institution of Washingtcm. We report on the results of
a follow up study to the recent results of Howard and
LaBonte (submitted to Scolar Physics) concerning the
evolution of solar photospheric magnetic fields

conclude that the obhserved behavior of polar crown
filaments during the solar activity cycle supports

the results of Howard and LaBonte in that the solar
polar magnetic field arises from discrete injections
of field from actiwve region latitudes and that there
exists in the sun a meridiconal flow. We further

conclude that magnetic field of both polarities must be

migrating poleward, but that the following polarity
dominates slightly.

SPD Meeting, 1980, BAAS, 12, 893, B1
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Summary lll (The 3D Heliosphere)

The large-scale Heliospheric structure is 3D and varies
through the Solar Cycle. “Polar Cap Flux Key Driver of
Heliospheric Magnetic Field”

The Structure is the result of an interplay between the Polar
Fields and Low-Latitude Unipolar Regions located in opposite
hemispheres organized along Hale Boundaries

The Heliospheric Current Sheet is warped and not ‘tilted’.

The Latitudinal Extent of the Warping controls the access and
variation of Galactic Cosmic Rays [GCR]

There was strong modulation of GCR and wide-spread solar
magnetic fields even during the Maunder Minimum

We can reconstruct the GCR modulation potential since 1700

We know that the Polar Fields have reversed regularly at least
since the 1840s

Both polarities move towards the poles (obscured when taking
zonal averages). Neutral Lines are N-S, not E-W
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Microwaves, EUV, and
Magnetic Flux in Time

Solar Max Temperature Profile
—— Solar Min Temperature Profile
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We get Solar EUV from the Million-degree
Corona fed by the Surface Magnetic Flux
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Creating an EUV (<103 nm) Composite

Analysis of EUV (below 103 nm) Measurements

Photons Monthly Means Calculated from Data Downloaded 2016-07-04 mW/im2
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SEE and EVE agree nicely and we can form a composite (SEE,EVE) of them.

SEM is on a different scale, but we can convert that scale to the scale of
(SEE,EVE). The scale factor [green line] shows what to scale SEM with to
match (SEE,EVE) [SEM*. upper green curve], to get a composite of all three
(SEM*,SEE,EVE) covering 1996-2016, in particular the two minima in 1996
and 2008.
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EUV Composite Matches F10.7

Flux and Sunspot Numbers

o EUV from F10.7 Flux o EUV from $SN SO, we can Calculate the
| EWV Monthly Means - |1 EUWV Monthly Means 1996-2016
i_ Comp. o e “m j Comp. EUV ﬂUX bOth from the
o™ o o ‘ Sunspot Number and
‘] P oo ‘ s omssensas || frOM .the F10.7 flux which
2] Ri=08s8 2 RE=0017 then is a good proxy for
7 FoTRusu L ssw2 EUV [as is well-known].
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Magnetic LOS Flux from MDI and
HMI Match F10.7 Microwave Flux

F10.7 Microwave Flux Matches Unsigned LOS Magnetic Flux on Solar Disk
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2002 2009
Disk Total Magnetic Flux vs. EUV
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There is a ‘basal’ level at solar minima. Is this the case at every minimum? 72
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The Microwave Flux (Proxy for EUV)
Record Extends 70 years in the Past
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The Japanese and Canadian
Microwave Records agree

F10.7 Microwave Flux at 1 AU (Canadian Observations)
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Magnetic Flux from MWO Tracks
MDI-HMI and the F10.7 Flux
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MWO magnetic flux from digital magnetograms can be put on the MDI-HMI
scale and, just as MDI-HMI, tracks the F10.7 flux very well.




Magnetic Flux back to 1976

Disk Total Unsigned Magnetic Flux (LOS)
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Determining EUV Flux from |
Geomagnetism (Graham, 1722)
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Electron Density due to EUV

<102.7 nm The conductivity at a given height is proportional
F, to the electron number density Ne. In the dynamo
IDE + hv — 0OF + &~ region the ionospheric plasma is largely in
< photochemical equilibrium. The dominant plasma
i species is O*,, which is produced by photo
D;_T +e =04+0 ionization at a rate J (s™') and lost through
recombination with electrons at a rate a (s™),
producing the Airglow.

The rate of change of the number of ions N,, dN/dt and in the number of electrons
N., dN_/dt are given by dN/dt = J cos(x) - a N; N, and dN_./dt = J cos(x) - a N, N.,.
Because the Zenith angle ¥ changes slowly we have a quasi steady-state, in
which there is no net electric charge, so N, = N, = N. In a steady-state dN/dt = O,
so the equations can be written 0 = J cos(x) - a N2, and so finally

N = V(I o cos(y))

Since the conductivity, 2, depends on the number of electrons N, we expect that 2
scales with the square root \(J) of the overhead EUV flux with A < 102.7 nm. 78




The Diurnal Variation [rY=H cos(D) rD]

Diumal Varation of Declination at Praha (Pruhonice)

ation of Declination at Praha
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Observed Diurnal Ranges of the Geomagnetic East Component since 1840

129 of them

Range of Diurnal Variation of East Component for all Stations
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20 + —t 60
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0- 0
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We plot the yearly average range to remove the effect of changing solar zenith

angle through the seasons. A slight normalization for latitude and underground

conductivity has been performed. The blue curve shows the number of stations
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The Range (Amplitude) of the Dally Variation
Matches that of the Scaled Group Numbers

Compare Group Number GN and Diurnal Range r¥Y
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o Scaling Group Number to Daily Range There is a good linear relationship
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40 4

y = 2.2177x + 32.821
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scale GN to rY. The relationship is not
different before [pink squares] and after
10 Group Number 1883 [blue dots]. The ratio rY/GN*
— [green] is unity throughout.
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Theory tells us that the conductivity [and thus rY] should vary
as the square root of the EUV [and F10.7] flux, and so it does:

—
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The Group Number is a Better Fit to F10.7
and rY than the Relative Sunspot Number

Sunspot Group Number Expected from F10.7
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Compare Sunspot Number and Group Number
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Perhaps we should predict F10.7 or the GN, not the SN...




Spots per Group for SONNE

The Number of

.| Spots per Group
[ IS Decreasing

5| So using a constant (i.e. 10)
weight for groups in Wolf's
definition of the Relative
Sunspot Number SN =k (10

G + 8) is now problematic.
Good reason to prefer F10.7

1980
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2015 as a measure of solar activity.
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Reconstructions of EUV and F10.7

Reconstruction of F10.7 Flux and EUV < 103 nm Flux

3 10
250 4 F10.7 EUV
sfu R2=0.98 mWim® + 8
200 | EUV = (rY/21.55)
15[] 7 :\. :"‘. : .. J‘I ‘1 :
30 4 F10.7 Obs EUVObs |2
D T : T : T : T : T : T : T : T T T : T : T : T : T : T : T : T : T : T D
1840 1850 1860 1870 1880 1800 1000 41910 1920 19030 1940 1050 1960 1970 1980 1990 2000 2010 Year
Reconstruction of EUV <103 nm Flux
10 =+ 10
i EUV EUV
8 T mWim? EUV = (rY/21.55)’ mWim® 4 g
6+ \ _, . \ 1s
,'I ! ‘ I"I.II A !
1 | i 1 ™ -‘ I Py |
4 Ty, g . v B N LN 4
________________________ A AN e N SR . A .. SO, * A ... SN A A v
2 f =)
: EUV = [(2.02 GN + 33)/21.55]° EUV =0.02 SN + 228
0 T } } F— } T F— } T F— } T } —t T f —t T } —t T } —t T } T 0
1740 1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 Year
85

Note the constant basal level at every solar minimum




This Observational Fact is Not New

THE AMERICAN JOURNAL OF SCIENCE AND ARTS. Second Series

ART. XVI.-Comparison of the mean daily range of the Magnetic Declination,
with the number of Auroras observed each year, and the extent of the black
Spots on the surface of the Sun, by ELIAS LOOMIS, Professor of Natural
Philosophy in Yale College. Vol. L, N0.149. Sept. , pg 160.

This comparison seems to warrant the following propositions :

1. A diurnal inequality of the magnetic declination, amount-
ing at Prague to about six minutes, i1s independent of the
changes in the sun’s surface from year to year.

2. The excess of the diurnal inequalityabove six minutes as
observed at Prague, is almost exactly proportional to the amount
of spotted surface upon the sun, and may therefore be inferred

to be produced by this disturbance of the sun’s surface, or
both disturbances may be ascribed to a common cause.

19t century ‘Inequality’ = deviation from [i.e. ‘not equal to’] the mean 86



Flux (SFU)

Flux (SFU)/Sunspot Num.

And is Re-discovered From Time to Time
e.g. Shimojo et al., ApJ 848:62 Oct. 2017, doi.org/10.3847/1538-4357/aa8c75
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:(,\\ 21:1GHz 43.2 / 2GHz 52.6/4GHz 76.7 /9GHz 257.2 [SFU]
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50 63

2:1GHz 44.3 / 2GHz 52 GHz 75.9/9GHz 254.3 [SFU]

| Cycle 23: 1GHz 47.7 / 2GHz 56.1 / 4GHz 79.8 /8GHz 261.2 [SFU]
Cycle 24: 1GHz 44.5 / 2GHz 52.0 / 4GHz 76.8 /9GHz 259.5 [SFU]

2 4 6 8
Frequency (GHz)

10

24

Microwave
spectra at

solar minima:

No variation
with time

“Therefore, the results indicate that the
average atmospheric structure above the
upper chromosphere in the quiet-Sun at
solar minima, which may be related to the
energy input for atmospheric heating from
the sub-photosphere to the corona, has
not varied for half a century”.
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Flux (SFU)
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And is Re-discovered From Time to Time
e.g. Shimojo et al., ApJ 848:62 Oct. 2017, doi.org/10.3847/1538-4357/aa8c75
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1 “Therefore, the results indicate that the

| average atmospheric structure above the
| upper chromosphere in the quiet-Sun at

1 solar minima, which may be related to the

energy input for atmospheric heating from

| the sub-photosphere to the corona, has

not varied for half a century”. And as we
now know not for at least ~280 years.

Local dynamo? Probably not... 88



Solar Irradiance in the UV Is Also
Reflected in the rY Diurnal Range

Bremen composite Mg Il index
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The emission core of the Magnesium Il doublet (A = 280 nm) exhibits the largest
natural solar irradiance variability above 240 nm. The Mg Il doublet is a broad
absorption feature with narrow emission peaks in the core. Radiation in the line
wings originates in the photosphere and shows much less variability. Therefore,
the ratio of line core intensity to wing intensity provides a good estimate of solar
variability because the use of an intensity ratio cancels degradation effects. The
core-to-wing ratio is frequently used as a proxy for spectral solar irradiance
variability from the UV to EUV. The so-called ‘Bremen’ composite series covering
1978-2015 (Snow et al., 2014) utilizes all available satellite data 89




The Ca Il Index Shows the Same

Basal Floor at Minima as

and EUV

Call Index (393 nm) and Range of Diurnal Variation of Geomagnetic Y

0.098 70
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The long-term Ca Il Index is constructed from Kodaikanal, Sacramento Peak,
and SOLIS/ISS data [Luca Bertello, NSO]. Data from Mount Wilson | ] has

been scaled to the Kodaikanal series. Calibration of the old spectroheliograms

is a difficult and on-going task.

Bottom Line: All our solar indices show that solar activity [magnetic field] is

90

constant at every solar minimum. [except for tiny SSN residual variation]




Solar Field and Solar Wind Field

Range rY and HMF B at 1 AU
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The magnetic field in the solar wind (the Heliosphere) ultimately arises from the magnetic field
on the solar surface filtered through the corona, and one would expect an approximate
relationship between the solar field (EUV and rY) and the Heliospheric field, as observed.

For both proxies we see that there is a constant ‘floor’ upon which
the magnetic flux ‘rides’. | see no good reason that the same floor

should not be present at all times, even during a Grand Minimum.
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Summary IV (F10.7, EUV, and

Magnetic Flux in Time)

Magnetic LOS Flux from MDI and HMI Match
F10.7 Microwave Flux and EUV

EUV and F10.7 are strictly proportional to the
Total Unsigned Magnetic Flux over the Solar Disk

The Range rY of the Geomagnetic Diurnal
Variation follows the Square Root of the F10.7
and EUV fluxes

UV, EUV, F10.7, and rY [and thus Magnetic Flux]
are constant at all solar minima at least back to
the 1740s; some 280 years
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Fine Structure of the Polar Fields
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17 GHz Microwave
Chromospheric
Emission

Nobeyama
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Coronal Holes at the limbs are bright in
17GHz emission mapping out magnetic field
elements but are optically thin away from

the limb
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2003/09/16

Some More
Examples

The emission is from
optically thin layers
(temperature ~10,000K)
so on the disk we just
see through them. At the
limb we integrate along

the line of sight and pick
up the emission.

2017-11-22 9




Strong at Solar Minimum

Rotate and long-lived 19961113.FTS_0
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19961113.FTS O

solar
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Signed Excess Tg Above 10,800K
I\/Iatches WSO Polar Magnetic Field

Polar Field Proxy from Nobeyama 17 GHz Brightness Temperature
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Strong Rotational Modulation

K Mobeyama 17 GHz Polar Brightness Temperature
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Rotational Period: a 32-day Signal

{(FFT) Spectral Density (North)
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Also Fine Structure of HMI Polar Fields

FFT of South Polar Fields
HMI 2010-2016
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The recurrence peak is at
34 days rather than at the
Carrington synodic period.
And a hint of a peak at half
34 days [4 ‘sectors’]

Strong rotational signal,
especially when the very
pole is best seen
(red=North, in Sept;
blue=South, in March)

The recurrence peak is at

34 days rather than at the

Carrington synodic period.
And a peak at half 34 days
[4 ‘sectors’].

We see strong rotational signals both in 17 GHz and HMI, indicating the arrival of
narrow streams of flux from lower latitudes as we saw in the super-synodic chattd



Summary V (Fine Structure
of Polar Fields)

* Sighed Excess Brightness Temperature
Above 10,800K Matches WSO Polar
Magnetic Field

* And shows a strong rotational modulation
with period 32-35 days [and a hint of half
that; 4 sectors?]

« HMI Polar Fields show the same
modulation, indicating the arrival of narrow
streams of flux from lower latitudes
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The Polar Field Precursor
Prediction Method
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The Origin of the Polar Field Precursor Method

VOL. 5, NO. 5 GEOPHYSICAL RESEARCH LETTERS MAY 1978
USING DYNAMO THEORY TO PREDICT
THE SUNSPOT NUMBER DURING SOLAR CYCLE 21
Kenneth H. Schatten, Philip H. Scherrer, Leif Swvalgaard and John M., Wilcox
Institute for Plasma Research, Stanford University, Stanford, California

Abstract., On physical grounds it is suggested
that the sun's polar field strength near a solar
minimum is closely related to the following
cycle's solar activity., Four methods of estima-
ting the sun's polar magnetic field strength near
solar minimum are employed to provide an estimate
of cycle 21's yearly mean sunspot number at solar
maximum of 140 ¥ 20. We think of this estimate
as a first order attempt to predict the cycle's
activity using one parameter of physical
importance based upon dynamo theory.
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The Authors 31 years later
\

SPD 2009
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Scherrer . | Schatten
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And now (20&7) itis 39 years later




Using the Measurements of
the Solar Polar Fields at
MWO* and WSO we
“[Svalgaard, Cliver, Kamide]
made a Prediction of the
coming SC24 back in 2004

—.. We noted that once a stable yearly
variation was reached (3 to 4 years
before minimum), the polar fields would
not change much [the ‘plateau’] until the
very minimum and might be used as a
precursor for the size of the next cycle.

WSON: WSOS
. R, '
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Just a Reminder How Different the
Hemlspheres Can Evolve (WSO)
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The Polar Field Precursor in Action

Solar Dipole Divided by Sunspot Number (V1) for Following Maximum

4.0
a5 30-day averages of WSO data Vi

’ _ Lens (V2)
3.0 1 Scattered KDP e Dirty

: . Failing

MWO Light Failure | | <lp N
251 = > Div by Rmax for 22 >
- <€ >
2.0 4
75

15 - (125)

24
1.0+

0.5

0.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

2015

2020

Low
max
will
raise
the
curve
too
much

We divided the Dipole Moment [ABS(North-South) PF] from reversal to next
reversal by the smoothed sunspot number for the cycle at that reversal (red

arrow). We assume that the resulting curve (dark blue) is invariant (has about
the same shape from cycle to cycle) and judge the size of cycle following the

minimum between reversals (“the next cycle”) to be that [unknown] sunspot
number that maintains the curve at the same level. The scatter of the points

on the curve is taken as an indication of the error.
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Calibration of the Precursor

Precursor Calibration and Prediction of Solar Cycle

250
SSN ve Y- 0.88
200 4 ¢»  Calibration
iy Predicted v =063
g, V1

150 A Observed

100 A

20 -

Solar Magnetic 'Dipole Moment' pT
D n T T T T T
0 20 100 120 200 220 300

We assume that the polar field precursor method works and that we only need
to calibrate the relationship. We use Cycles 22 and 23 for this and find that the
prediction of Cycle 24 is correct within the ‘error bar’ [which is hard to estimate].

Why did we not use Cycle 21? One reason was that our WSO data only began

in 1976. Another more serious problem [discovered later] was that of sc;atterel((:l)9
light ...




JBSERVED

RETANGRN: RATE (m/s)

The Effect of Scattered Light

SCHERRER, WILCOX, AND SVALGAARD ApJ 1980 :\wso we also

measure the rotation
rate of the Sun. We
found that the Sun
rotated slower and
slower as time went on,
until we cleaned the
mirrors and optics
[arrows]. Dirty optics
means scattered light.
In 1976-1977 that was

: ]
15:],‘_:_217 T TE TN e r'. TRy R L..'Jg_j_.g__ij par“CUIarIy bad
' 1578 1979

Scattered light is the reason for the lower WSO fields,
as light from mixed polarity areas are scattered into || didn’t think of
the polar aperture, diluting the measured polar field. that for the field

Making the mirrors dirty on purpose shows the effect very clearly: until 2007, when
scattered %  Reduction
10 1.0000 we repeated the
30 08178 ‘dirty mirrors’
67 o7ace In1976-1977 | Y I with 18
L] 11 0.5869  gcattered light

130 05424\ as several % | Baby Powder)

Each % of scattered light
decreases the field by 4% 110




The Effect of Scattered Light Can Also

Be Seen by Comparison with

MWO

?0(.’ - WSO Polar fields
I (Y Uncorr%cted should be
oo e VM ANERSAL 11 250 T and
S TR AR, YA, not 200 T
200 411 Y back in
00 I
e 1976-1977
400
1970 1975 1980 1985 1990 1995 2000 2005
Morth - South Solar Polar Fields [microTesla]
400 .
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00 0 .| 1 Corrected
200 :
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0 Nl i ; 1 ; s
1965 (l”" i M 1995 I 2015
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y Prediction
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Recently we noticed a significant decline of
WSO Mean Field compared with SOLIS

WSO Mean Field

240 k 55 s L 280
‘5‘

2017 doy WSO = SOLIS/1.82

vs. SOLIS Mean Field

WSO =S0LIS/1.82




Image of the Littrow Lens

There is a lens in front of
the grating in the pit. The
lens makes the incoming
light rays parallel before
they hit the grating and
collimates the dispersed
light retuning to focus at
the sensors in the
observing room. Todd
Hoeksema pointed his
IPhone at the lens and
Imaged it. The image
showed that the lens was
very dirty. 13




Cleaning the Littrow Lens

Cleaning the lens seems to have solved the problem

120
100
gl
60
40
20

-20
-40
-60
-80
-100
-120

WSO Mean Field

WSO =30LIS/1.82

The Mean Field after the cleaning [marked with white triangles] are
now again following the SOLIS measurements with the usual factor
of ~2 instead of the ~4 we had when the lens was dirty.

114




on
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Compare SOLIS
: and WSO Mean

2016 - 2017 (w/o Jan-May 17) SOLIS o

100 +

y =1.8040% + 1.9125 &
R’ =0.8460

Fields Outside
== ¢ the 2017 Glitch

-100 SOLIS =1.825 WSO
WSO = 0.548 SOLIS (=1/1.825)

WSO = 0.4672 SOLIS
5 SOLIS =2.14 WSO  (=1/0.4672)

Wso &
2016 - 2017 (wlo Jan-May 17) 60 |

y=0.467%+0.034

R°=0.8447

SOLIsS

|
-y

. Average
WSO = 0.51 SOLIS
SOLIS=1.97 WSO  (=1/0.51)
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2017 Jan -May 17

y = 25473k - 1.222
R? = 0.5986

Wso
30 20
y =2.5622x
R?=0.5965
20
2017 Jan-May 17 51 WSO
oo oo
y = 0.235x - 0.0267 10 o ®
R?=0.5986 @ xR
o © ﬁ o @ SOLIS
. & . o
60 -40 20 «® @ 20 40
g @ @
® @ oY) o e
Cy . 04 © y = 0.2351x
R? = 0.5986
-15 A
@

e o 20 1
25

Compare SOLIS
and WSO Mean
Fields During
the 2017 Glitch

SOLIS = 2.5622 WSO
WSO = 0.390 SOLIS (=1/2.5622)

WSO = 0.2351 SOLIS

SOLIS = 4.254 WSO  (=1/0.2351)
Average
WSO = 0.303 SOLIS
SOLIS =3.303WSO  (=1/0.303)
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The Magnitude of the Glitch

SOLIS => WSO | WSO => SOLIS |When
0.30 3.30 During Glitch
0.51 1.91 No Glitch
1.70 1.73 Ratio

So, | adopt the correction factor for the mean field to be 1.73+0.16 (95%) with the
error being mostly determined by the spread of the points during the glitch (run a
standard regression on the points). WSO mean fields should then be multiplied
by the constant 1.73.

The starting time of the glitch seems to be somewhere between Dec 6 and Dec

16, 2016. Say, Dec 10, 2016 without loss of ‘reality’. Ending time May 18, 2017
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Recent WSO Measured Polar Fields

00 N S WSO Polar Fields March Sept.
=
80 L ,,_
i, North o
40 f?
20 o
20 4 _
40 _ ,
South :
60 | _
80 - . .
1 y
100 "
120
2014.18 2015.18 2016.18 2017.18

The South Pole [pink] has stabilized and is showing its usual B,-angle variation,
but the Glitch [yellow box] shows the problem, which also is seen in the North.

The polar fields are about a factor two too small and there may be a slight zero-
level error as well. 118



The Glitch on the Disk

WSO vs. HMI Data Jun 9-Nov 18

WSO vs. HMI Data Dec 6 2016-May 17 2017

30
Before Glitch :
20 " e 20
N L “e '
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=80 =60 =40 =20 0 20 40 60 BOD =80

During Glitch

-60

-40

=20 0 20

HMI G

40

60

80

The HMI data on the disk were binned into the same ‘pixels’ [180'+180°] as WSO.

The ratio of the slopes (including the inverse slopes) was 1.59. For the mean field

it was 1.73, for a ‘grand average’ of 1.66 which is then taken to be the magnitude
of the correction we need to make to the WSO values during the ‘glitch’
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Corrected WSO Polar Fields

WSO Polar Fields
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The ‘bite’ taken out of the Dipole Moment [North — South] shown by the circle in
2016 is similar to the bite takne out back in 2003 and for the same reason: one

pole had stabilized but the other one had not yet.
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Comparing HMI and WSO Polar Field Data

60

HT, HMI™ uT = 18 HMI G - 4

40 +

HMI® N WSO Nf
20 _ ity

20| 2016 2017

-20

-40 1 HMI* §

60 -
18 (uT/G) = 100/(1.8*COS(72°))

80 1 http://wso.stanford.edu/Polar.html

-100

-100 ~

-150

150 Solar '‘Dipole’ Moment: North - South

uT
100

50 WSO (20 nHz Filter)

gl 2014 2015 2016 2017
Ee HMI* WSO Scale 30-day Window

2010 2011
-50

WSO: The pole-most aperture measures the line-
of-sight field between about 55° and the poles.
Each 10 days the usable daily polar field
measurements in a centered 30-day window are
averaged. A 20nHz low pass filter eliminates
yearly geometric projection effects.

HMI: The raw (12-hour) data have been averaged
into the same windows as WSO'’s and reduced to
the WSO scale taking saturation (the 1.8) and
projection (the COS(72°)) into account.

We have argued that the ‘poloidal’ field in the years
leading up to solar minimum is a good proxy for the
size of the next cycle (SNmax= DM [WSO scale
MT]). The successful prediction of Cycle 24 seems
to bear that out, as well as the observed success
from previous cycles. We used the average ‘Dipole
Moment’, i.e. the difference, DM, between the fields
at the North pole and the South pole. The 20nHz
filtered WSO DM matches well the HMI DM on the
WSO scale using the same 30-day window as
WSO. So, we can extend WSO using HMI into the
future as needed. This is good! 121




mean radial field strength in gauss

latitude (deg)

HMI Polar Fields Up-to-Date
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The South has stabilized and the North is still growing.



Lots of Positive Flux Still on its Way
to the Solar North Pole

SDO 201/-11-07
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WSO Polar Fields and
Dipole Moment

WSO Polar Fields and Dipole Moment

250
200 A

130
100

a0

D ]
-00 -
-100

-190

-200

Values for June and November
Dipole
North
South
L Min Min?

1996

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

The Dipole Moment is calculated as the North Polar Field minus the South
Polar Field at the same time of the year. Here | used the first two weeks of
June (light symbols on dashed curve) and of November, respectively. That
effectively removes the annual modulation.
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WSO Polar Fields and
Dipole Moment (Flipped) .o

2;; WSO Polar Fields and Dipole Moment/ /
H4
200 = Values for June and November
_ Dipole
150 o p
100 1 North
50 A
0 A :
50 - | = South
-100 -
150 - < -, Min Min?
Noisy
-200

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

The Dipole Moment is calculated as the North Polar Field minus the South
Polar Field at the same time of the year. Here | used the first two weeks of

June (light symbols on dashed curve) and of November, respectively. That
effectively removes the annual modulation. 125



Toroidal Field Shows SC25 has Begun
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Summary VI (The Polar Field
Precursor Hypothesis)

Began with the 1978 GRL paper by S+S+S+W

A stable yearly variation ~3 years before minimum
suggested that the polar fields might be used as a
precursor for the size of the next cycle [S+C+K 2005]

Scattered light diminished the polar fields in 1976-1977

In 2017, dirt on the Littrow Lens cut the polar fields in half
Scaled HMI polar fields match filtered WSO field very well
[with no ‘shifts’]

The South Pole is now stable, the North is still growing

So the dipole moment [N-S] may grow larger than for the
previous minimum, suggesting that SC25 will be
somewhat larger than SC24
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Predictions of Solar Cycle 25
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Extrapolations Often do Not Work

Axial Dipole Strength (G)

A SFT Prediction of Solar Cycle 25

I L L

Hathaway & Upton
| |https://arxiv.org/pdf/1611.05106.pdf

|||||||||

Projected Meridional Flow |
Meridional Flow
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Avarage Polar Field (G)

MNumber of Faculag

Polar Faculae as Proxy for Polar
Magnetlc Fleld [Flux] and Predictor
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The inferred polar flux
at minimum is a fair
proxy for the size of
the next solar cycle.

Some outliers are due
to ‘spikes’ (surges) in
the faculae count.
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Simulations are Hostages to
Assumptions and Over-Confidence

- e e e e

[ lijima et al.
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Axial Dipole Moment [G]

For Cycle 21@, | used the Dipole Moment
corrected for scattered light. For Cycle 25()
| used the latest (corrected) WSO data.

lijima et al. 2017: "We predict that
the strength of the axial dipole
moment at Cycle 24/25 minimum

1.-- will be several tens of percent

weaker than the previous
minimum.”

But:

Cameron et al. 2016: “The
empirical correlation between the
dipole moment during solar
minimum and the strength of the
subsequent cycle thus suggests
that Cycle 25 will be of moderate
amplitude, not much higher than
that of the current cycle.”

Thus not much lower...131



Geomagnetic Activity Seems to be
a Decent Precursor as Well

1 | 1
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Sunspot Num ber at Maximum Following Ap at Minimum
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SC25 perhaps like SC20

sunspot minimum makes up most

of the magnetic flux in the
heliosphere and that geomagnetic
activity depends on that flux.
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‘Large-Scale’ Fields are also a Precursor

Carrington Rotations 1815 -1814
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Assign fields of +1 and -1 to areas between neutral lines and calculate the global

dipole u1 and octupole u3 components. They predict the cycle 69 months ahela3%



Amplitude

Anything Goes?

arXiv:1711.04117 “Will Solar Cycles 25 and 26 Be Weaker than Cycle 247"
J. Javaraiah, Solar Physics Vol. 292, p. 172, November 2017

“We fitted a cosine function to the amplitudes and times of the solar cycles after
subtracting a linear fit of the amplitudes. The best cosine fit shows overall
properties (periods, maxima, minima, etc.) of Gleissberg cycles, but with large
uncertainties. We obtain a pattern of the rising phase of the upcoming Gleissberg
cycle, but there is considerable ambiguity. Using the epochs of violations of the
Gnevyshev-Onhl rule (G-O rule) and the ‘tentative inverse G-O rule’ of solar
cycles during the period 1610-2015, and also using the epochs where the
orbital angular momentum of the Sun is steeply decreased during the
“(oy] Period 1600-2099, we infer
{ that Solar Cycle 25 will be
71 weaker than Cycle 24. Our
f analysis also suggests a
—~“% 71 much lower value (30-40 [on
N\ .¢ ,/ Jthe old scale or 40-70 on
‘ @ - the revised scale]) for the

: 5 K 1 maximum amplitude of the
T e e upcoming Cycle 257

Cycle Half of SC24

‘IOO- I I 1 I | ; T ] T I 1 I 1 I | 1 T T T I 1 IEI 1 | 1

-~

50 [ .o

| Py \!
- 4
: \
5,/'\\
B : - \
0 = ~<

~
A b

/
' ®

]
1
|
|
I
|
1 !
I
1
I
1
-1
|

I
I
I
I
I
I
I
- |
—50 |- ;
I
I
I

I
I
I [ ]
I
1

134



The (Misnamed) Waldmeler Effect

Although Max Waldmeier today is credited with “the Waldmeier Effect” for the finding that
large sunspot cycles have shorter rise times than do small cycles, this fact was known
already to Wolf (we are still basically using his determinations of the times of early minima
and maxima) and was seriously discussed around the turn of the 20th century (e.g. Halm
1901, 1902; Lockyer 1901; and Wolfer 1902 [Figure below]) and taken as evidence for an
‘eruption-type’ sunspot cycle freed from ‘the shackles of unduly close adherence to harmonic
analysis’ (Milne 1935), although the allure of ‘oscillators’ still rears it (ugly) head today...
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reduction (or scale) factors. Since this relationship also holds for the

Waldmeier’s Insight (1978)

“There is a relationship between the rise time T (in years) from minimum
to maximum and the maximum smoothed monthly sunspot number R,,,.
The times of the extrema can be determined without knowledge of the

years from 1750 to 1848 we can be assured that the scale value of the
relative sunspot number over the last more than 200 years has
stayed constant or has only been subject to insignificant variations”
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We can use the effect to get the rise time
and thus when maximum will occur
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My Guess about Cycle 25

Somewhat stronger than SC 24
Perhaps on Par with SC 20
No Maunder Minimum this Time

Still too early to put a firm number on the
prediction not to speak about an error bar

Ask me next year when the North Pole has
stabilized

“It is better to be lucky than to be good”
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Summary VII (Prediction of Solar
Cycle 25 and Beyond)

Polar Faculae may be an indicator for the Polar Fields and
thus be used as precursors

Simulations and assimilations with Flux Transport Models
have promise

Geomagnetic Activity at minimum seems to work as
precursors

HMF strength at or near minimum seems to be correlated
with the Polar Fields and thus work as precursors

Planetary Control of the solar cycle has been invoked ever
since Wolf's first attempts in the 1850s, but lack credible
physical mechanisms

Monitoring of the Polar Fields may be the simplest and
most effective path to go. My current guess is for a cycle
with amplitude somewhere between SC20 and SC24
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Caveat Auditor

The listener beware 139



"It cannot be said that much progress has been made towards the
disclosure of the cause, or causes, of the sunspot cycle. Most thinkers on
this difficult subject provide a quasi-explanation of the periodicity through
certain assumed vicissitudes affecting internal processes. In all these
theories, however, the course of transition is arbitrarily arranged to suit a
period, which imposes itself as a fact peremptorily claiming admittance,
while obstinately defying explanation™

Agnes M. Clerke, A Popular History of Astronomy During the Nineteenth
Century, page 163, 4th edition, A. & C. Black, London, 1902.

Have we made Progress? Perhaps Some, but maybe
not Much. Cycle 25 might give us needed confidence,
except we, full of hope, say that for every new cycle...

A society that travels to other planets needs forecasts of the solar activity
visible from any point in the solar system several years in advance. Given the
wide range of the predictions for the amplitude of Solar Cycle 24 and the many
methods that were used to produce them, we look forward to this cycle [257]
answering important questions about how to predict solar activity at the Earth and
throughout the solar system (Pesnell, 2016) 140



We need imagination,
but not too much of It

“Progress is more often made by re-examining what had been looked at, and
sometimes ignored, by generations of earlier students, but with new insights
and new reasons and even new prejudice. To improve the historical record we
must probably rely most on what we already have at hand. After 130 years it is
probably time to repeat Wolf’s analysis of the earliest sunspot records. The
period of the Little Maunder Minimum, between 1800 and 1820, seems one that
needs more study. The rich auroral history deserves deeper and repeated
attention in the light of our rapidly-developing understanding of coronal holes,
and the solar wind, and the pictures now emerging of the real nature of the
earth’s magnetosphere. It is probably tied more closely to what we read in
radiocarbon, since both deal with features of solar particles and fields.

What is probably needed, for both re-analysis and in the search for new
historical sources, is imagination, but not too much of it.”

John A. Eddy, The historical record of solar activity, in The Ancient Sun, pg 119
(Geocosmica et Cosmochimica Acta, Suppl. 13, 1980)
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Alfven’s Nobel Acceptance Speech

On the 75" anniversary this year of his 1942 Nature paper
on the foundations of MHD it seems appropriate to cite
Hannes Olof Alfven: “it is only the plasma itself which does
not understand how beautiful the theories are and absolutely
refuses to obey them”. Alfvén’s criticisms of the dangers of
allowing theory to run too far from experiment and
observation, or of becoming seduced by one’s own models,
were, and still are, extremely sensible.

We should all keep that in mind when we pretend to
know what is going on.

The End 142



