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ABSTRACT

The origin of magnetic field sources in the Sun’s dynamo is central to this paper. The Babcock-Leighton dynamo
was originally envisaged as a shallow dynamo. The source of the Sun’s magnetism is now generally thought to reside
near the base of the convection zone and that these fields rise by buoyancy to initiate sunspots. We reconsider this
aspect of the solar dynamo. We do this by considering two surface effects as an alternative to the deep origin of the
Sun’s magnetism. They are (1) small-scale convective overturning forming the magnetic carpet of ephemeral regions,
and (2) percolation, a process wherein the small structures combine to form larger entities. We discuss these effects,
and we develop a numerical percolation model and a set of simplified Leighton-type dynamo equations. The numer-
ical percolation model, initiated with two separate random distributions of unipolar fields, does simulate fields clumping
together into larger sunspot-like structures, but does not yet display the bipolar nature of actual sunspot structures. We
provide a set of simplified global dynamo equations illustrating the temporal behavior of the current percolation model.
With the current model being predominantly illustrative, it is envisaged that more realistic shallow solar dynamo models
will be forthcoming. We end by providing three types of observations that may distinguish the percolation model from
the deep-seated field origin dynamo models. They are (1) the temporal development of activity centers, (2) the magnetic
flux distribution within groups, and (3) velocity flow patterns, near and within active regions. In addition, our modeling
suggests that a long-term accounting of the amount of flux in ephemeral regions may lead to long-timescale predictions

of solar activity.

Subject headings: MHD — solar-terrestrial relations — Sun: activity — Sun: general —

Sun: magnetic fields — sunspots

1. INTRODUCTION

As a prelude to discussing the solar dynamo, let us con-
sider Aristotle’s reasoning (see Webster 2004), as it applies to the
source of rivers: “It is clear then that we must not suppose rivers
to originate from definite reservoirs: for the whole earth, we might
almost say . . . that rivers rise at the foot of mountains proves that
a place transmits the water it contains by gradual percolation of
many drops, little by little, and that this is how the sources of riv-
ers originate.” Thus, the origin of flows may, at times, be aided
by the gradual accumulation of substances, as opposed to orig-
inating from some great reservoir. This behavior is also found in
the Earth’s atmosphere, where clouds form into their large struc-
ture from vapors that have coalesced into aerosols and then into
drops. Further along this scale of increasing size and intensity,
clouds can then form thunderstorms, and subsequently hurricanes,
if conditions are right. In a similar manner, we consider the mag-
netism in the Sun’s dynamo to originate from small magnetic
sources in the photosphere, as opposed to a reservoir in the Sun’s
interior. It does not appear that pure reasoning, as was fashion-
able in Aristotle’s day, can really answer any of these questions.
We now recognize that observations are essential to understand-
ing any physical phenomenon.

Solar physics theory has been heavily dependent on and guided
by observations of our closest star. Studies have ranged from the
smallest observable scales to the global Sun, and in recent de-
cades we have seen into the interior, through helioseismological
inferences. Although many advances have been made in our un-
derstanding of the solar dynamo, there is still no completely sat-
isfactory model. This gap is made evident from the many disparate
estimates for the size of the next solar cycle predicted (e.g., see
Svalgaard et al. 2005; Schatten 2005; Dikpati et al. 2006).
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Despite this gap in a scientific consensus about solar activity
prediction, let us mention some general understandings of the
Sun’s dynamo where there is consensus. These predominantly
were garnered from early observations of sunspot positions and
magnetic fields, namely, the Maunder-Spoerer butterfly diagram,
Hale’s laws of sunspot polarities, and the tilt of bipolar magnetic
regions (BMRs), often called Joy’s law. Babcock and Leighton
put together a rather nice paradigm that allowed an understanding
of these observed solar activity features, as well as the out-of-
phase oscillation in the Sun’s polar magnetic field, and why the
solar cycle should be considered a 22 year cycle as opposed to an
11 year cycle.

Although Babcock originally pictured a rather shallow solar
dynamo, Leighton also considered the possibility of a more deeply
seated origin for solar magnetism, although he modeled both con-
cepts. Their concepts were concerned with two effects. The first is
the omega effect (using the Sun’s differential rotation to create to-
roidal field from poloidal field). The second was the alpha effect;
it arose when one considered how the poloidal field was created.
Babcock imagined a shallow field, but the view of a deeply seated
source for sunspots was envisioned by Parker and has become
prevalent. In this view, magnetic fields are dragged into the inte-
rior, most commonly to the base of the convection zone, or the
tachocline, and as a result of magnetic buoyancy this deeply seated
field can later rise to the Sun’s surface to form sunspots, when the
field increases in strength due to stretching. Parker (2001) and others
have noted a number of problems in this picture, which have not
been overcome. One interesting aspect is how various models ex-
plain Joy’s law. The Babcock-Leighton picture provided an ex-
planation in terms of shallow fields. With deep fields, however, a
separate mechanism seems to be required to explain this. Nandy
& Choudhuri (2002) and Longcope & Choudhuri (2002) have
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developed models to explain the tilt of active regions. This tilting
seems to be an interesting difference between the deep and shallow
models of the Sun’s dynamo.

The changing paradigm away from the shallow dynamo of
Babcock, to the modeling of both shallow and deep dynamos
that Leighton explored, and now to the more modern picture of
predominantly examining deep solar dynamos, occurred for the
following reason. It was thought that shallow dynamos have a
theoretical problem. Namely, a horizontal line of magnetic field
is thought to be unstable; it would rise quickly and dissipate owing
to its magnetic buoyancy. As a consequence, it became fashion-
able to simply place the origin of the Sun’s dynamo magnetic field
deeper, somewhere near the base of the convection zone, close to
the stable layers of the radiative core. Ruzmaikin (2001) discusses
many observational and theoretical aspects of the deep dynamo,
including clustering, closely related to the percolation aspects we
discuss. This deep dynamo allowed a possible alternative to the
shallow magnetic buoyancy problem. A shallow dynamo may
still be possible; let us discuss this.

The problem associated with the persistence of shallow field
lines may be overcome by the combined effects of the following
properties associated with solar magnetism in the Sun’s convec-
tion zone. As the footpoints of a newly generated shallow flux
tube are separated, field stretching and increased tension encour-
age the magnetic tube to sink (as a chord does on a sphere), rel-
ative to the buoyancy associated with a static hydrodynamic force.
Naturally, there is interplay, since hydrodynamic forces provide
the energy for magnetic field growth. In any case, a field line would
not likely be totally level over an extended length, but only at a
finite number of points; thus, one must consider the forces on tilted
submerged field lines. If one considers a finite element of such a
field line, driven by a downflow, then this is equivalent to the prob-
lem of the orientation of a general object in a fluid flow. The so-
lution to this is well known: rather than aligning with the flow, the
object is reoriented so that it is perpendicular to the flow force
in such a manner that it subsides with its bowed surface oriented
perpendicular to the flow (e.g., the bowed shape of a leaf points
“downward” as it falls from a tree, essentially floating, thereby
maximizing, rather than minimizing its drag). Thus, a field line
descending from an ephemeral or active region, rather than point-
ing radially inward, has a tendency to be deflected away from the
radial direction and is reoriented toward the horizontal rather than
extending toward deeper layers. This occurs until it can extend
outward toward another footpoint. Last, a flux tube is not an iso-
lated field line in the presence of a static fluid; instead there are tur-
bulent forces, not simply static pressures, and the background
does not contain zero magnetic field, as nonzero magnetism is ubig-
uitous. Thus, the motion and stability of flux tubes is governed
by the complex forces of the magnetic tension associated with the
field’s footpoint motion, along with the turbulent pressures from
the complex surrounding media. This is not a closed problem.

In addition to the overall global picture of solar magnetism,
individual sunspot physics is also an intriguing subject. The man-
ner in which sunspots are held together by fluid dynamical forces
was examined by Weiss, wherein the inflow of fluid provided
a mechanical “collar,” which held the magnetic field together.
Energy transport was also important—how do sunspots remain
cold against the onslaught of convective energy transport? The
Biermann picture of the magnetic field inhibiting convective en-
ergy transport was augmented by Parker (1979), who used the
Weiss flow pattern, and showed that a ““superadiabatic effect™
could aid sunspots to remain cool, against the tremendous radial
outflow of convective energy present in the upper levels of the Sun’s
convection zone.
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A simple picture may aid understanding, if we consider the
normal outflow of energy as a “river of energy,” due to the high
flow rate, compared with the reservoirs of energy storage avail-
able. Sunspot fields can only prevent the outflow of energy for
only modest time periods, in the layers of the upper convection
zone, as there is little ability to store significant energy in these
thin layers. Examinations of the outflow of energy from the Sun
come from the work of Willson et al. (1981), Lean et al. (1982),
Chapman et al. (1986), and Sofia et al. (1982). It has been shown
that sunspots are associated with a solar constant “energy deficit”
and bright faculae provide an offsetting excess. More recently, we
have seen that the contribution of bright faculae actually super-
sedes the sunspot deficit, providing an excess of energy released
in the Earth’s direction associated with active regions. Thus, the
effect of solar activity is actually opposite to the effect of sun-
spots, with an activity center releasing somewhat more energy,
rather than less (Lean et al. 1982). These modern advances in
solar activity deal with the effect of solar magnetism on energy
transport in the Sun’s outer convection zone. The excess energy
emitted is important for this paper, as it helps explain why sun-
spots are drawn together, as explained later.

In addition to how sunspots affect the solar irradiance, there
has been a long history of observations of sunspot develop-
ment dealing with their birth, growth, and decay. Despite this, our
knowledge of sunspot evolution stems primarily from photospheric
observations and thus their full three-dimensional structure is
uncertain. It is because of this, that we feel obliged to raise and
consider an alternative picture to the modern, deep-seated origins
of sunspots. The relationship of solar magnetism to sunspots is
difficult to fully understand, owing to the complicated field geom-
etries that may arise. Until recent helioseismological interpreta-
tions, we have only been able to view the three-dimensional field
in one surface, the photosphere, and often only the line of sight
component; hence, the three-dimensional field geometry and struc-
ture have remained elusively hidden within the Sun. Although
helioseismology has allowed the photospheric cloak to be un-
veiled, we still have not been able to trace field lines well into the
Sun’s interior. Thus any paradigm for sunspots must undertake a
double duty: it should correctly fit into the magnetic cycle of the
Sun’s dynamo and also each sunspot’s individual life cycle should
be adequately portrayed.

Traditionally, it has been noticed that bright faculae move away
from sunspots in their late, decay phase. Harvey & Harvey (1973)
focused on these moving magnetic features (MMF) that surround
sunspots like a moat. Their three-dimensional structure was still
uncertain; however, they showed up as “bright points” in the high-
resolution observations, making them faculae in the traditional
sense. In addition, they seemed to carry off magnetic flux from
sunspots, and thus were correlated with the decay phase of sun-
spots. Indeed the Harveys focused on the late phases of sunspots’
lives. Hagenaar & Shine (2005) find the same general behavior
with greatly improved observations. We discuss below how field
lines can be expelled from active regions, consistent with these
observations.

The picture of a fairly deep origin to the Sun’s dynamo has been
opposed by Brandenburg (2005), who advocated a shallow solar
dynamo. Babcock (1961) stated in the first line of his abstract
“Shallow submerged lines of force . . . produce a spiral wrapping
of five turns after . .. three years.” Leighton developed both the
deep and shallow dynamo models, with the deep model provid-
ing a better fit, as it allowed more differential rotation to magnify
field with. Babcock thought the shallow picture was supported
by some of the observed aspects of sunspots. We shall attempt
to further this picture of the shallow dynamo, by considering a
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new process, percolation, for magnetic flux magnification near
the Sun’s surface. Schrijver (2001) has also provided simulations
of the Sun’s dynamo via surface features, with ephemeral regions,
differential rotation and meridional flow patterns. These are more
detailed than our dynamo model as we try to illustrate the impor-
tance of combining shallow fields (via percolation) and thus have
left out many elements that Schrijver and others use to describe
the real solar dynamo.

In a nutshell, the basic idea we put forth is the following.
Magnetic fields originate in the small magnetic carpet bipolar/
ephemeral regions described by Schrijver & Title (2001). These
are then drawn into newly developing active regions and the en-
ergy associated with fluid dynamics couples with the magnetism
of these regions to allow a larger, more efficient flow pattern to
emerge, as magnetic flux and the structural size increase. Mag-
nification of magnetic fluxes occurs in this view, not by the usual
mechanism of stretching magnetic field and thereby increasing
its field strength, but rather by the inflow of like-sign magnetic
fluxes into the developing active region. This increases the mag-
netic energy for it takes energy to force like magnetic fields to-
gether. This is obvious to anyone who has played with magnets
and also from Maxwell’s equations. This energy increase, in the
current view, is powered by the large-scale flow patterns via cool
downflows below strong fields that pull together same-sign field
regions, through lowering the total energy (field, flow, heat, etc.).
The cool downdrafts allow a larger scale, more efficient flow
pattern to exchange energy outward from the solar interior (see
Schatten & Mayr 1985). The excess emitted energy, as discussed
before, plays an important role in the process. This occurs only in
areas of the Sun where the superadiabatic gradient is large. We
presume that near the surface of the Sun, where the gases are
thinner, they are subject to more fluctuations in energy/temperature
than in the deep interior. With this in mind, we consider that in the
shallow layers below the Sun’s photosphere there are areas that are
hotter and cooler than the average structural value. Areas where
the superadiabatic gradient is largest, in our view, would be partic-
ularly conducive to sunspot growth. After a few days, surround-
ing areas allow cool inflows to form leading to cool downdrafts
below the sunspot and can quench the superadiabatic gradient
thereby allowing the sunspot to decay. One may refer to the growth
phase of this process as the “superadiabatic magnetic flux mag-
nification” process, but here we substitute the simpler but less de-
scriptive term, percolation. We will discuss the process more fully,
but it is extended from Parker’s (1984) model explaining why like
magnetic elements in convective cells are drawn together.

Percolation is essentially the term given to the physics and
mathematics dealing with the spatial connections of features.
Examples of percolation deal with clustering, criticality, diffusion,
fractals, phase transitions, and disordered systems (see Stauffer
1994). Thus it is used to describe the processing of small features
into a larger structure. Most people are more familiar with per-
colation from the name of older coffee makers combining bubbles
that push boiling water through a filter containing coffee grounds.
Percolation is a noun of action, derived from percolare (“to strain
through, filter”). For the solar case, we use percolation to refer
to the processing of small ephemeral ““like-sign field regions” into
larger features. In our model, percolation in the Sun is thought to
allow small-scale fields (ephemeral regions or pores) to combine
into larger sunspots in the upper convection zone, through the ex-
tra available energy in the Sun’s upper convection zone, which is
highly superadiabatic.

For our purposes, we are dealing with percolation of magnetic
fluxes in the solar photosphere. We shall be invoking the perco-
lation process such that only fluxes of the same sign are prefer-

PERCOLATION AND THE SOLAR DYNAMO 139

entially drawn together, due to a percolation force we discuss.
We later consider how the dynamo equations of Leighton might
be modified to incorporate our present view, and then some ob-
servational tests, that could be conducted. The current viewpoint
basically suggests an important role of the near surface region
(from the photospheric boundary to the hydrogen ionization re-
gion, at a depth of roughly 20 Mm) for the Sun’s dynamo.

2. EPHEMERAL REGIONS AND PERCOLATION

We shall be discussing two processes that may support a shal-
low solar dynamo. The first refers to the germination of magnetic
field within ephemeral regions (EPRs) and the second; we refer
to as percolation, the workings of which we explain below. The
first process has been well observed recently with powerful tele-
scopes from the ground and from space, and is understood theo-
retically (e.g., see Schrijver & Title 2001). Observationally, these
small regions are associated with large magnetic field and high-
energy (effective temperature) plasmas, as seen in the EUV, soft
X-rays, and other high-temperature electromagnetic emissions
associated with the Sun’s upper atmosphere. We simply describe
the main behavior and refer the reader to numerous articles on the
subject. It occurs as convection (e.g., granulation) wraps and sep-
arates small-scale fields into tight structures. This binds and iso-
lates the features into two diverse structures: (1) small regions of
high field strength and low turbulent velocities, and (2) larger
regions of much lower field strength and higher turbulent ve-
locities. This germinates ephemeral regions: small-scale bipolar
fields formed from convective overturning of the Sun’s magne-
tized plasma. The process is ubiquitous all over the Sun, both in
location and time, throughout the solar cycle. The process has
been studied by many in the Lockheed group and others. In their
view, the “magnetic carpet’ name was chosen for the myriad of
small loops that these features form above the Sun’s surface.
Thus, they are important in the structure and heating of the Sun’s
corona. Parnell (2002) discusses some of the numerical aspects
of how much flux is generated.

The second process is more novel; we refer to it as percolation,
as physicists have used this name for the processing of small
features into larger structures, primarily in solid state physics. In
our model, percolation near the photosphere is thought to allow
small-scale fields (EPRs/pores) to combine into larger sunspots
through the available energy in the Sun’s upper convection zone,
which is highly superadiabatic. Following Parker’s (1984) work,
where convective elements isolate magnetic field by lowering
the convective flow energy, his process suggests to us, that in a
superadiabatic ionized atmosphere, magnetic fields of like sign
attract, and unlike fields repel, essentially the opposite behavior
of magnetic fields in a vacuum, or subadiabatic atmosphere. Thus
our model invokes a stickiness to the same sign (same sign radial
component) magnetic fields in the photosphere. This stickiness or
percolation thrives from lowering the free energy in the presence
of convective or superadiabatic energy transport. Thus, the per-
colation process allows the Sun to shed its luminosity more effi-
ciently (than a totally unmagnetized, convecting atmosphere) by
having flow transport energy in uni-directed (up-down) flows rather
than convective bubbles that “break” in small distances, compa-
rable to the atmospheric scale-height, as in mixing length theory.
Let us now examine the percolation process in more detail, so as
to better understand the origins of this.

To understand the difference of flux tube behavior within the
Sun’s convection zone, and conventional magnetic field behav-
ior, we can do no better than to quote Parker (1984), who states:
“Now in ordinary turbulence, the field would grow (at the ex-
pense of kinetic energy) only until the Maxwell stresses became
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comparable to the Reynolds stresses, whereupon the two sys-
tems strike up a dynamical balance of some sort . . . But the con-
vectively driven turbulence in the Sun represents a different
situation. The turbulent mixing cannot be suppressed by the mag-
netic field because the mixing is so necessary to transport the
energy from the radiative core to the surface of the star. The con-
vection cannot slow, or become oscillatory, merely because it is
hampered by the growing magnetic stresses. .. The question is
what happens? If the convection continues to mix fluid, to trans-
port heat, then the field lines continue to be stretched and the field
intensified, requiring an increasing temperature gradient (caused
by an accumulation of heat below) to force the turbulence mixing
against the growing Maxwell stresses. Precisely how severe this
confrontation between Maxwell stresses and convective forces
might become is difficult to estimate. . . . Assuming that the gas
beneath the convective zone is largely free of field, the pile up of
heat forces columns of extra hot field-free gas upward through
the tangle of magnetic field and stalled convection. The mag-
netized gas is pushed aside by the overheated field-free gas from
below.” Parker then shows that the field would increase to a peak
fibril field value such that B2/8 is a fraction of the gas pressure
p (0), independent of the mean initial field value (B). Parker then
calculates the values of magnetic fluxes for vertical and horizon-
tal fibrils. The important point is that the field strength is forced
to rise from a mean field value (B), to a fibril field value indepen-
dent of this, B, so that the field can be sequestered into a small
volume of space in such a manner that it no longer inhibits the
convective energy transport. It does this to ensure that the turbu-
lent convection can still transport the same energy flux. Parker
calculates the value, By so as to minimize the energy of the sys-
tem (the sums of thermal gravitational and magnetic energies).
Even though the magnetic energy rises, it is a small price to pay
to reduce the other forms of energy. The thermal term is a contin-
uous energy form, which if not allowed to transport energy, would
build up continuously. Thus it cannot be defeated by the magnetic
flux.

We make implicit use of Parker’s theory that fields lower the
overall energy when like signs combine into small structures,
and are thus sequestered away from the remaining area. Not hav-
ing a detailed model of the changes in flow energy with field sign,
configuration, etc., we simply invoke a force for larger areas than a
convective cell, which may be referred to as the “superadiabatic
magnetic flux force,” or more simply the percolation force, that
we assign to magnetic field regions that would cause them to be-
have in the manner suggested by Parker’s model. This percolation
force would be opposite to the normal vacuum or subadiabatic
magnetic force between two poles, i.e., it would cause like poles to
attract and unlike poles to repel. This force may be represented by
a potential that would cause a confluence of like field in the photo-
sphere. Since convection is controlled by the superadiabatic gra-
dient, S, it would be proportional to S.

We choose the percolation force, Fp, between two field sources,
1 and 2, by modifying the hydrodynamic force, Fy, as follows:
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where the hydrodynamic force, Fyy, is approximated by using
the expression for the force on a Pitot tube embedded in a hori-
zontal flow of velocity, vy. The “forces” in equation (2.1) ac-
tually represent pressures (forces per unit area). Figures la—1d
shows this attractive force behavior of like fields when the super-
adiabatic gradient is positive. Driven by the convective energy
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flux, small disturbances in the surface (magnetic fields of the same
sign) are attracted allowing these field structures to grow, at the
expense of the superadiabatic energy. Figure 1e shows the reverse
process. Downdrafts below sunspots (as discussed by Schatten
& Mayr 1985) cool the hot material below the sunspot as it ages;
this reverses the superadiabatic gradient, and the percolation force
then expels same-sign flux from a sunspot. The percolation force,
being dependent on the superadiabatic gradient is important
in the life history of sunspots, as mentioned in the introduction.
After the growth phase of a sunspot, the cool downdraft quenches
the heat below the sunspot and can reverse the superadiabatic
gradient. This then reverses the percolation force and the heat
flow and allows like-sign fields to repel and faculae to form. This
in turn results in magnetic fields being expelled from sunspots
in their late phases. This is consistent with the observations of
Harvey & Harvey (1973) and Hagenaar & Shine (2005).

Parker’s work dealt with like-field regions in a granular cell.
Let us discuss why we think the force of attraction of like fields,
and a repulsive force of unlike fields, extends to larger regions.
First, we consider the larger scales. In general the convective
energy transport (see Cox & Giuli 1968; Mihalas 1970; Schatten
1988) may be written as

Feony = pC,KS, (2.2)

where p is the density, C, the specific heat, K the eddy thermal
diffusivity, and K = %vtl, where v is the turbulent velocity, / is
the scale of mixing, and S is the superadiabatic temperature gra-
dient, S =|dT/dr|—|dT/dr| ,;,. When this is positive, convection
transports energy outward. Equation (2.2) shows the convective
energy transport is proportional to S but also the thermal diffusiv-
ity, K. This factor grows with the scale length of the mixing (or tur-
bulent diffusion) length. Thus, with larger scale mixing (than in a
small convective cell), the length is larger and with it, the outward
energy transport is enhanced. The effect of increasing the con-
vective energy transport is to lower the total energy of the fluid.
This is actually seen as the Sun radiates more energy with higher
solar activity (see Lean et al. 1982; Willson et al. 1981). Consid-
ering this factor as more important than the magnetic energy, as in
Parker’s model, provides that in a superadiabatic environment, the
same sense field is attractive (as is observed in sunspot growth, for
example, when the superadiabatic gradient is positive, energy is
convected outward, and this free energy allows magnification of
small disturbances).

Now we consider why fields of opposite sense may not simply
cancel, but in a superadiabatic environment, may separate (repel)
each other. Let us consider the following thought experiment,
with two field geometries. In addition, we accept that same sense
fields are attractive at some locations on the Sun, such as sunspots
since their magnetic fields are seemingly held together by the flow
field. Now, in our first geometry, consider two same sign field
sources, say 4 and 6, with total energies, E4 and Ej, respectively,
in such an environment. As earlier discussed, when added together
one obtains a reduced total energy: E4.s < E4 + Es. For our sec-
ond geometry, we consider opposite fields, so the addition of a
field of opposite sign (from 4), say —6, of the same magnitude as
6 but of opposite sense, is added to a larger field, 4’ = 4 + 6.
This field would then add as follows (to the larger field of 4’ =
A + 0), thereby returning its energy to its previous larger energy.
Basically, one simply adds £_; to the previous inequality, and
obtains Ey s + E s <E4+Es+E_s=FE . Thus, E4 > Ey +
E_s, so two oppositely oriented fields, in this scenario repel (in
the solar superadiabatic environment where sunspots grow).
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FiG. 1.—(a—e) Top-down views of photospheric magnetic fields. In this figure the superadiabatic gradient, S, is positive. In these cases, like-sign fields attract due to
the flow patterns as shown by the arrows, indicating motion. Panel e shows the expulsion of magnetic flux from a sunspot region when the region ages, and the super-

adiabaticity, S, reverses.

The role of flow on active region energy transport was dis-
cussed by Parker (1979) and later by Schatten & Mayr (1985).
They suggest sunspot growth occurs when S is large, and a sub-
sequent downflow beneath sunspots can quench the process after
the free energy is depleted locally, comparing these features to an
ion hurricane. The analogy is formed, based on the ionization en-
ergy in the Sun’s atmosphere playing a similar role to latent en-
ergy of water vaporization in the Earth’s atmospheric weather
systems. For sunspots the magnetic field organizes the large-
scale flow into inflow and downflow patterns, and for the Earth’s
atmospheric hurricanes, the presence of large low-pressure re-
gions plus Coriolis forces provide organizing effects. For sun-
spots, a surrounding and subsequent upflow is thought to release
the energy offset (from the neutral hydrogen downflow) into fac-
ulae, which are bright features surrounding sunspot groups. Over-
all, the effect of sunspots and faculae on the solar constant is
positive, meaning more energy is released as a result of the active
region development over the lifetime of these regions. Thus, the
net effect of active regions helps the Sun to shed its luminosity,
and this is consistent with the increased efficiency of convection
associated with the sunspot increasing the scale (active region
size) of energy transport compared with the mixing length (gran-

ular size). Let us illustrate the effect of the percolation force
on magnetic features (e.g., pores/EPR), in superadiabatic regions
near the photosphere.

The percolation force results in flows as shown by the arrows
in Figure 1. We illustrate these flows in the following cases: the
attraction of like poles, in a weak field area, and within a bipolar
region; the development of small field regions into larger field
regions ( particularly in regions where the superadiabatic gradi-
ent is large; and how small field regions develop within a region
of one dominant polarity. These patterns illustrate growth cases,
where and when S'is large. For small or negative S, fields would
decay. Figure 2 displays on the left how combining two separate
field structures into one makes the flow pattern larger and more
efficient. Figure 2 (right) shows how field and flow patterns may
become separated, owing to the magnetic tension and gravita-
tional flow force being directed differently. The cool downflow
is directed radially inward, whereas the field tension may point
in any direction. In our case, with field thought to exist predom-
inantly in shallow regions, it would turn tangentially in short
order. With increasing depth and pressure, the field lines shrink rap-
idly with depth, and thus may separate from the flow pattern, as
the hydrodynamic force decreases rapidly as the area of a flux tube
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FiG. 2.—Left: Combining two separate flux tubes and surrounding flows (fop) into one larger flux tube (bottom), in accord with Parker’s model, allows a reduction in
the total energy. This increase in efficiency with larger flow size is the origin of the percolation force. Right: Although many flow fields are considered symmetrically
attached to field fibrils, at a few scale heights deep, the field structure breaks up into individual fibrils (not shown), and the field tension may draw it off to one side
allowing it to connect to some other surface field of opposite sign. The cool downdraft may continue to flow inward, driven by gravitational forces, or the flow pattern
may break up. The differing behavior of flow and field may allow a separation of the magnetic field vector from the flow vector ( pointing in different directions).

is reduced with pressure. In the Figure 3 pictorial, we see the dis-
association of flowlines with magnetic field lines, where down-
flows occur below field regions ( pores and spots are usually dark,
but for the purposes of this illustration are light), with upflows sur-
rounding them. Magnetic fields below the Sun would connect fea-
tures of opposite polarity, but hydrodynamic forces could separate
or connect field lines from different sources.

Numerical simulations of flux expulsion in a compressible
medium were undertaken by Hurlburt & Toomre (1988). They
considered the dynamical problem in two-dimensional Cartesian
geometry and simulated thermal convection in a closed box, span-
ning a few pressure scale heights. Compressibility breaks the sym-
metry between up- and downflows and leads to concentrated,
rapid downflows and gentler, extended upflows. As a consequence,
most of the magnetic flux becomes concentrated in the down-
flows. The growing vertical magnetic field suppresses the horizon-
tal fluid motion but does not interfere with the vertical velocity
component; therefore, the upper part of a forming flux sheet be-
comes partially evacuated and then compressed by the external
fluid pressure, agreeing with Parker’s theoretical arguments. It is
hoped that observations may settle whether magnetic fields com-
bine from percolation, as we describe, or arise from deep flux
tubes as in the conventional picture. We are currently unaware of
any observations that can speak directly to the three-dimensional
time history of solar magnetism, however, it is hoped that the
proper interpretation of high-resolution, high-cadence observa-
tions of growing active regions from SOHO MDI or other mod-
ern ground-based solar telescopes may be used to address this
question.

Having discussed the physical origins of the percolation force,
let us examine its influence on photospheric fields. We provide
two numerical models to illustrate the effects of the percolation
process on solar fields and discuss how this can lead to a surface

origin for the solar dynamo. We first describe the numerical basis
for two-dimensional percolation modeling, and then how this
might affect the Leighton dynamo equations, using a simplified
form that better demonstrates the principles, and the temporal be-
havior. Following this, we describe some of the geometric behav-
ior of this surface dynamo.

3. PERCOLATION MODELING—
NUMERICAL SIMULATION

In the previous section, we discussed ephemeral regions and
introduced the basis for percolation as applied to the Sun. Here
we describe a percolation model and see its workings in a numer-
ical simulation. One study where percolation was considered for
sunspots is the model of Seiden & Wentzel (1996), which had
fluxes released from the solar interior simulating sunspots. The
paper showed power-law behavior at small sizes and exponential
behavior at larger sizes, comparing well with the observations of
Harvey (1993). In the present paper, we are ignoring some of these
interesting geometric details and focusing only on the broad as-
pects of how an initial set of small bipolar fields (like ephemeral
regions) may combine into larger structures of the same sign and
thus allow magnetic flux to separate. This separation has impli-
cations for the large-scale field and may give rise to dynamo type
behavior, as seen in the photosphere. Thus, we are trying to gain
knowledge of the large-scale structures and are examining the
question, can larger scale magnetic fields be formed from the ac-
cumulation of small-scale features, through percolation? Hence
we are attempting to paint a broad background, rather than de-
tailed aspects. Nevertheless, we admire the results of Seiden and
Wentzel and are pleasantly surprised at the rich results of their
study.

Percolation is essentially the term given to the physics and math-
ematics dealing with the spatial connections of features. Examples
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PHOTOSPHERE
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FIELD LINES

Fic. 3.—As shown on the bottom, flowlines are displayed with dashed arrows, and magnetic flux areas, as circles in the photosphere, connected by solid lines
representing the magnetic field without direction displayed. As discussed in Fig. 2, a disassociation between flow lines and magnetic field lines may occur with depth,
allowing widely separated fields to connect with one another close to the photosphere. The photospheric field regions are usually dark, such as pores and sunspots, but
for clarity in the illustration, they are drawn light. Downflows are thought to occur below sunspots and return upflows surrounding them. Magnetic fields below the Sun

would connect features of opposite polarity.

of percolation deal with clustering, criticality, diffusion, fractals,
phase transitions, and disordered systems (see Stauffer 1994).
Thus, it is used to describe the processing of small features into a
larger structure. Most people are more familiar with percolation
from the name of older coffee makers combining bubbles that
push boiling water through a filter containing coffee grounds.
Percolation is a noun of action, derived from percolare, ““to strain
through, filter.” For the solar case, we use percolation to refer to
the processing of small ephemeral “like-sign field regions” into
larger features. In our model, percolation in the Sun is thought
to allow small-scale fields (EPRs/pores) to combine into larger
sunspots in the upper convection zone, through the extra avail-
able energy in the Sun’s upper convection zone, which is highly
superadiabatic.

This percolation model is calculated using cellular automata,
based on the following rules. These rules provide a potential en-
ergy term, e.g., as in the energy terms that bring and hold together
the magnetic field within pores and sunspots (despite their mag-
netic pressure tending to separate them), as outlined by Parker, in
the presence of the Sun’s superadiabatic region. We use the meth-
ods of cellular automata (see Adami 1999, chap. 2.4), and sim-
ulated annealing to provide for cell transference, subject to a
“condition” or constraint of energy minimization (for simulated
annealing [Press etal. 1986, p. 328], acommon energy term, is the
shortest path distance; for Meyer [2000], it minimizes the total
spin energy). This indicates that rather than having the magnetic
field move in accord with flows and forces, which could then gov-
ern the motion, we simply move surface elements at random by
small amounts and have like sign fields “stick.” This is a fairly
straightforward but conjectural method that we hope is realistic,
however, this aspect remains to be seen. Other algorithms, which
share this general basis, are the Metropolis and Glauber methods.

The original initial position has random fields (with three val-
ues: 0 and +/— K, a constant, similar to Parker’s fibril field value,
Br), such that the nonzero field occupies a fixed fraction (chosen
at 10%). For the quiet Sun, the filling factor is thought to be more
like 1% (see Lin & Rimmele 1999). The low percentage (10%) is
a compromise, chosen to approximate the small filling factor of
fields on the Sun, with the desire to illustrate the behavior of the
clustering of fields in a figure without vast gaps. The clustering
process is also enhanced, with a higher percentage of fields, much
as car crashes occur on more crowded roads. Thus, the results are
only illustrative, as opposed to representative, of the actual solar sur-
face. The Sun is excellent at sequestering its very large magnetic
field to a small fraction of the solar surface, owing to the extremely
large surface irradiance it possesses that can tame this field.

Thus, the initial surface field in our model is assumed to em-
anate by convection, as in the magnetic carpet (see Schrijver &
Title 2001) as a result of magnetic pumping, essentially the pro-
cess that germinates ephemeral regions from convection. To em-
ulate this, we simply start with a null field, and then fill in a small
percentage of random signed fields for the system. To achieve
field “stickiness,” the percolation properties we desire for field
entities in the photosphere, we use cellular automata with the fol-
lowing properties. The cells exist in a rectangular grid, with to-
roidal geometry to remove edge effects, by having the left and
right edges as well as the top and bottom edges connected. Cells
have three states, inward (—), outward (+), and neutral (0). These
states are randomly initiated for each cell and do not change.
Instead, the cells are allowed to move during each “time inter-
val,” until the simulation ends. For each time interval, a number
of cell movements may occur through positional cell swapping.
When a cell is considered for swapping, the number of same
states, in the immediate neighborhood is calculated. If a cell has
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Fic. 4—Top left displays the initial state with 10% fill, of random fields with two signs, and 90% zero values. The zero values are black, the bright values represent
positive values, and gray areas, negative values. Top right displays the result after 3 steps; bottom left, after 7 steps, and bottom right, after 30 steps. Notice that the same
percentage (10%) is filled in each figure, however, the field regions are becoming clustered, due to percolation.

all the same sign neighbors, then the cell is internally situated
within a pore or spot, and its position is not changed. Otherwise a
cell swap may occur based on probabilities for improved place-
ment. The cells are thus able to generally increase the number of
neighbors of same sign cells, resulting in the emergence of clusters
of cells in the same state. This essentially provides for an effective
clustering, or percolation, as in the superadiabatic magnetic force
model, previously discussed. Future changes in this methodology
may include initiation of field with small dipoles, large-scale field
interactions with the cells, fluid motions such as differential rota-
tion, and possibly more complex models such as enhanced flows
associated with the field geometry and evolution (growth of re-
gions based on energy and field considerations, etc.).

The first simulation is shown in Figure 4. A set of ~250,000 cells
is chosen in an initial state of 25,000 random bits (of +/—1). This
is a 10% filling factor. The zero values are black, the bright val-
ues represent + values, and the gray areas are for negative values.
Top right displays the result after 3 steps; bottom left, after 7 steps,
and bottom right, after 30 steps. Notice that the same percentage
(~10%) is filled in each figure; however, the field regions are
becoming clustered, due to the clustering force.

To illustrate the effect of further steps and also examine things
on a smaller scale, we see the illustrations in Figure 5. A smaller
scale size, with longer computational steps, allows the computer
calculations to be performed in reasonable times. Again, top left
is the initial state, with ~8000 nonzero values. We now choose
jumps of 25,200, and 1000 steps; bottom left, after 200 steps, and
bottom right, after 1000 steps. After 1000 steps, the entire field is in
an almost entirely clustered state. Very little happens near the end;
the computations only removes two regions, in the last 800 steps.
For comparison, in the beginning, there are ~8000 groups in this
simulation, and 25,000 in Figure 4.

One other point deserving comment illustrates a lack of agree-
ment between these simulations and observed solar behavior.
That is the following. The Sun’s magnetic fields have not only
a particular individual distribution (small regions of high field
strength and large regions of near zero strength), but also a large
degree of spatial correlation, or spatial coherence. The former
relates to filling factor, and this we purposely overestimated for
illustrative purposes. The latter relates to how the fields are dis-
tributed into active regions, which generally have fields of both
signs (bipolar magnetic regions), thus the presence of a large
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Fic. 5.—Shown is a magnified version of clustering, or percolation. To illustrate the effect of further steps, it helps to show a magnified portion of this simulation.
Again, top left is the initial state. Top right displays the result after 25 steps; bottom left, after 200 steps, and bottom right, after 1000 steps. Note that the same percentage
of filled field exists, however, at the end the fields are in an almost entirely clustered state, owing to the percolation process.

positive (sunspot) field is often correlated spatially with negative
fields (opposite sign sunspots) nearby. Our simulations do not
show this. We suppose that our simulations are missing some-
thing, but our mechanism (of field percolation) could also be
incorrect, and the upwelling of flux loops adequately explains
this well-known fact of solar behavior. Our percolation model is
highly simplified; it starts with random unipolar fields. Thus, there
are two independent distributions of unipolar fields that evolve
independently, except they cannot both occupy the same space,
rather than starting as close bipolar pairs as ephemeral regions do,
owing to Maxwell’s divergence B equation. Thus, our model is
simplified, compared with the Sun, by not having highly corre-
lated small bipoles (EPRs), and other aspects that treat percolation
in a simplified fashion, rather than how real flows on the Sun could
draw actual field structures together.

The Seiden & Wentzel (1996) percolation model does show
bipolar behavior, but these authors start with correlated, deep field
sources. Another possibility to explain the spatial correlation of
active regions has been put forth by Svalgaard & Wilcox (1976).
They showed that active regions form straddling sector bounda-
ries in that particular hemisphere where the sector polarity change
agreed with Hale’s law for that hemisphere. Their paper suggests

that active regions form at specific places on the Sun’s surface. It
is difficult to know how many aspects of the spatial coherence of
active regions (e.g., active longitudes) a particular model should
achieve. Nevertheless, we feel that the general bipolar nature of ac-
tive regions is a goal we should strive for in the next improvement
of this model. Let us now see how this process might modify the
Leighton dynamo equations, by allowing the fields to be initiated
through surface effects, rather than arising from upwelling within
the solar interior.

4. SIMPLIFIED DYNAMO EQUATIONS

In this section we discuss Leighton-type dynamo equations,
which we simplify. The purpose of the modifications is to change
some of the field variables (Leighton had radial field and “un-
erupted flux”) into variables that are more suited to our view of
ephemeral region (EPR) fields and active region fields, using
sunspot number, Rz, as a representative index, although any other
parameter could be used generically. We make no use of the prop-
erties of this variable, other than as an identifier of active region
magnetism. In addition, we simplify the equations we use by con-
sidering only their overall magnitude, as opposed to their distribu-
tion in latitude. This allows one to understand the overall transfer
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of flux in our view from the smallest scales visible (EPRs) to the
largest scale fields (unipolar magnetic regions [ UMRSs]) of which
the polar field is the clearest and most persistent example. In this
section, we generate dynamo-type behavior using a simplified
model, one without spatial structure, although spatial structure is
required in a detailed model, as we did earlier. Although in the pre-
vious computations, we required stochastic processes, here with
differential equations they present difficulties that we avoid owing
to the form of our equations. To compensate for the lack of spatial
structure in the differential equations, in the next section we dis-
cuss the model, in terms of the magnetic field’s spatial structure
and the numerical size of quantities. Let us add that the purpose of
our simplification is not to fit the Sun well, but rather to illustrate
the global effects of percolation. Thus we have also left out the
important meridional flow and differential rotation, which are key
elements to the Sun’s real behavior. Fortunately, Schrijver (2001)
has done an excellent job in his simulations of the Sun’s dynamo,
which include surface features and flow patterns. Our simulations
remove many realistic aspects and thus their primary function is
illustrative rather than total realism.

Let us begin with some basics, related to dynamo theory. In an
MHD dynamo, the fluid behaves “as a fluid.”” Namely, the sep-
arate charged components of the gas do not move separately and
thus cannot generate current, without pre-existing field being mag-
nified. A battery behaves differently; it can generate current and
magnetic field via the diverse motions of the electrons and ions,
without any initial magnetic field. Hence for an MHD dynamo,
magnetic field cannot be magnified without amplifying pre-
existing field. Thus, for an MHD dynamo, one need consider
how magnetic fields become twisted and magnified by the con-
torted motions of the conducting fluid, which can stretch loops
of field into greater field strength by pulling on the field, thereby
adding energy to this “rubber-band-like material,” the magnetic
field. For all but the first equation, each term has a “field growth
term” leading to a transferring of one field (e.g., the sunspot num-
ber field, Rz), at the expense of another field term, a “shrinkage
term” (e.g., the toroidal field, Bf). For the first equation, the EPR
field grows from convective mixing of subscale fields, too small
to see, gaining energy from the superadiabatic gradient, S. The
subscale fields are operating on magnetic field, but this field
is too small to measure. It first becomes measurable when the
ephemeral regions form. In the remaining equations, the forms
are basically nonlinear, with sets of pairs of variables leading to
growth and shrinkage. They describe how the energy is drained
from the superadiabatic gradient into the EPRs and subsequently
into sunspots. The sunspot fields subsequently decompose into
the larger scale structures of UMRs.

Figure 6 shows the overall flow of energy, via the conversion
of magnetic field between varieties of features in the Sun. Field
originates by convection associated with the superadiabatic gra-
dient near the Sun’s surface from fields too small to measure.
They generate pores/ephemeral regions in the magnetic carpet.
These grow from percolation into small, then larger sunspots gain-
ing strength from the superadiabatic gradient. After this phase,
magnetic fields are thought to distort into toroidal fields and
poloidal fields, in accord with the Babcock-Leighton model. We
will see (from the equations) that all three features are connected
to and interact with each other in our model. This is shown by the
double arrows in Figure 6 connecting each feature. Sunspots orig-
inate from percolation, but their configuration is determined by
their interactions with the poloidal and toroidal fields (near the sur-
face in this model). This interaction leads to Joy’s law, with the
geometry shown by Babcock. The magnetic flux in these processes
results in an oscillatory process as the poloidal and sunspot fluxes
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Fic. 6.—Illustrates the conversion of magnetic flux between different fea-
tures in the photosphere, in accord to the current model. Magnetic flux is ini-
tiated by convection associated with the superadiabatic gradient near the Sun’s
surface from small fields. This generates pores/ephemeral regions in the mag-
netic carpet. These grow from percolation into sunspots. After this phase, mag-
netic fields are thought to distort into toroidal flux and poloidal flux, according
to the Babcock-Leighton (B-L) model. We show double arrows, connecting all
three features in the B-L model, as these all interact with each other. Sunspots
originate from percolation, but their configuration is determined by their inter-
actions with the poloidal and toroidal fields (near the surface in this model). This
interaction leads to Joy’s law, as Babcock showed.

compete for the available energy. This oscillation, generated by
these equations, is thought to behave very much like the 11 year
solar cycle. If our model is correct, then without the introduction
of new magnetic flux from ephemeral regions, these field oscilla-
tion processes would decay, on the order of decades, suggesting
the highly important role that ephemeral regions play for magnify-
ing very weak fields into near kilogauss strength, as well as their
known coronal role. It may be important to study the amount of
flux in ephemeral regions, as a means of predicting solar activ-
ity on timescales longer than a decade.

Although Leighton (1964, 1969) provided a number of varia-
tions (e.g., deep vs. shallow dynamo models), his model had ba-
sically three equations (his eqgs. [8]-[10]), in addition to initial
condition equations. They governed temporal variations asso-
ciated with the toroidal field, the radial field, and an unerupted
field. They were one-dimensional with latitude as a spatial var-
iable, calculated for p (cosine latitude) variations of 0.1. Finer
results were obtained by interpolation. To obtain a stochastic be-
havior, Leighton undertook random variations, which actually
are somewhat problematic with differential equations, owing to
the discrete and chaotic behavior of these two disparate forms.
Nevertheless, he overcame this obstacle by employing terms that
dampened growth, numerical noise, and other effects. We modify
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similar equations to the ones he employed but modified in two
ways: we remove the stochastic noise, and we integrate over lat-
itude and thus only consider the average behavior, by representing
each of the following terms by global values. Our model is based
on the following four terms. We consider differential equations as-
sociated with the amount of flux, rather than just magnetic field,
however, we think the meaning in the Leighton equations was
similar. We consider the following magnetic entities: (1) an “in-
sertion of amount of flux,” chosen to be the smallest features
emanating into the photosphere, namely the number of ephemeral
regions (EPRs), (2) an amount of flux gathered by the percolation
process into larger scale (active region size) entities; here we ar-
bitrarily choose sunspot number, Rz, to represent the larger scale
field values although others might choose total sunspot area, or
any other function of solar activity (the particular variable is really
just a dummy variable), (3) the toroidal flux, ¢y and the poloidal
flux, ¢p. The choice of sunspot number might seem deleterious to
some, but those opposed to this parameter can substitute any other
parameter as a representation for active region magnetic flux.

The EPRs are assumed to grow based on the local super-
adiabaticity, S. Although locally, S may vary, for our purposes
here, we assume the global value does not vary much with activ-
ity, although observations will be needed to ascertain how much
this varies. This energy source is assumed sufficiently powerful
that the number of ephemeral regions is not depleted much by the
negative feedback term associated with solar activity. In addi-
tion consider equations integrated over latitude, and to simplify
all equations, we both ignore geometric factors (e.g., functions
of cosine latitude, 1), and write each variable in dimensionless
form, so that each variable is dimensionless (e.g., ¢ is time/7y,
where T is a period). Below we consider overall levels, so that
our equations can be referenced to solar conditions:

dEPR
7 S1S). (4.1)

Although the superadiabaticity, S, may grow near the Sun’s
surface locally when sunspot activity ceases, and shrink toward
zero and may go negative after an activity center depletes the
available energy, when the growth of an active region ceases,
for the global Sun as a latitudinal and time average, it is as-
sumed approximately constant, S = K. When the secular trend
of solar activity is constant, it implies that f'1(S) = 0. A growth
in solar activity implies f1(S) > 0, and vice versa.

The second equation governs how the number or amount of
flux growing from EPRs into larger flux regions (e.g., sunspots)
changes based on the number or magnetic flux in ephemeral re-
gions, and how the regions are removed as sunspots interact with
the toroidal field. Thus, the next equation has terms chosen that
are functions of these three quantities. Although the two func-
tional forms are undoubtedly complex, we approximate them by
ignoring the detailed form and even a multiplying constant. This
allows us to examine the solution without details of the numerical
size or detailed shape. We write the equations with general func-
tional forms, fi, where n is the variously numbered terms, but then
simplify the terms to particularly simple functions having some
degree of nonlinear behavior, recognizing that actual processes on
the Sun will be much more complex:

dditz = f2(Rz, EPR) — f3(Rz, ¢1) ~ RzZEPR — Rz¢r.  (4.2)

In equations (4.2)—(4.4), we have chosen the simplest func-
tional Lotka-Volterra forms that allow the following: self-similar
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forms of growth (e.g., dynamo equations, so that magnetic fields
are amplified by pre-existing magnetic field), and decay terms
(using general functional forms, fi). These forms, f1-£6, allow
any functional form of parameters, but then we start with linearity
(of each form, but owing to the number of equations and multi-
plicity of parameters, i.e., xy, the overall behavior is nonlinear) as
the simplest choice, with which to investigate the functional de-
pendences. The interaction between the various forms provides
a dynamo type behavior. If we had chosen higher order depen-
dences, our curves would have differing shapes, but the essence,
within a certain acceptable range, would be the same. Our choice
of linearity within each term is an ad hoc choice, however, surpris-
ingly for sunspots the arbitrary choice of linearity might not be too
bad. Schrijver (2001) undertakes simulations of stellar dynamos
growing from flux emergence and finds that the flux grows propor-
tional to the injection rate to the power of 1.01 & 0.01. Thus, the
choice of linearity seems to be supported by his study, although
we have no further justification for this. It may be possible to mod-
ify the Schrijver model along the lines outlined here, to form a more
realistic solar dynamo, essentially allowing the rate ephemeral
region appearance to give rise to the rate of sunspot development.

The next equation governs toroidal flux growth. Babcock and
Leighton had similar views in this regard, namely the growth of
toroidal field occurring beneath the photosphere had its amplifi-
cation initiated from a poloidal field that was increasingly wrapped
by differential rotation. This feature is seen in Hale’s law of sun-
spot polarities, and as Babcock expresses it: “After 3 years, the
equator will have gained in its rotation about 5.6 turns on the lat-
itude circles at ¢ = £55°,” Leighton had this term as 9" B,/0t =
—aBy/(27RT), where the constant evaluated to ~18sin’6 ra-
dians per year. For large spots this term became nonlinear as
Leighton considered itas 9" B,/0t = —ay |B¢|B¢/ (27RB,.T), where
B¢ was a critical field that needed to be surpassed in order for the
field to erupt. He also had exponential decaying terms, our first
term, and the other terms are nonlinear in a manner similar to his
terms (using two field parameters), with the difference being that
we do not use the radial field term. Note that the positive signed
nonlinear term in equation (4.3) is balanced by the negative term
in equation (4.2), and so on for all the nonlinear terms. Again
using the same “approximation,” the functions are simplified to
yield the simpler form on the right:

DO _ gy 4 fARz, 1) — 5. bp)

dt
= —¢r + Rzor — orodp. (4.3)

We have not explicitly written the influence of the Sun’s dif-
ferential rotation in this approximation on the right of equa-
tion (4.3), as we are considering the main source of energy of
the dynamo to be the superadiabatic gradient, which drives the
fields in Rz. Although the form of differential rotation clearly is
important in the spatial aspects of the Sun’s dynamo, we are only
viewing the rough temporal variations here. Equation (4.3) might
benefit by future inclusion of differential rotation explicitly, rather
than just considering it a “geometrical factor” that we have ig-
nored for simplicity. Equation (4.4) governs poloidal flux growth.
Again we have an exponential decaying term, and a nonlinear
growth term, similar to Leighton’s equations, again simplifying
with our very rough approximation:

dop

— = or 691, ¢p)=—dp+Ppdr.  (4.4)

Figures 7 and 8 show two results from runs of these equations.
In Figure 7, we simply have a steady state input. The figure shows
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Fic. 7—Shows the temporal variations of ephemeral regions (EPRs), sun-
spot flux, Rz, toroidal flux, and poloidal flux. In this simplest model, the ephem-
eral region input is constant. All parameters are in dimensionless units, meaning
that they could be normalized to their mean values. The temporal oscillations
develop from the nonlinear interaction of the four variables. Of interest is the out
of phase behavior of the sunspot and poloidal fluxes (heavy solid and heavy dashed
lines, respectively), as in the B-L models.

cyclic behavior develops by feeding each term off of the others,
with the exception of the Ephemeral Regions, assumed constant,
and a nonlinear oscillation develops. Of interest is how the po-
loidal flux and sunspot numbers, or flux, are out of phase, very
much as in the solar cycle, with the polar fluxes maximizing near
solar minimum. How would our differential equations behave if
we introduced a small secular trend to our source term, the num-
ber of ephemeral regions?

Figure 8 displays this. The number of ephemeral regions goes
up ~30% and then down. As can be seen from the nonlinearity,
the sunspot number and poloidal flux values increase by a factor
of 3 or 4. In addition, the periodicity is inversely correlated with
the amplitude. These variations are similar to those seen between
grand solar minima periods, like the Maunder minimum, and more
active time periods. Waldmeier (1961, p. 171) found the same kind
of inverse correlation between solar cycle amplitude and cycle
length. The in-phase variation of the polar fluxes and the next
cycle’s sunspot numbers, seen in Figure 8, supports our use of
polar fluxes for predicting the next cycle’s sunspot number. This
has been used (see Schatten et al. 1978; Svalgaard et al. 2005;
Schatten 2005) to predict, fairly successfully, three past solar cycles.
Prior to those predicted cycles, it was tested (see Schatten et al.
1972) with proxy data using eight solar cycles. The current model
displays the kind of correlation that these authors have utilized.
Now we discuss some of the numbers associated with these vari-
ables, and how they fit into the dynamo geometry.

5. DISPOSITION WITHIN THE SOLAR DYNAMO

In this section we discuss the placement of the current views
within the framework of the solar dynamo, particularly the Babcock-
Leighton viewpoint. It may help to understand this in terms of
the field geometry shown in Figure 9. It modifies the Babcock pic-
ture panel A into two panels, below, which illustrate how magnetic
fields change during the early and late phases of a solar cycle.

We view the essentials of the Babcock-Leighton (B-L) field
geometry and their primary findings as unchanged. Most of the
essential features of their model (e.g., the connection of field
geometry with Hale’s laws, the Spoerer butterfly diagram, Joy’s
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Fic. 8.—Similar to Fig. 7, however the input of ephemeral regions have a
small initial growth, then decrease, rather than a constant value. Secular tempo-
ral variations of sunspot, toroidal and poloidal fluxes result. In addition, the cycles
shorten as they grow, in accord with observations as found by Waldmeier (1961,
p. 171). The figure also illustrates that poloidal flux and sunspot flux increase to-
gether (although 180° out of phase), tracking very well, thereby allowing the po-
loidal flux near solar minimum to serve as a precursor for future sunspot numbers.

law) remain well supported by observations. The main focus of
this paper has been to consider the initiation of sunspot fields,
really unknown at the time of these authors. Without the modern
observations of ephemeral regions and recognition of the mag-
netic carpet, these authors could not have considered these fields
as a source of the Sun’s dynamo. We think that some represen-
tation of this type of shallow magnetic field source is in the spirit
of the B-L shallow dynamo models, but not in the upwelling
model that these models have evolved into. Observational sup-
port for their model can be found in a rather nice personal review
by Sheeley (2005).

Let us step back to re-examine our overall picture of the
Sun’s dynamo. The Sun’s convection zone first germinates high-
frequency, small spatial scale magnetic fields (the observed ephem-
eral regions/pores), as part of the amplification of anomalies that
occurs in a highly unstable, highly conducting environment trans-
porting huge amounts of energy. For the Sun, this behavior serves
essentially as a noise generator or amplifier magnifying small-
scale fields from the granulation and supergranulation. These small
field regions then combine or percolate into small spots, then
group into larger spots and active regions through further per-
colation. As in Babcock’s model, their location and direction is
controlled by connections to the overall shallow field geometry
(as supported by Hale’s observations). As sunspots grow larger,
they are further powered by convective energy transport, partic-
ularly downflows in the superadiabatic solar environment. They
serve a role in helping make radially energy transport more effi-
cient by essentially enforcing one-dimensional flow. This allows
a greater efficiency (in transporting the Sun’s energy outward)
than the turbulent smaller scale convective overturning. A rather
nonstandard model of Piddington’s (1978) has some similarities
to the present view. Although he seems to suggest a deep flux
model, the accumulation of sunspot fields by accretion is also
evident in his work. The depth of the origin of the photospheric
magnetic flux and the multiplicity of field sources combining (the
essence of percolation) are really two separate issues. We have not
really distinguished these two separate issues within this paper,
but have treated this view as indivisible throughout this paper.
Nevertheless, we recognize there are two issues involving the birth
of sunspots: that these magnetic fields (1) may arise from either
shallow or deep layers, and (2) they may arise from the upwelling
of a single flux tube or through the accumulation of many small
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Fic. 9.—(a) Babcock’s stage 3 geometry. The current view (b) shows magnetic field in the early phase of a solar cycle. The postmax phase is shown in (c¢). Active
regions containing sunspots are shown by irregular shapes at low latitudes, with p and freferring to the preceding and following portions of the group. These generally
contain opposite polarity. The relation of active region fields to the Sun’s polar fields is given by Hale’s laws. Panel ¢ shows how the polar fields reverse near the solar
maximum phase of a solar cycle. The low latitude spot groups are shown with darker shading, and the UMRs, including polar field, are shown by the light shading. Solid
lines: Coronal field above the photosphere. Dashed lines: Magnetic field below the photosphere.

flux tubes via percolation. Nevertheless, in this paper, we have
tended to associate a deep field origin with a single source for sun-
spots, and shallow field origins with multiple sources. It may be
better to separate these two issues and examine them separately.

The percolation process may also be viewed as an “inverse”
diffusion process, since it gathers together small fields, combin-
ing them into larger fields. Such an inverse process is behaving
against the “normal manner” in which intensive thermodynamic

variables (temperature, magnetic field, pressure, etc.) tend to equal-
ize. Thus, such inverse behavior is only possible in a nonequilib-
rium environment, such as the outer layers of the Sun’s convection
zone through the energy of convection that can do work. This al-
lows like fields to be attracted to each other, rather than repel,
as is their normal behavior in free space. The field separation
can occur in accord with their interaction of the Sun’s subsurface
B-L field geometry (shown in Fig. 9), and this displays Joy’s law,
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as shown by Leighton. We see little reason for a deep source
origin of Joy’s law, when it seems to be available within the B-L
framework.

Subsequent to the birth and development of active regions, the
remainder of the solar dynamo is viewed in the standard Babcock-
Leighton picture. The geometry of large-scale fields (unipolar re-
gions, polar fields, large-scale sectors, etc.) may be viewed as a
summation of Green’s function solutions to the diffusion equation,
possibly enhanced with meridional flow, driven by the sunspots
as delta function sources. The Leighton model for the diffusive
spread of spot ficlds was observationally tested directly (see
Schatten et al. 1972). Although there was support for the Leighton
model, there were also some puzzling aspects that Sheeley (2005)
and Wang & Sheeley (1994) considered. Their model explained
the rigid rotation of large-scale features stemming from differen-
tially rotating sources. Their explanation is a nice addition to under-
standing how rigidly rotating patterns of field can develop from a
differentially rotating field source. We view their considered pat-
terns as “eigenmodes” that the field forms from the various dif-
ferentially rotating inputs. Schulz (2001) has studied these aspects
related to the coronal magnetic field, with diffusion along similar
lines. We view both as essentially correct, the former just more
mathematical, and the latter more physical. These all seem like
different expressions for the same UMRs that Bumba found exist
on the Sun. We view the UMRs as magnetic eigenmodes of the
Sun’s magnetic field that are “excited” or filled by the remnant
fluxes from sunspot fields after the superadiabatic gradient has en-
ergized or enhanced the sunspot field values, and then these fields
subsequently decay (the higher order eigenmodes quickly damp-
ening out) into the low-order modes. Higher order effects may be
considered by this diffusion model, as suggested by Sheeley (2005),
by considering meridional and other flows, which would lead to
an advection diffusion model, which has an adaptive grid model in
Fortran for finding solutions to such models as advective diffusion
physics.'

Particular solutions of the large-scale field of the Sun may be
obtained, after the methods of Schatten et al. (1972), using essen-
tially a Green’s function technique. We outline this for the dif-
fusion equation, without advection, differential rotation, etc. but
discuss the changes these aspects would require. The technique
follows Morse & Feshbach (1953) and Jackson (1975). Taking a
diffusion equation, that for heat transport, is written as

Hp 2 q

at—av ¢+pcp, (5.1)
where ¢ is temperature, « is the thermal diffusivity, ¢ is a re-
lease of thermal energy, p is density, and C,, specific heat con-
tent in the heat equation. In our case v is the signed (+ or —)
magnetic flux. In general this equation can be attacked via Green’s
function techniques. These work by finding general solutions to a
linear equation (the first two terms in eq. [5.1]), with a hypothet-
ical localized function in space near » = r( and time near ¢ = f,
replacing the heat input, thus allowing a summation of linear
methods to work. One then applies the general solution as an in-
tegral over the discrete solutions. Taking this approach, the dif-
fusion equation is then written as

aa_f —aV2G = 4né(r — ro)d(t — to), (5.2)

! See Adaptive Grid Refinement in Fortran, AGRIF, online at http://www-
Imc.imag.fr/IDOPT/AGRIF/index.html.
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where G is the required Green’s function. A solution to this equa-
tion may be obtained by separation of variables, so G can be writ-
ten as

1 n
G(r —ro, t—ty) =47 [—} exp {

2/ ma(t — 1) «

= ”0)2}

(5.3)

in n dimensions. Placed into a dimensionless framework, the
equation is often written in terms of functions of & = /2(ut)"?,
with the solution being T(r, ¢) = f(£), and removing all the
constants and parameters in equation (5.2). The solution is then

&) =4 / exp(—¢&*)d{+B = Agerf(f) +B. (54)

The familiar aspect of this solution is the term of distance di-
vided by the square root of time, often arises in these type equa-
tions. It is familiar in diffusion, probability theory, kinetic theory,
and many other areas of physics.

In our case, we are interested in diffusion of magnetic fields
on a spherical shell, so let us focus in on that. For situations of a
spherical shell, the geometry is often expanded into spherical har-
monics, so that the spatial expansion is written in terms of angular
functions, with a delta function put into form of

8 — ro) = %6@ = 10)8(6 — $o)8(cos 0 — cos o), (5.5)

with the angular dependence written in terms of spherical har-
monics, this is

00 !
5= ro) =80 1) D D Vilbo, 60)Vin®, 6). (5.6)

1=0 m=—1

The various terms then decay away with times depending
on the diffusion coefficient, which Leighton estimates (of order
10* km? s~'). This coefficient provides a good value for the
lifetime of UMRSs, based on Bumba’s observations.

The solution for a number of sources, M; at various times, ¢;, is
then just

B(r, t):/t > MG —ri, t—t)dt' (5.7)

For Green’s functions including advective terms, e.g., dif-
ferential rotation, one may consider the diffusion solutions (the
spherical harmonic terms), to be differentially distorted from
a framework of spherical trapezoidal structures (which are the
nulls of the solutions) to ones where the sides are differentially
rotated, as in Bumba’s UMR shapes. Thus, various contributions
would blend into a single value (but not necessarily the same at
either pole). This provides a valuable method for estimating polar
field evolution from active region sources, and a means to un-
derstand why high-latitude active regions (early in the cycle) play
amore dominantrole in reversing and forming a new cycle’s polar
field value than the lower latitude field sources late in a cycle.

Let us consider the values of some of the numbers associated
with the equations and field parameters in the above equations.
These values are patterned after the Babcock-Leighton models
and the ephemeral regions, based on the observations of Parnell
(2002). She estimates the average emergence rate for the mag-
netic carpet to be between 6 x 1072 and 107> Mx cm ™2 s~ 1. In
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accordance with her estimates, a magnetic field in sunspots to
~500 G would seem to require between ~0.1 and 50 days from
a weak field via the separation and accumulation of magnetic
carpet flux. Babcock takes the polar field to have ~8 x 102! Mx,
consisting of eight ropes, each rope defined as 10?! Mx. This pro-
vides ~3000 spot groups or BMRs, with each unit length pro-
viding 3—4 BMRs. With the Leighton (1964) model, a diffusion
coefficient, D, of order 10* km?2 s~! was used. This provides a
time constant of order 7 ~ 7R% /D ~ 5 yr, comparable to ~1/2
the solar cycle period of 11 years. Thus, in this model, the time-
scale is of order of the effective diffusion timescale for the large-
scale field, the UMRs, which must make their way to the poles, in
order to recycle flux.

From this, and from Sheeley and Wang’s studies of the large-
scale field, we suggest that the whole dynamo mechanism may
be viewed as a high-frequency and small spatial scale “noise
generator,” of magnetic field (ephemeral regions and sunspots),
which then is filtered by diffusion processes on the Sun (acting
as a low-frequency, large spatial scale filter), allowing the longer
timescale eigenmodes of unipolar magnetic regions to dominate
and then gradually decay. The polar fields, being the longest lived
eigenmodes, are then the largest scale dominant low field struc-
tures we see. The 11 year cycle has an associated timescale of
~(27/22 yr), whose period is governed by the timescale for field
growth, diffusion, reversal, etc., to completely reverse the mag-
netic field twice. This timescale, in our view, is just the time it
takes for all these processes to work together, and thus is tuned at
all, as seen in Figure 8, so no well defined period is strictly set.
Hence changes in the magnitude of the field, or variations in the
patterns of field on the Sun’s surface, may affect the timing, as
Waldmeier (1961, p. 171) and others report. Let us now turn to
how this model may be tested.

6. OBSERVATIONAL TESTS

We provide observational tests that can be used to differentiate
the current model from the conventional deep-seated, alpha-
omega dynamo.

6.1. Test I—Temporal Development of Activity Centers

To summarize, we expect to see in our model the development
of activity centers gradually form from the accumulation of numer-
ous small regions. In deep-seated dynamos, our understanding is
that fluxes of equal and opposite sign would appear in the pho-
tosphere, virtually fully formed, as they rise rapidly to the surface,
under the influence of ~27 times the Earth’s gravity present in the
solar atmosphere.

In the alpha-omega dynamo, to initiate a sunspot group, field
from a flux tube erupts due to instabilities and buoyancy effects
from the solar interior and rises rapidly to the Sun’s photosphere.
It is our understanding that magnetic fields from such an erup-
tion should then have approximately equal positive (outward) and
negative (inward) fluxes. The present model suggests a gradual
growth from many small regions to larger ones through flux ac-
cumulation, in a manner similar to how storms accumulate mois-
ture to form larger systems. Thus, we expect a gradual evolution
from small ephemeral regions to larger regions that eventually
form a sunspot group. Growth would be enhanced in regions
where the superadiabatic gradient, S, is large. In addition, the
field line picture of Babcock’s, shown in Figure 9, suggests a
fertile ground for active region growth exists in the fertile re-
gions located equatorward and eastward, along the field direc-
tion suggested by Joy’s law, from previous eruptions of magnetic
flux.
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The temporal development of the three-dimensional nature of
solar magnetism and magnetic flux accumulation might be ob-
tainable from high-resolution high-cadence observations of grow-
ing active regions from recent spacecraft such as SOHO MDI or
modern ground-based solar telescopes. Of course such telescopes
may not probe deeply into the Sun. Nevertheless, they may show
same-sign flux from ephemeral regions growing into larger scale
features in accord with the current view. Growth of active regions
happens more frequently during the rising portion of an active so-
lar cycle, so it is hoped that solar cycle 24 may serve as an oppor-
tune time to test this and other solar cycle theories.

6.2. Test 2—Magnetic Flux Distribution within Groups

The magnetic flux rising from a deep-seated flux tube would
be expected to have a distribution of equal magnitudes of equal
and opposite flux signs. This may be represented by a distribu-
tion function:

P(¢) = Npd(¢ — ¢o) + Nné(¢ + o), (6.1)

so that a single flux tube erupting releases equal amounts of pos-
itive, N,¢o, and negative, —Ny ¢y, fluxes.

For our percolation model, flux should accumulate from sur-
rounding areas. To represent this, a formula may be written as

P@)= > P¢—¢)A4, (6.2)

i=AArea

where fluxes of various signs and magnitudes (¢; may be + or —,
and of any magnitude associated with some overall distribution
possibly varying as the superadiabatic gradient) may accumu-
late in the active region area, as fluxes percolate, or accumulate
in this region. This is suggested by equation (6.2). We recognize
that field strengths may change magnitude (e.g., increase), as
fields are compressed together, but for the sake of simplicity, we
have not included that in equation (6.2).

The manner of flux accumulation in this model may appear
complex, as many regions are involved. Nevertheless, it is sim-
ply many similar processes being repeated. Ephemeral regions
should start with initial equal and opposite fluxes and may form
in the presence of a surrounding environment of one sign field
or the other. Then as many of these regions develop, they draw
in surrounding surface fluid, containing their fluxes. If an active
region is developing at some site, it is doing so because it is able
to eject surface fluid downward, due to its cold, dense nature
relative to other areas of the photosphere that are marginally hot-
ter and lighter. The accumulating center would contain more field
of one sign or the other, depending on the sign of the magnetic
field within that environment.

For example, Bumba & Howard (1965) have identified the
weak fields of the Sun as UMRs. If an active region develops in
a UMR of one sign, it should have a larger amount of that sign
flux, with the discrepancy growing with time (as opposite field
is ejected), until the region decays. To clarify this, let us state it
more explicitly. If an active region develops in an area with a
positive polarity, for example, and that is the preceding polarity,
then that sunspot area should predominate over the following
spot areas (and vice versa). This suggests fairly straightforward
tests of a difference between surface models (whether or not our
mechanism is right or not) and deep source models for bipo-
lar field initiation. Distributions based on equation (6.1) versus
equation (6.2) compared with the surrounding flux distribution
should hopefully provide some tests distinguishing the two
models.
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In addition, there have also been reported a number of uni-
polar spots (only one of a pair of the conventional dipole). The
current hypothesis suggests that these would appear in strong
UMRs, with the field having the polarity of the surrounding UMR.
Presumably the field of the UMR and the bipolar fields would
balance each other, in terms of net flux, so some kind of large-
scale accounting might also be possible.

6.3. Test 3—Flow Patterns

The following flow pattern test might show some effects, al-
though it seems less definitive than the previous two. For young
active regions, inflows would be associated with flux magnifica-
tion. Conversely, for old regions, outflows would be associated
with flux decay. In addition, for young regions, same-sign flux of
small field regions (e.g., ephemeral active regions, pores, small
spots) would be attracted to that sign flux within the active re-
gion. So, the detailed motions within, or near, active regions could
be studied. The motion is opposite to the conventional wisdom that
magnetic flux rises from the solar interior. Rather than diverging
from a growing region, magnetic field (of the proper polarity—
following flux in a following region, etc.) and fluid should be con-
verging toward the parts of a growing region. Decaying regions
would show reverse motion, and the sunspots may change from
overall energy deficits, as spots eject bright faculae (seen near the
limb), as suggested by the observations of Harvey & Harvey
(1973) and Hagenaar & Shine (2005).

7. SUMMARY AND CONCLUSIONS

We suggest a new method for sunspot initiation within the
framework of the Babcock-Leighton solar dynamo models. The
model starts with ephemeral regions (EPRs), which form the mag-
netic carpet, studied by Schrijver & Title (2001) and others at
Lockheed. We then choose a seemingly unusual behavior for these
small bipoles, based on Parker’s theoretical work that fibril fields
lower the total energy within a highly conducting convective flow
environment (e.g., the upper convection zone).

This strange behavior may be briefly understood as follows.
Conventionally, as in bar magnets, we are familiar with same sign,
or “like,” magnetic fields repelling. In addition, we understand
that magnetic fields fill all of space. Yet on the surface of the Sun,
surprisingly, the field sometimes behaves in a somewhat differ-
ent manner. Overall, magnetic fields on the Sun are distributed
into large areas of near-zero field, but small areas of very intense
field on the order of a kilogauss (as in ephemeral regions, pores
and sunspots). This dichotomy has been explained by Parker
(1984), who showed that in a convective environment, the over-
all convective plus field energy is lowered by dividing space up
into two disparate (high field, of one sign or the other, and near-
zero field) regions. Essentially, this allows the majority of the solar
atmosphere to transport energy through convection via uninhib-
ited field-free regions, as the magnetic field would otherwise
dampen the transport of energy, and hence raise the total energy.

In accord with this behavior, this paper posits the existence of
apercolation force that essentially adds ““stickiness” to same-sign
magnetic field in areas ripe for field growth (namely, where the
superadiabatic gradient is large), thereby allowing like fields to
attract and thus behave as Parker suggests. Rather than calcu-
lating the dynamical motion of the magnetic fields subject to
all the forces on it as might be possible with a few objects in
Keplerian motion, we provide a cellular automaton approach,
by utilizing two-dimensional cellular automata, such that like-
sign fields stick. We refer to the growth of such features as per-
colation, a term that has been used in other fields similarly. Our
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percolation model illustrates that small field structures can grow
into larger ones, such as sunspots; however, our model does not fit
the geometry of the bipolar nature of active regions. Percolation
behavior for the Sun was also investigated by Seiden and Wentzel,
who fit magnetic field distributions and did obtain a bipolar field
configuration. This behavior, we suggest, allows a shallow solar
dynamo with surface percolation to replace the birth of active re-
gions through flux eruptions from the solar interior. We note that
Babcock originally suggested a shallow solar dynamo and Leighton
analyzed both a shallow and deep dynamo formation; most other
features of the B-L dynamo remain. Thus, we are primarily re-
considering the birthplace of active regions from the interior to
the photosphere. We further suggest, however, that rather than the
differential rotation supplying much of the dynamo energy, it is the
superadiabatic gradient (the outflowing solar energy) that drives
the Sun’s dynamo. This may be supported by the Sun issuing forth
more energy, when solar activity is large (more energy is trans-
ported outward). Differential rotation and meridional flow are still
important for the detailed structure and development of spot groups.
We also support our model through the development and num-
erical simulation of differential equations that illustrate the tempo-
ral behavior of a dynamo model. These are a form of simplified
Leighton equations that allow their basic nature to be examined.
We also provide observational tests that can be used to differen-
tiate our model from the conventional alpha-omega dynamo. In
particular, we suggest three observational tests for this model:

1. The temporal development of activity centers should grow
from many small features gradually accumulating in size and
number, rather than being born anew as a complete entity.

2. The magnetic flux distribution within activity centers in
our model bears a relationship to the surrounding distribution of
flux, prior to that group’s development. In the current model, fields
of one sign would be more likely to grow from regions containing
that sign flux. Thus, amid a unipolar region of one sign (e.g., pos-
itive), we might expect more of that sign polarity (positive) in the
sunspots within that region, as opposite flux is ejected.

3. Flow pattern tests are expected as follows, in this model.
Young active regions are expected to have inflows and be asso-
ciated with flux magnification. Conversely, for old regions, out-
flows would be associated with ejection of same-sign magnetic
flux and hence field decay. Detailed motions within, or near, ac-
tive regions could be studied, and are expected to yield same sign
fluxes attracting as regions grow. Rather than diverging from a
growing region, magnetic field (of the proper sign) and fluid should
be converging. Decaying regions would show reverse motion,
and the sunspots may change from energy deficit, dark regions to
bright faculae (seen near the limb).

Aword of caution is also advised about finding some evidence
of solar activity in deep solar layers implying a deeply seated
dynamo. Surface phenomena (e.g., cool downflows associated
with activity belts) may affect deeper layers and serve as a tracer
of recent activity. This would not necessarily indicate that the
source of activity is in the deep layers. The effect is similar to a
plane dropping leaflets to the ground. It can leave evidence on
the ground of the leaflets, as well as their proper motion, yet the
plane itself is not on the ground.

From Sheeley and Wang’s studies of the large-scale field, we
suggest that the whole dynamo mechanism may be viewed as a
high-frequency, small spatial scale “noise generator,” of magnetic
field (ephemeral regions and sunspots), which is then filtered by
diffusion processes on the Sun (acting as a low-frequency, large
spatial scale filter). This allows the longer timescale eigenmodes
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of unipolar magnetic regions (UMRs) and polar fields to dominate
the large-scale magnetic structures. While the present model is
highly simplified, which we acknowledge, we also suggest that
there is some strength in having the model’s internal workings
“transparent.” With the current model being predominantly illus-
trative, it is envisaged that more realistic shallow solar dynamo
models will be forthcoming, thereby allowing others to improve
the model, as they see fit. Finally, our modeling suggests that the
amount of flux generated in ephemeral regions, if it can be ac-
curately monitored for long periods, may possibly lead to long
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timescale (multidecadal) predictions of solar activity. Solar activ-
ity variations may show a nonlinear dependence on the amount of
flux generated in ephemeral regions.

The author appreciates comments from Hans Mayr, Eugene
Parker, Leif Svalgaard, and Donat Wentzel. In addition, the author
appreciates the many helpful critical comments by an anonymous
referee.
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