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Abstract 7 
 8 

We discuss recent papers very critical of our Group Sunspot Number Series (Svalgaard & 9 

Schatten [2016]). Unfortunately, we cannot support any of the concerns they raise. We 10 

first show that almost always there is simple proportionality between the group counts by 11 

different observers and that taking the small, occasional, non-linearities into account 12 

makes very little difference. Among other examples: we verify that the RGO group count 13 

was drifting the first twenty years of observations. We then show that our group count 14 

matches the diurnal variation of the geomagnetic field with high fidelity, and that the 15 

heliospheric magnetic field derived from geomagnetic data is consistent with our group 16 

number series. We evaluate the ‘correction matrix’ approach [Usoskin et al. 2016] and 17 

show that it fails to reproduce the observational data. We clarify the notion of daisy-18 

chaining and point out that our group number series has no daisy-chaining for the period 19 

1794-1996 and therefore no accumulation of errors over that span. We compare with the 20 

cosmic ray record for the last 400+ years and find good agreement. We note that the 21 

Active Day Fraction method (of Usoskin et al.) has the fundamental problem that at 22 

sunspot maximum, every day is an ‘active day’ so ADF is nearly always unity and thus 23 

does not carry information about the statistics of high solar activity. This ‘information 24 

shadow’ occurs for even moderate group numbers and thus need to be extrapolated to 25 

higher activity. The ADF method also fails for ‘equivalent observers’ who should register 26 

the same group counts, but do not. We conclude that the criticism of Svalgaard & 27 

Schatten [2016] is invalid and detrimental to progress in the important field of long-term 28 

variation of solar activity. 29 

 30 

 31 

1. Introduction 32 
 33 

An accurate and agreed upon record of solar activity is important for a space-faring 34 

World increasingly dependent on an understanding of and on reliable forecasting of the 35 

activity on many time scales. Several workshops have been held by the solar physics 36 

community over the past several years [Clette et al., 2014, 2016] with the goal of 37 

reconciling the various sunspot series and producing a vetted and agreed upon series that 38 

can form the bedrock for studies of solar activity throughout the solar system. But this 39 

goal has not been achieved and the field has fragmented into several competing, 40 

incompatible series. As Jack Harvey (http://www.leif.org/research/SSN/Harvey.pdf) 41 
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pointedly commented at the third Sunspot Number Workshop in Tucson in 2013 “It’s 42 

ugly in there!” 43 

 44 

The present article discusses examples of such ugliness as indicators of ‘the state of the 45 

art’ which are providing a disservice to users and are not helpful for their research. 46 

Research into understanding long-term solar activity is important because the ground-47 

based solar observations over centuries have yielded results that are not fully understood. 48 

In addition, the long-term trends are important for prediction of solar activity and solar-49 

terrestrial relations. Hopefully the situation will improve in the future because progress in 50 

a field is based upon the extent to which common goals can be shared among researchers 51 

who can agree on methodologies used and build on each others work. Without such 52 

direction, fields become fragmented and research can wither on the vine, as seems to be 53 

happening currently. 54 

 55 

2. On Proportionality 56 
 57 

In their Section 6, Lockwood et al. [2016b, see also 2016a] state “We find that 58 

proportionality of annual means of the results of different sunspot observers is generally 59 

invalid and that assuming it causes considerable errors in the long-term.” This remarkable 60 

statement is simply not true as plotting the annual means of one observer against the 61 

annual means of another clearly demonstrates. We show below many examples of such 62 

direct proportionality, underscoring that this is not the result of mere assumptions, but 63 

can be directly derived from the data themselves; more examples can be found in the 64 

spreadsheet data documentation for the Sunspot Group Number reconstruction 65 

[Svalgaard & Schatten, 2016; http://www.leif.org/research/gn-data.htm]. Simple direct 66 

proportionality accounts for 98-99% of the variation, so is not an assumption, but an 67 

observational fact. We concentrate first on the interval ~1870-1905 where the progressive 68 

divergence between the Hoyt & Schatten [1998] Group Sunspot Number and the 69 

Svalgaard & Schatten [2016] Sunspot Group Number becomes manifest. 70 

 71 

We start with the all-important observations by the Zürich observers Johann Rudolf Wolf 72 

and Alfred Wolfer who laid the foundations of the sunspot number series, by their own 73 

observations supplemented by data from an extensive world-wide network of secondary 74 

observers and by research into historical records of centuries past; making the sunspot 75 

record the longest running scientific experiment reaching back to the invention of the 76 

telescope. We owe to all of them to continue what they began, so here is first, Figure 1, 77 

the comparison of Wolf to match Wolfer. The Figures 1 to 10, all have the same format. 78 

The left panel shows the regression of the annual group counts by an observer versus the 79 

count by Wolfer. Regression lines are fitted both with and without an offset. Usually the 80 

two lines are indistinguishable, going through the origin, because the offset is so small. 81 

The right panel plots the counts by the observer (blue) and by Wolfer (pink), and the 82 

observer’s count scaled with the slope of the regression line (orange). 83 

 84 
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 85 

Figure 1. Linear fit of Wolf’s annual group count (with small telescopes; aperture ~40 86 
mm) to match Wolfer’s (with the standard telescope; aperture 82 mm). The offset is 87 
insignificantly different from zero, showing that the counts are simply proportional on 88 
time scales of a year. The two regression lines with or without an offset are 89 
indistinguishable. Note that this is not an assumption, but an observational fact. The 90 
right-hand panel shows how well we can reproduce Wolfer’s count from Wolf’s by 91 
simple scaling by a constant factor, the slope of the regression line. The scaled Wolf 92 
counts are shown by the orange triangles. Applying the insignificant offset does not 93 
make any discernable difference. 94 

 95 

 96 

Figure 2. As Figure 1, but for the Italian observer Tacchini. Again, simple 97 
proportionality is an observational fact. 98 

 99 

Pietro Tacchini was an important observer, covering the critical interval 1871-1900 with 100 

7584 daily observations (some made by assistants G. Ferrari and G. de Lisa) obtained 101 

with a superb 24-cm Merz refractor (http://www.privatsternwarte.net/250erMerz_HP.jpg). 102 

His counts are close to Wolfer’s, guarding against any sizable drift over the time interval 103 

of most interest. Wolfer’s k-factor (as published by Wolf) decreased slightly as Wolfer 104 

became more experienced, so we would expect a small (but insignificant) increase with 105 

time of his group count relative to other observers, but as Figures 1 to 10 show, this is not 106 

noticeable so is, indeed, insignificant. 107 

 108 
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 109 

Figure 3. As Figure 1, but for the American observer Rev. Quimby. Again, simple 110 
proportionality is an observational fact. 111 

 112 

 113 

Figure 4. As Figure 1, but for the Italian observer at Montcalieri. Again, simple 114 
proportionality is an observational fact. 115 

 116 

 117 
 118 

Figure 5. As Figure 1, but for the Hungarian observer Miklós Konkoly-Thege. Again, 119 
simple proportionality is an observational fact. 120 

 121 
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 123 

Figure 6. As Figure 1, but for the German observer Gustav Spörer. Again, simple 124 
proportionality is an observational fact, in spite of the slightly larger scatter. 125 

 126 

 127 
 128 

Figure 7. As Figure 1, but for the Spanish observer Merino. Again, simple 129 
proportionality is an observational fact. 130 

 131 

 132 
 133 

Figure 8. As Figure 1, but for the Italian observer Ricco. Again, simple proportionality 134 
is an observational fact. 135 

 136 
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 137 
 138 

Figure 9. As Figure 1, but for the German observer Winkler. Again, simple 139 
proportionality is an observational fact, in spite of the slightly larger scatter. 140 

 141 

 142 
 143 

Figure 10. As Figure 1, but for the observer Sykora. Again, simple proportionality is an 144 
observational fact, not an assumption. 145 

 146 

Having shown that linear, proportional scaling works, we can now simply average the 147 

reconstructed, scaled, annual means for 1875-1905 (when there are at least four observers 148 

each year) for the 11 observers for which we have just demonstrated simple, direct 149 

proportionality between their counts, and plot the result, Figure 11. The analysis is 150 

straightforward and statistically sound if we assume that the number of groups emerging 151 

in a year (and hence the daily average during the year) is a measure of integrated solar 152 

activity for that year. This is the only assumption we make, and can even be taken as a 153 

definition of solar activity for that year when discussing the long-term variation. The rest 154 

is derived from the observational data themselves with little freedom to allow different 155 

interpretations. As Hoyt et al. [1994] point out “if more than 5% of the days in any one 156 

year are randomly observed throughout the year, a reasonable value for the yearly mean 157 

can be found”, so selection of observers is made with this in mind.  158 

 159 
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 161 

Figure 11. The average Wolfer Backbone segment for 1875-1905 constructed by 162 
averaging the scaled annual counts from the 11 high-quality observers we are 163 
considering. The counts by individual observers are shown as thin gray lines. The 164 
average is shown by a heavy black curve with yellow dots. The standard deviation is 165 
plotted in blue at the bottom of the graph and is on average 9% of the annual count. The 166 
published values from Svalgaard & Schatten [2016] are marked by red dots. The 167 
agreement is excellent (R2 = 0.999; see insert) as we would expect from the sound and 168 
straightforward analysis. 169 

 170 

There are a few cases where the relationship between annual counts for two observers is 171 

not quite linear. We then also fitted a power-law to the data if that significantly improved 172 

the fit, otherwise the observer was omitted. Figure 12 shows the result for the observer 173 

Shea compared to Schwabe for 1847-1864: 174 

 175 

 176 
 177 

Figure 12. Observer Shea scaled to Schwabe, with a linear fit and with a power-law. 178 
The latter improving the fit from R2 = 0.92 to R2 = 0.97. We can use both fits for the 179 
reconstruction, although the results are not very different. The thin black line is from 180 
the linear fit through the origin and the dashed line is for the power-law. The full 181 
Schwabe Backbone from Svalgaard & Schatten [2016] is shown for reference (brown 182 
dots). 183 

 184 
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4. Non-Linear Backbones with No Daisy-Chaining 185 
 186 

We can also construct the backbones using a linear fit with an offset, a power-law, or a 187 

2nd-order fit, taking whichever has the best fit to the primary observer. Figure 13 shows 188 

this procedure applied to new Schwabe and Wolfer backbones. 189 

 190 

 191 
 192 

Figure 13. First, construct a new Wolfer Backbone (red curve) using linear fits with 193 
offsets, power-laws, or 2nd-order polynomial fits, taking whichever has the best fit to the 194 
primary observer (average of Wolfer and Tacchini, scaled to Wolfer). Then, construct a 195 
new Schwabe Backbone (purple, lower curve) the same way (primary observer 196 
Schwabe). The two backbones overlap 1841-1893 (green box) and the scale factor is 197 
1.56±0.03 – (0.09±0.10) which, when applied, yields the (upper) blue curve, matching 198 
the red curve with R2 = 0.985. For comparison, the published Svalgaard & Schatten 199 
[2016] Backbone is shown by the open grey squares. 200 

 201 

Lockwood et al. [2016b] claim “that the factor of 1.48 used by Svalgaard & Schatten 202 

(2016) in constructing RBB [the Backbone Series scaling Schwabe to Wolfer] is 20% too 203 

large and should be nearer 1.2”. As Figure 13 shows, the new scale factor (without 204 

invoking proportionality) is not statistically different (at the 95% level) from the 205 

1.48±0.03 found by Svalgaard & Schatten [2016].  206 
 207 
Lockwood et al. [2016b] further claim that “our analysis of the join between the Schwabe 208 

and Wolfer data sunspot series shows that the uncertainties in daisy-chaining calibrations 209 

are large and demonstrates how much the answer depends on which data are used to 210 

make such a join.” We later in the text (Section 11) demonstrate that the two backbones 211 

are not built with daisy-chaining, but at this point we simply construct a single join-less 212 

backbone based on Gustav Spörer’s observations 1861-1893 spanning the transition from 213 

Schwabe to Wolfer without assuming proportionality and also without using any daisy-214 

chaining. That the result depends on which data is used is trivially true, but selecting 215 

high-quality observers with long records makes the backbones robust. The new Spörer 216 

backbone uses group counts from Spörer (1861-1893), Wolfer (1876-1893), Schwabe 217 

(1841-1867, derived by Arlt et al.), Weber (1860-1883), Schmidt (1841-1883), Wolf 218 

(1861-1893, small telescope), Wolf (1849-1867, large telescope), Leppig (1867, 1881), 219 

Tacchini (1871-1900), Bernaerts (1874-1878), Winkler (1882-1900), and Konkoly (1885-220 

1900), all normalized to Spörer. 221 
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 222 

 223 
 224 

Figure 14. Use Spörer’s observations (pink squares) as primary observations, then fit to 225 
those the group counts from observers who overlap directly with Spörer selecting the 226 
functional form of the correlation as either linear with an offset, a power-law, or a 2nd 227 
degree polynomial depending on which one provides the best fit. Some scaled data from 228 
some observers (e.g. Schwabe, blue diamonds; Wolfer, red triangles) are plotted with 229 
distinguishing symbols; the remaining ten observers are shown with thin black curves 230 
and the average backbone with large yellow dots. The number, N, of observers in each 231 
year is shown by the dashed line. The standard deviation is shown by the red symbols at 232 
the bottom of the Figure. 233 

 234 
As Figure 14 demonstrates, the join-less backbone does not differ from the Wolfer series 235 

(red triangles). Formally, the ratio between the Wolfer backbone published by Svalgaard 236 

& Schatten [2016] and the new join-less Spörer backbone, shown in Figure 14, is 237 

(1.43±0.07)+(0.04±0.21) which within the errors is identical to the ratio (1.42±0.01)-238 

(0.16±0.04) between the observers Wolfer and Spörer. So, the unfounded concern of 239 

Lockwood et al. [2016b] on this point can now be put to rest. 240 

 241 

It should be clear that there is very little difference between the resulting annual means 242 

derived from linear fits through the origin and the non-linear fits, simply because the 243 

relationships between observers’ counts are so close to simple proportionality in the first 244 

place. It is, perhaps, telling that in their invalid criticism of Svalgaard & Schatten [2016], 245 

Lockwood et al. [2016a] did not even examine a single case of comparison of two actual 246 

observers. 247 

 248 

5. Group Distributions 249 
 250 

Usoskin et al. [2016] marvel at the unlikelihood that “Wolf was missing 40 % of all 251 

groups that would have been observed by Wolfer irrespectively of the activity level”. We 252 

can construct a frequency diagram of daily group counts for simultaneous observations 253 

by Wolf and Wolfer. For each bin of group counts (0, 1, 2,…, 13) observed by Wolf, the 254 

number of groups observed by Wolfer on the same days defines a series of bins (0, 1, 255 

2,…, 15). The number of observations by Wolfer is then determined for each bin, and a 256 

contour plot of the resulting distribution is shown in Figure 15. 257 
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 258 

Figure 15. Frequency of daily group counts for simultaneous observations by Wolf and 259 
Wolfer. For each bin of group counts (0, 1, 2,…, 13) observed by Wolf, the number of 260 
groups observed by Wolfer on the same days defines a series of bins (0, 1, 2,…, 15). 261 
The number of observations by Wolfer is then determined for each bin, and a contour 262 
plot of the resulting distribution is shown in this Figure. Due to the extreme 263 
preponderance of the lower group counts (more than 80% of the counts are found in 264 
Wolf bins 0 through 3) we use a logarithmic scale (the insert shows a 3D plot of the 265 
counts with its sharp peak, 948, at (0, 0)). The white dots on the white line indicate the 266 
expected ‘ridge’ of the distributions corresponding to the value 1.65±0.05 found by 267 
Svalgaard & Schatten [2016] to be the ratio between the annual groups counts by 268 
Wolfer and Wolf. Gray Diamonds on the grey curve show the Usoskin et al. [2016] 269 
‘correction matrix’ values (see later text). 270 

 271 

There does not seem to be anything unlikely about the 40% mentioned by Usoskin et al. 272 

[2016]. The frequency plot is very consistent with their observation. 273 

 274 

There are, of course, cases in the early record where there are so few observations made 275 

by some observers that the scatter overwhelms the correlation, linear or otherwise. For 276 

these observers we have to resort to computing the overall average of all the observations 277 

made by the observer, and to compare overall averages covering the years of overlap, 278 
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much as Hoyt & Schatten [1998] did, exploiting the high autocorrelation (yearly 279 

correlation coefficient R > 0.8) in the sunspot record. 280 

 281 

6. RGO Drift of Group Numbers 282 
 283 

As to requiring “unlikely drifts in the average of the calibration k-factors for historic 284 

observers” [Lockwood et al., 2016b] the only requirement is that the group counts 285 

reported by the Royal Greenwich Observatory [RGO] were drifting in the early part of 286 

the RGO-record compared with the many experienced observers whose records we have 287 

used to construct the backbones. Figure 16 shows the progressive drift in evidence before 288 

about 1890.  289 

 290 

 291 
 292 

Figure 16. Comparing the RGO Group Count with the Wolfer Segment Backbone, after 293 
scaling the counts to agree (R2 = 0.993) for 1890-1905. 294 

 295 

Determining the areas of sunspots is a straightforward counting of dark ‘pixels’ on the 296 

RGO photographs using a ruled glass plate, while apportioning spots to groups can be 297 

very subjective and involves additional difficulties from ‘learning curves’ and personnel 298 

changes. Contrary to popular and often stated belief, counting groups is harder, not easier, 299 

than counting spots3. We can quantify the drift [or change] in the RGO group counts by 300 

comparing the number of groups over, say, each month, with the [daily averaged] areas 301 

measured over the same month for the early record before 1890, for the interim record up 302 

to 1907, and for the later record. The relationships are weakly non-linear, Figure 17, but 303 

it is clear that there is a systematic shift [“the drift”] in the dependence from the earliest 304 

observations and forward in time.  305 

 306 

                                                 
3 Schwabe: “Die schwierigste Aufgabe bei unsern Beobachtungen bleibt die Zählung der Gruppen”  
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 307 
 308 

 309 

Figure 17. The number of groups reported by RGO for [left upper panel] the three 310 
intervals 1874-1889, 1890-1906, and 1907-1921. Second order polynomial fits show 311 
the progressive increases of the count for equal disk-averaged sunspot areas [observed, 312 
foreshortened; Balmaceda et al., 2009]. On the right upper panel we have included the 313 
whole interval from 1907 until the end of the RGO data in 1976 shown as small cyan 314 
crosses. The difference in level between all that later data and the early data [blue 315 
diamonds] is manifest. The lower panel shows the RGO group count as a function of 316 
the linearized sunspot areas for the period of the drift [1874-1889, blue diamonds] and 317 
since 1907 [red dots] when the drift had abated. 318 

 319 

Figure 18 shows over a longer time span the drift in the ratio between counts by RGO 320 

and selected high-quality observers with long records. There may be a hint of a slight 321 

sunspot cycle variation of the ratio, but both the upper and the lower envelopes show the 322 

same drift, strongly suggesting that the drift is not due to a solar cycle variation of the 323 

ratio. The ‘drift’ is thus not “unlikely”, but rather an observational fact, likely due to 324 

human factors (learning curve; changing definition of what a ‘group’ was) instead of 325 

deficiencies in photographs or ‘pixel-counting’. Vaquero independently reached the same 326 

conclusion as reported at the second Sunspot Number Workshop in 2012: 327 

http://www.leif.org/research/SSN/Vaquero2.pdf. 328 

http://www.leif.org/research/SSN/Vaquero2.pdf
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 329 

 330 
 331 

 332 
Figure 18. Upper 333 
panel: Ratios between 334 
annual average group 335 
counts by RGO and 336 
selected high-quality, 337 
long-serving observers. 338 
The RGO group count 339 
itself is shown by the 340 
lower (red) curve. 341 
Lower Panel: From 342 
Vaquero [2012]. 343 

 344 

7. Reconstruction of Open Solar Flux 345 

Lockwood et al. [2016b] notes that “The OSF reconstruction from geomagnetic activity 346 

data is also completely independent of the sunspot data. There is one solar cycle for 347 

which this statement needs some clarification. Lockwood et al. (2013a) used the early 348 

Helsinki geomagnetic data to extend the reconstructions back to 1845, and Svalgaard 349 

(2014) used sunspot numbers to identify a problem with the calibration of the Helsinki 350 

data in the years 1866–1874.5 (much of solar cycle 13).” 351 

 352 

The latter part of this claim is patently incorrect, as the problem was identified by 353 

Svalgaard comparing the purely geomagnetic indices IDV [Svalgaard & Cliver, 2005, 354 

2010] and IHV [Svalgaard & Cliver, 2007] calculated separately from the horizontal 355 

component (H) and from the declination (D) for the Helsinki Observatory (Figure 19 356 

from Svalgaard [2014]), and collegially communicated to Lockwood et al., prompting 357 

them to reconsider and hastily revise yet another otherwise embarrassing publication. 358 



 14 

 359 

Figure 19. The ratio between monthly values of the IHV-index calculated using the 360 
declination, IHV(D), and of IHV calculated using the horizontal force, IHV(H) for 361 
Helsinki. The ovals show the effect of the scale value for H being too low in the interval 362 
1866-1874.5 and of the scale value for D being too low for the interval 1885.8-1887.5 363 
(From Svalgaard, 2014). 364 

Lockwood et al. continued: “but it is important to stress that the correction of the Helsinki 365 

data for solar cycle 11 made by Lockwood et al. [2014b], and subsequently used by 366 

Lockwood et al. [2014a], was based entirely on magnetometer data and did not use 367 

sunspot numbers, thereby maintaining the independence of the two data sets.” This is 368 

disingenuous because the need for correction was not discovered by Lockwood et al. 369 

[2014] but by Svalgaard [2014] who did NOT use sunspot numbers to identify and to 370 

quantify the discrepancy as clearly laid out in the Svalgaard [2014] article. On the other 371 

hand, the Sunspot Group Number does indicate precisely the same discrepancy, see 372 

Figure 20, thus actually validating the Group Sunspot Number for the years in question, 373 

contrary to the vacuous claim by Lockwood et al. that “The geomagnetic OSF 374 

reconstruction provides a better test of sunspot numbers than the quiet-day geomagnetic 375 

variation because the uncertainties in the long-term drift in the relationship between the 376 

two are understood” as we show in the following section. 377 

 378 

Figure 20. Yearly average ranges for declination, (D in 0.1 arc minute units), blue 379 
curve, and for horizontal force (H in nT units), pink curve. Because of the strong 380 
seasonal variation only years with no more than a third of the data missing are plotted. 381 
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The green curve (with “+” symbols) shows the number of active regions (sunspot 382 
groups) on the disk scaled to match the pink curve (H). As expected, the match is 383 
excellent, except for the interval 1866–1874 (in box), where the H range would have to 384 
be multiplied by 1.32 for a match as shown with purple open circles. (From Svalgaard, 385 
2014). 386 

 387 

8. Agreement with Terrestrial Proxies 388 
 389 

The extensive analysis by Svalgaard [2016] of more than 40 million hourly values from 390 

129 observatories covering the 176 years, 1840-2015, shows that there is a very tight and 391 

stable relationship between the annual values of the daily variation of the geomagnetic 392 

field and the Sunspot Group Number, Figure 21.  393 

 394 

 395 

Figure 21. The Sunspot Group Number, GN (blue curve), scaled to match the Diurnal 396 
Range (red curve) using the regression equation GN* = 2.184 GN + 32.667, R2 = 0.96. 397 
The ratio (green symbols) between the two measures is unity with a Standard Deviation 398 
of 0.03 (box). (After Svalgaard, 2016). 399 

The OSF reconstruction is based on the geomagnetic effect of the solar wind magnetic 400 

field which indirectly does depend on the solar magnetic field and thus the sunspot 401 

number as discovered by Svalgaard at al. [2003]. The main sources of the equatorial 402 

components of the Sun’s large-scale magnetic field are large active regions. If these 403 

emerge at random longitudes, their net equatorial dipole moment will scale as the square 404 

root of their number. Thus their contribution to the average Heliospheric Magnetic Field 405 

[HMF] strength will tend to increase as the square root of the sunspot number (e.g. Wang 406 

and Sheeley [2003]; Wang et al. [2005]). This is indeed what is observed [Svalgaard et al., 407 

2003], Figure 22. We would not expect a very high correlation between HMF in the solar 408 

wind [being a point measurement] and the disk-averaged solar magnetic field, but we 409 

would expect – as observed – an approximate agreement, especially in the overall levels, 410 

see Figures 22-24. 411 

 412 
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 413 
 414 

 415 

Figure 23. The Heliospheric Magnetic Field strength, B, observed (black with plus-416 
symbols), derived from the IDV index (red) and the sunspot number (blue, version 1). 417 
There is considerable agreement (Owens et al. [2016]) about the fidelity of the IDV-418 
derived reconstruction pioneered by Svalgaard & Cliver [2005]. 419 

 420 

Figure 24. The magnetic field in the solar wind (the Heliosphere) ultimately arises from 421 
the magnetic field on the solar surface filtered through the corona, and one would 422 
expect an approximate relationship between the network field (EUV and range of the 423 
daily geomagnetic variation rY) and the Heliospheric field (B), as observed. 424 

For both parameters (B and rY) we see that there is a constant ‘floor’ upon which the 425 

magnetic flux ‘rides’. We see no good reason and have no good evidence that the same 426 

floor should not be present at all times, even during a Grand Minimum [see also Schrijver 427 

et al., 2011]. 428 

Figure 22. Heliospheric Magnetic 

Field magnitude (yearly averages) as 

a function of the square root of the 

sunspot number (the old version 1 

differing mainly from the modern 

version 2 by a scale factor change). 

The observed magnitude B is shown 

as open pink squares. B inferred from 

the geomagnetic IDV-index is shown 

as blue diamonds. The data are 

consistent with a variation riding on 

top of a solar-activity-independent 

‘floor’ of ≈4 nT.  
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 429 

On the other hand, Lockwood et al. [2016b] are correct that the HMF [the base for their 430 

Open Solar Flux, OSF] is a useful indicator of the general level of solar magnetism, 431 

validating the conclusion that there is no significant trend in solar activity since at least 432 

the 1840s. It is pleasing and underscores the self-correcting nature of science to see that 433 

Lockwood now after more than a decade of struggle has finally approached and nearly 434 

matched the findings of Svalgaard & Cliver of so long ago [Svalgaard & Cliver, 2005, 435 

2007; Owens et al., 2016], so congratulations are in order for that achievement. This is 436 

real progress. What is needed now is to build on that secure foundation laid by Svalgaard 437 

et al. [2003]. 438 

 439 

9. The ‘Correction Matrix’ 440 
 441 

Lockwood et al. [2016b] also laments “that the practice of assuming proportionality, and 442 

sometimes even linearity, between data series (and hence using ratios of sunspot 443 

numbers) is also a cause of serious error, Usoskin et al. [2016].” As we have just shown, 444 

this not the case, as proportionality on annual time scales is not an assumption, but an 445 

observational fact. Further in Usoskin et al. [2016] they stress that “a proper comparison 446 

of the two observers is crucially important”. We agree completely, but then Usoskin et al. 447 

[2016] go on to mar their paper by tendentious verbiage, such as “for a day with 10 448 

groups reported by Wolf, the Svalgaard & Schatten, [2016] scaling would imply 16-17 449 

groups reported by Wolfer. But Wolfer never reported more than 13 groups for [the total 450 

of four!] days with GWolf = 10. It is therefore clear that the results […] contradict the 451 

data”. Ignoring, that for three days with GWolf = 7, Wolfer reported 14 groups, much more 452 

than the proportional scaling would imply.  453 

 454 

Basing sweeping statements (“The scaling by Svalgaard & Schatten [2016] introduces 455 

very large errors at high levels of solar activity, causing a moderate [sic] level to appear 456 

high. This is the primary reason of high solar cycles claimed by Svalgaard & Schatten 457 

[2016] and Clette et al. [2014] in the eighteenth and nineteenth centuries”) on less than a 458 

handful of cases is bad science that should have been caught during the reviewing process 459 

of the Usoskin et al. article. 460 

 461 

Usoskin et al. [2016] advocate that “corrections must be applied to daily values […] and 462 

only after that, can the corrected values be averaged to monthly and yearly resolution”. 463 

We address this issue now by first computing the ‘correction matrix’ for Wolf-to-Wolfer, 464 

see Table 1 and Figure 25: 465 

 466 

Wolf Wolfer N Wolf Wolfer N 
0 0.42 1350 6 7.94 127 
1 1.92 922 7 9.64 53 
2 3.60 607 8 9.88 16 
3 4.99 513 9 10.83 6 
4 6.05 391 10 11.75 4 
5 7.05 277 11.8 13.60 5 
6 7.94 127 11-13   
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 467 
Table 1. Number of groups reported by Wolfer (columns 2 and 5) for each echelon of 468 
groups reported by Wolf (columns 1 and 4) for the common years 1876-1893. The 469 
number N of simultaneous observations [on same days] is given in columns 3 and 6. 470 
This is [almost] identical to the Wolf-to-Wolfer ‘correction matrix’ of Usoskin et al. 471 

[2016]. For ex.: they have GWolfer = 7.12 for GWolf = 5 versus our 7.05. The 472 

reason for the small (and insignificant) discrepancies is not clear, but may be 473 

related to slightly different quality-assurance procedures in the digitization and 474 

selection of the original data. The bins 11-13 have been combined into one bin. 475 

 476 

 477 
 478 

Figure 25. The average group counts for Wolfer as a function of the group count by Wolf 479 
(pink dots) and their 2nd degree fit (black curve). The blue curve [with open squares] 480 
shows the number of observations in each bin. The power-law through the origin (red 481 
dashed curve) is the ‘correction matrix’ determined by Usoskin et al. [2016]. 482 

 483 

We then follow Usoskin et al. [2016]’s admonition that “corrections must be applied to 484 

daily values and that only after that, can the corrected values be averaged to monthly and 485 

yearly resolution”. Figure 26 shows the result of correcting daily values for the six 486 

months centered on the solar cycle maximum in 1884.0. We note that contrary to the 487 

baseless assertion by Usoskin et al. [2016] that “the scaling by Svalgaard & Schatten 488 

[2016] introduces very large errors at high levels of solar activity, causing a moderate 489 

level to appear high”, it is the Usoskin et al. [2016] scaling that causes high levels of 490 

solar activity to appear artificially lower than observations indicate. This is also borne out 491 

by the data when the daily-corrected counts are averaged to monthly resolution, Figure 27. 492 

The Usoskin et al. [2016] scaling is too high for low activity (boxes (a)), and too low for 493 

high activity (boxes (c)) and only by mathematical necessity correct for medium activity 494 

(boxes (b)). 495 

 496 
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 497 
 498 

Figure 26. The daily group counts for Wolfer (pink curve with squares; six-month 499 
mean value = 7.70±0.25), for Wolf (black curve with diamonds, mean 4.52±0.14), and 500 
‘corrected’ using the Usoskin et al. [2016] method (brown curve with triangles; too 501 
small with mean 6.50±0.17). The blue curve with dots (mean 7.46±0.24) shows the 502 
harmonized values using the Svalgaard & Schatten [2016] straightforward method, 503 
clearly matching the observational data within the errors. Heavy curves are 27-day 504 
running means. A few, sparse outlying points (in ovals) unduly influence the running 505 
means. 506 

 507 

 508 
 509 

Figure 27. The monthly-averaged group counts for Wolfer (upper, pink), for Wolf 510 
(lower, black) and computed from the daily values ‘corrected’ following Usoskin et al. 511 
[2016] (UEA, brown). For low activity, the UEA values are too high (see boxes (a)). 512 
For high activity, the UEA values are too low (boxes (c)). 513 

 514 

For people who have difficulty seeing this, we offer Figure 28 that shows for each month 515 

of simultaneous observations by Wolf and Wolfer (covering the years 1876-1893) the 516 

observed average Wolfer group counts versus the corresponding average Wolf counts 517 

(blue diamonds). A simple linear fit through the origin (blue line) is a good representation 518 

of the relationship. The pink open squares and the 2nd-order fit to those data points show 519 

the monthly values computed using the Usoskin et al. [2016] ‘correction factors’ applied 520 

to daily values. It is clear that those values result in reconstructed Wolfer counts that are 521 

too small for activity higher than 3 groups (by Wolf’s count) and too large for activity 522 

lower than 3 groups, contrary to the claims by Usoskin et al. [2016] and by Lockwood et 523 

al. [2016b] that the Svalgaard & Schatten’s [2016] reconstructions (that so closely match 524 
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Wolfer’s counts) are “seriously in error” and that the too low Usoskin et al. [2016] values 525 

are correct and preferable. 526 

 527 

 528 
 529 

Figure 28. The monthly-averaged group counts for Wolfer compared to the 530 
corresponding counts by Wolf (blue diamonds) for the same months. The pink open 531 
squares (and their 2nd-order fit) show the values computed by averaging the daily counts 532 
by Wolf after applying the Usoskin et al. [2016] ‘correction’ method. They are clearly 533 
not a good fit to the actual data, thus invalidating the rationale for using them. 534 

 535 

Since the Svalgaard & Schatten [2016] reconstruction is based on annual values it is 536 

critical to compare annual values. We do this in Figure 29, from which it is clear that the 537 

persistent claim that the Svalgaard & Schatten [2016] Backbone Reconstructions are 538 

“seriously in error for high solar activity” and that this is the “primary reason of high 539 

solar cycles claimed by Svalgaard & Schatten [2016] and Clette et al. [2014] in the 540 

eighteenth and nineteenth centuries” has no basis in reality and is without merit.  541 

 542 

But why is it that the eminently reasonable procedure of constructing the monthly and 543 

annual values by averaging corrected daily values seems to fail? During minimum there 544 

really are no spots and groups for months on end, regardless of telescope used and the 545 

observer acuity, so for days with no groups reported, we should not ‘correct’ those zeros 546 

to 0.42 groups [as per Table 1]. For moderate activity there is no problem, but for the 547 

(rarer) high activity there must be enough differences in the distributions to make a 548 

difference in the averages or is it simply just mathematical compensation for the values 549 

that are too high for low activity. At any rate, the Backbone Reconstructions match the 550 

observations which must remain the real arbiter of success. 551 

 552 
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 553 

Figure 29. The annual group counts for Wolf (dark blue diamonds) compared to the 554 
corresponding counts by Wolfer (pink squares) for the same years. The light blue 555 
triangles show the Wolf values scaled by Svalgaard & Schatten [2016]. The gray dots 556 
on the black curve show the values computed by averaging the daily counts by Wolf 557 
after applying the Usoskin et al. [2016] ‘correction’ method. They are clearly not the 558 
“optimum” (used 11 times by Lockwood et al. [2016b]) fit to the actual data. In 559 
particular, they are too small for high solar activity. 560 

 561 

The goal of normalizing or harmonizing an observer to another observer is to reduce the 562 

series by one observer to a series that is as close as possible to the other observer for the 563 

time interval of overlap. This is the principle we have followed when applying the 564 

observed proportional scaling factors. As almost all depictions of solar activity over time 565 

show annual averages, it is important to get them right. Usoskin et al. [2016] describe 566 

how their use of weighted averages is not optimal as the number of observations may 567 

vary strongly from month to month. In Svalgaard & Schatten [2016] we first compute 568 

monthly values from directly observed daily values, and only then compute the annual 569 

simple average from the available (unweighted) monthly values in order to avoid the 570 

unwanted distortions caused by an uneven distribution of observations. 571 

 572 

10. On Smoothing 573 
 574 

The Usoskin et al. [2016] article abounds with misrepresentations, perhaps designed to 575 

sow general FUD ( https://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt ) about the 576 

revisions of the sunspot series. E.g. it is claimed that Svalgaard & Schatten [2016] used 577 

“heavily smoothed data”. Quantitative correlations and significance tests between heavily 578 

smoothed data are, indeed, suspect, but presumably Usoskin et al. should know that 579 

smoothing is a process that replaces each point in a series of signals with a suitable 580 

average of a number of adjacent points, which is not what computing a yearly average 581 

does. A measure of solar activity in a given year can reasonably be defined as the total 582 

number of groups (or other solar phenomena) observed during that year (taking into 583 

account the number of days with observations) and this measure was, indeed, what 584 

Schwabe [1844] used when discovering the sunspot cycle. Since tropical years have 585 

constant lengths (365.24217 days), the simple daily average (= total / number of days) 586 

over the year is then an equivalent measure of the yearly total, and does not constitute a 587 

“heavily smoothed” data point.  588 

https://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt
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 589 

11. On Daisy-Chaining 590 

Similarly, great importance is assigned to the deleterious effect of “daisy-chaining” as a 591 

means to discredit the Backbone Method by Svalgaard & Schatten [2016]. To wit: 592 

Usoskin et al. [2016] utter the sacred mantra “daisy-chaining” 11 times, while Lockwood 593 

et al. [2016b] use it a whopping 29 times. Lockwood et al. [2016b] usefully describe 594 

daisy-chaining as follows: “if proportionality (k-factors) is assumed and intercalibration 595 

of observer numbers i and (i+1) in the data composite yields ki/ki+1 = f i
i+1, then daisy-596 

chaining means that the first (i = 1) and last (i = n) observers’ k-factors are related by k1 = 597 

kn Π
n
i=1(f i

i+1), hence daisy-chaining means that all sunspot and sunspot group numbers, 598 

relative to modern values, are influenced by all the intercalibrations between data subsets 599 

at subsequent times”, as shown in panel (a) of Figure 30. We note that n has to be at least 600 

3 for true daisy-chaining to occur as there must be at least 1 intermediate observer. 601 

 602 

But this is not how the backbones are constructed. All observers in a given backbone are 603 

only compared to exactly one other observer [the same primary observer], so there is no 604 

‘chain’ from a first to a last observer through an number of intermediate observers and 605 

therefore no accumulation of errors along the [non-existent] chain. Figure 30 illustrates 606 

when and how daisy-chaining occurs (see caption for detail).  607 

 608 

 609 

Figure 30. Daisy-chaining is a technique for harmonizing a series (usually over time) of 610 
observers by placing separated observations on the same scale. Panel (a) shows how to 611 
put observers (1) and (5) on the same scale (that of observer (1)) using a chain of 612 
intermediate observers (2), (3), and (4). The conversion factors (which could be 613 
functions rather than simple constants) f (1,2),…, f (4,5) transfer the scale from one 614 
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observer to the next through their product which also accumulates the uncertainty along 615 
the chain. Panel (b) shows how to construct a backbone by comparing each of the 616 
observers (2) through (7) to the ‘spine’ formed by the primary observer (1). Since there 617 
are no accumulating multiplications involved, there is no accumulation of errors and the 618 
entire composite backbone (shown by the blue bar) is free of the detrimental effect of 619 
daisy-chaining. Panel (c) shows how a composite (daisy-chain free) backbone can be 620 
constructed by linking surrounding and overlapping backbones (2) and (3) directly to a 621 
‘base’ backbone (1) via the two independent transfer factors f (1,2) and f (1,3) without 622 
accumulation of uncertainty. ‘Base’ backbones defining the overall scale of the 623 
composites are marked as green boxes. 624 

So the composite Wolfer Backbone extending more than one hundred years from 1841 625 

through 1945 with Wolfer’s own observations (with unchanged telescope) constituting a 626 

firm “spine” from 1876 through 1928 has no daisy-chaining whatsoever. Lockwood et al. 627 

[2016b] incorrectly claim that “until recently, all composites used “daisy-chaining” 628 

whereby the calibration is passed from the data from one observer to that from the 629 

previous or next observer”. This seems to be based on ignorance about how the 630 

composites were constructed e.g. the relative sunspot numbers of Wolf were determined 631 

by comparing only with the Zürich observers and not by passing the calibration along a 632 

long chain of secondary observers. Similarly, the Hoyt & Schatten [1998] Group Sunspot 633 

Number after 1883 [Cliver & Ling, 2016] was based on direct comparison with the RGO 634 

observations without any daisy-chaining, and, as we have just reminded the reader, the 635 

individual Backbones were constructed also with no daisy-chaining (their primary 636 

justification).  637 

 638 

Good examples of true daisy-chaining in action can be seen in Lockwood et al.’s [2014] 639 

use of several intermediate observers to bridge the gap between the geomagnetic 640 

observatories at Nurmijärvi and Eskdalemuir in the 20th century back to Helsinki in the 641 

19th and to propagate the correlation with the modern observed HMF back in time, and in 642 

Usoskin et al.’s [2016] use of intermediate observers (their ‘two-step’ calibration) 643 

between Staudach in the 18th century and RGO in the 20th. 644 

 645 

12. Comparison with H&S 646 
 647 

Cliver & Ling [2016] have tried to reproduce the determination of the k-values 648 

determined by Hoyt & Schatten [1998] for observers before 1883 and have failed because 649 

the procedure was not described in enough detail for a precise replication; in particular, it 650 

is not known which secondary observers were used in calculating the k-factors. On the 651 

other hand, Hoyt & Schatten [1998] in their construction of the Group Sunspot Number 652 

did not use daisy-chaining (i.e. secondary observers) for data after 1883 because they had 653 

the RGO group counts as a continuous (and at the time believed to be good) reference 654 

with which to make direct comparisons. For the years after about 1900 when the RGO 655 

drift seems to have stopped or, at least abated, the Hoyt & Schatten [1998] Group 656 

Sunspot Numbers agree extremely well with the Svalgaard & Schatten [2016] Group 657 

Numbers (Figure 31), and incidentally also with various Lockwood and Usoskin 658 

reconstructions (“RUEA is the same as RG after 1900”).  659 

 660 
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 661 

Figure 31. Annual averages of the Hoyt & Schatten Group Sunspot Number [GSN; 662 
often called RG] compared to the Svalgaard & Schatten [2016] Group Number [GN]. 663 
For the data since 1900 (light-blue dots) there is a constant proportionality factor of 664 
13.6 between the two series. For earlier years, the drift of the RGO counts combined 665 
with daisy-chaining the too-low values back in time lowers the factor to 8.88 (pink 666 
triangles). 667 

For the years 1840-1890 there is also a strong linear relationship, but with a smaller slope 668 

because the drift of RGO has been daisy-chained to all earlier years (Lockwood et al. 669 

[2016b]: “Because calibrations were daisy-chained by Hoyt & Schatten (1998), such an 670 

error would influence all earlier values of RG”, which indeed it did). Because Wolf’s data 671 

go back to the 1840s, Wolf’s counts form a firm ‘spine’, preventing further progressive 672 

lowering of the early data resulting from the RGO problem, as observers could be scaled 673 

directly to Wolf, thus obviating daisy-chaining. The factor to ‘upgrade’ the early part of 674 

the series to the ‘RGO-drift-free’ part is 13.6/8.88 = 1.53, consistent with Figure 13. 675 

Figure 32 shows the result of ‘undoing’ the damage caused by the RGO drift. Hoyt & 676 

Schatten did not discover the RGO drift because their k-factor for Wolf to Wolfer 677 

(inexplicably) was set as low as 1.021, i.e. Wolf and Wolfer were assumed to see 678 

essentially the same number of groups relative to RGO and to each other, in spite of Wolf 679 

himself using a factor of 1.5 (albeit for the relative sunspot number of which the group 680 

number makes up about half). It is possible that this was due to not noticing that Wolf 681 

changed his instrument to a smaller telescope when he moved to Zürich. 682 

 683 

 684 
 685 

Figure 32. Annual averages of the Hoyt & Schatten [H&S] Group Sunspot Number 686 
divided by 13.6 (red curve) after 1900 compared to the daisy-chain free part of 687 
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Svalgaard & Schatten [S&S, 2016] Group Number [GN](blue curve). For the years 688 
1800-1890, the H&S values were then scaled up by 13.6/8.88=1.53. This brings H&S 689 
into agreement with S&S, effectively undoing the damage caused by the single daisy-690 
chain step at the transition from the 19th to the 20th century. 691 

 692 

13. Error Propagation 693 
 694 

In addition, the ‘base’ for the Svalgaard & Schatten [2016] backbone reconstructions is 695 

the Wolfer Backbone directly linked to the overlapping Schwabe [1794-1883] and 696 

Koyama [1920-1996] Backbones, with no need for intermediate observers, and thus there 697 

is a daisy-chain free composite backbone covering the more than two hundred years from 698 

1794 to 1996. The backbone method was conceived to make this possible. As the Wolfer 699 

‘reference backbone’ is in the middle of that two-hundred year stretch, there is no 700 

accumulation of errors as we go back in time from the modern period. Any errors would 701 

rather propagate forward in time from Wolfer until today as well as backwards from 702 

Wolfer until the 18th century, thus minimizing total error-accumulation. Before 1800, the 703 

errors are hard to estimate, let alone the run of solar activity. Our best chance for tracing 704 

solar activity that far back and beyond may come from non-solar proxies, such as the 705 

cosmic ray record. 706 

 707 

14. The Cosmic Ray Record 708 

Cosmogenic radionuclides offer the possibility of obtaining an alternative and completely 709 

independent record of solar variability. However, the records are also influenced by 710 

processes independent of solar activity (e.g. by climate). Regardless of these uncertainties, 711 

the recent work by Muscheler et al. [2016] and Herbst et al. [2017] show very good 712 

agreement between the revised sunspot records and the 10Be records from Antarctica and 713 

the 14C-based activity reconstructions, see Figure 33, lending strong support for the 714 

revisions, at least after 1750. 715 

 716 
Figure 33. Comparison of the 14C based solar-modulation function with the revised 717 
sunspot (black) and (scaled) group sunspot (dashed-dark blue) numbers. All records are 718 
shown as running 11-year averages. The red (orange) curve shows the 14C (neutron 719 
monitor)-based results using the production calculations of Masarik and Beer (labeled 720 
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14CMB). The dashed-orange curves show the results based on Kovaltsov, Mishev, and 721 
Usoskin (labeled 14CKU, with the left y-axes numbers in brackets). The sunspot data 722 
have been rescaled to allow for a direct comparison to the Group Sunspot Number data. 723 
The old group sunspot record from Hoyt and Schatten is shown as the black dotted 724 
curve (From Muscheler et al. [2016]). 725 

 726 

Asvestari et al. [2017] attempt to assess the accuracy of reconstructions of historical solar 727 

activity by comparing model calculations of the OSF with the record of the cosmogenic 728 

radionuclide 44Ti measured in meteorites for which the date of fall is accurately known. 729 

The technique has promise although the earliest data are sparse, and as the authors note: 730 

“The exact level of solar activity after 1750 cannot be distinguished with this method”. 731 

 732 

15. The Active Day Fraction 733 

Usoskin et al. [2016] suggest using the ratio between the number of days per month when 734 

at least one group was observed and the total number of days with observations. This 735 

Active Day Fraction, ADF, is assumed to be a measure of the acuity of an observer and 736 

thus might be useful for calibrating the number of groups seen by the observer by 737 

comparing her ADF with a reference observer. For an example, see Figure 34. 738 

 739 

 740 

Figure 34. The Active Day Fraction, ADF (the ratio between the number of days per 741 
month when at least one group was observed and the total number of days with 742 
observations) for Wolf (red triangles) and for Wolfer (blue diamonds). Thin lines show 743 
the annual mean values. The annual Group Numbers indicating solar cycle maxima and 744 
minima are shown (black symbols) at the bottom of the graph with the right-hand scale.  745 

A problem with the ADF is that at sunspot maximum every day is an ‘active day’ so ADF 746 

is nearly always unity and thus does not carry information about the statistics of high 747 

solar activity. This ‘information shadow’ occurs for even moderate group numbers. 748 

Information gleaned from low-activity times must be extrapolated to cover solar maxima 749 

under the assumption that such extrapolation is valid regardless of activity. Usoskin et al. 750 

[2016] applied the ADF-technique to 19th century observers, and the technique was not 751 

validated with well-observed modern data. As they admit: “We stopped the calibration in 752 
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1900 since the reference data set of RGO data is used after 1900”. As it does not make 753 

much sense to attempt the use the ADF when it is unity, Usoskin et al. [2016] limit their 754 

analysis to times when ADF < 0.9 (dashed line in Figure 34). It is interesting to note that 755 

for the low-activity years 1886-1890 the average ADF for Wolfer was 1.50 times higher 756 

than for Wolf, close to the k-value Wolfer had established for Wolf. 757 

 758 

16. What Happened to Their Views From 2015? 759 
 760 

In a 2015 paper by 16 illustrious luminaries in our field [Usoskin et al., 2015], 761 

reconstructions of the OSF and the Solar Modulation Potential were presented. The 762 

authors assume that the open solar magnetic flux (OSF) is one of the main heliospheric 763 

parameters defining the heliospheric modulation of cosmic rays. It is produced from 764 

surface magnetic fields expanding into the corona from where they are dragged out into 765 

the heliosphere by the solar wind. The authors use what they call a simple, “but very 766 

successful model” to calculate the OSF from the sunspot number series and an assumed 767 

tilt of the heliospheric current sheet. Using an updated semi-empirical model the authors 768 

have computed the modulation potential for the period since 1610.  769 

 770 

Figure 35 shows how their OSF and the modulation potential compare with the Svalgaard 771 

& Schatten [2016] Group Number series. With the possible exception of the Maunder 772 

Minimum (which is subject to active research), the agreement between the three series is 773 

remarkable, considering the simplifications inherent in the models. All three series do 774 

away with the notion of an exceptionally active sun in the 20th century, consistent with 775 

the findings of Berggren et al. [2009] that “Recent 10Be values are low; however, they do 776 

not indicate unusually high recent solar activity compared to the last 600 years.” 777 

 778 

 779 

Figure 35. (Top) Reconstruction of the Open Solar Flux (adapted with permission from 780 
Usoskin et al., 2015). (Middle) Reconstruction (ibid) of the cosmic ray modulation 781 
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potential since 1600. (Bottom) The sunspot group number from Svalgaard & Schatten 782 
[2016]. 783 

 784 

Since Lockwood et al. [2016b] and Usoskin et al. [2016] severely criticize (they use the 785 

word ‘error’ 63 times) the Svalgaard & Schatten [2016] backbone-based Sunspot Group 786 

Number series, does this mean that they now disavow and repudiate the 2015 paper that 787 

they claimed was so “very successful”? It would seem so. The community is ill served 788 

with such a moving target. 789 

 790 

17. Comparing With Simple Averages 791 

A spreadsheet with the raw, observed annual group counts and their values normalized to 792 

Spörer’s count can be found here http://www.leif.org/research/Sporer-GN-Backbone.xls. 793 

As we have found for the other backbones, the simple, straightforward averages of all 794 

observers for each year are surprisingly close to the normalized values [see Figure 36], 795 

thus apparently making heated discussions about how to normalize seem less important. 796 

In our [2016] discussion of Hoyt & Schatten [1998] we noted that “it is remarkable that 797 

the raw data with no normalization at all closely match (coefficient of determination for 798 

linear regression R2 = 0.97) the number of groups calculated by dividing their GSN by an 799 

appropriate scale factor (14.0), demonstrating that the elaborate, and somewhat obscure 800 

and, in places, incorrect, normalization procedures employed by Hoyt & Schatten [1998] 801 

have almost no effect on the result”. 802 
 803 

 804 
 805 

Figure 36. Comparison of the Normalized Group Numbers and the Raw, Observed 806 
Group Numbers for the Spörer Backbone 1841-1900. 807 

 808 

This remarkable result might simply indicate that a sufficient number of observers span 809 

the typical values that could be obtained by telescopes and counting methods of the time 810 

so that the averages span the true values corresponding to the technology and science of 811 

the day, which then becomes the determining factors rather than the acuity and ability of 812 

observers. 813 

 814 

 815 

http://www.leif.org/research/Sporer-GN-Backbone.xls
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18. The ‘Correction Matrix’ Method 816 

An application of the ‘correction matrix’ method has recently been published by 817 

Chatzistergos et al. [2017]. Unfortunately, the article is marred by the usual 818 

misrepresentations. E.g.:“The homogenization and cross-calibration of the data recorded 819 

by earlier observers was always performed through a daisy-chaining sequence of linear 820 

scaling normalization of the various observers, using the k−factors. This means that 821 

starting with a reference observer, the k−factors are derived for overlapping observers. 822 

The latter data are in turn used as the reference for the next overlapping observers, etc.” 823 

This is simply not correct. For the Wolf sunspot series, observers were directly 824 

normalized to the Zürich observers for the interval ~1850-1980 without any intermediate 825 

observers. And the secondary observers were only used to fill-in gaps in the Zürich data. 826 

For the Hoyt & Schatten [1998] Sunspot Group Number series there was no daisy-827 

chaining used after 1883, and for the Svalgaard & Schatten [2016] Group Number series 828 

there was no daisy-chaining used for the two-hundred year long series from 1798-1996. 829 

 830 

Further: “Firstly, such methods assume that counts by two observers are proportional to 831 

each other, which is generally not correct.” … “All of these sunspot number series used 832 

calibration methods based on the linear scaling regression to derive constant k−factors. 833 

However, this linear k−factor method has been demonstrated to be unsuitable for such 834 

studies (Lockwood et al. 2016a; Usoskin et al. 2016), leading to errors in the 835 

reconstructions that employ them.” On the contrary, as we have shown, proportionality is 836 

generally directly observed and only in rare cases is there weak non-linearity which in 837 

any case is handled suitably. 838 

 839 

And: “Svalgaard & Schatten (2016) also used the method of daisy-chaining k−factors. 840 

But these authors introduced five key observers (called ‘backbones’, BB hereafter) to 841 

calibrate each overlapping secondary observer to these BBs. Thus, they seemingly 842 

reduced the number of daisy-chain steps because some daisy-chain links are moved into 843 

the BB compilation rather than being eliminated. The problem with this method is that 844 

most of the BB observers did not overlap with each other. Thus their inter-calibration was 845 

performed via series extended using secondary observers with lower quality and poorer 846 

statistics.” Again, this is incorrect. The secondary observers are compared directly to the 847 

primary observer with no intermediate steps. This is not a ‘problem’ but a virtue that 848 

prevents the bad effects of daisy-chaining. 849 

 850 

On the other hand, when their reference observer (RGO) was good (since 1900) the 851 

Chatzistergos et al. [2017] reconstruction shows a remarkable linear agreement with 852 

Svalgaard & Schatten [2016], Figure 37.  853 

 854 
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 855 

Figure 37. Comparison of the Chatzistergos et al. [2017] reconstruction of the Sunspot 856 
Group Number and the Svalgaard & Schatten [2016] Backbone method since 1900 857 
(annual values).  858 

 859 

As we noted in Section 9, one should not invent group numbers when there is no activity. 860 

The Chatzistergos et al. [2017] reconstruction has the usual problem shared with Usoskin 861 

et al. [2016] of being too high by ~0.3 groups at sunspot minimum, otherwise the 862 

relationship with the Svalgaard & Schatten [2016] reconstruction shows close to perfect 863 

proportionality (R2 = 0.997), belying their claim that “such methods assume that counts 864 

by two observers are proportional to each other, which is generally not correct”. Down-865 

scaling the annual Chatzistergos et al. [2017] values by the linear fit y = 0.956 x – 0.311 866 

to put them on the Wolfer Backbone scale established by Svalgaard & Schatten [2016] 867 

removes the solar minimum anomaly and shows that the two methods (when the data are 868 

good) agree extremely well, Figure 38, regardless of the persistent claim that the 869 

Svalgaard & Schatten [2016] backbone method is generally invalid and unsound 870 

compared to the “modern and non-parametric” methods advocated by Chatzistergos et al. 871 

[2017] and Usoskin et al. [2016]. 872 

 873 

 874 

Figure 38. Comparison of the down-scaled Chatzistergos et al. [2017] Correction 875 
Matrix-based reconstruction of the Sunspot Group Number (blue triangles) and the 876 
Svalgaard & Schatten [2016] Backbone method (pink dots) since 1900.  877 

 878 

So, it is clear that those ‘concerns’ about methods are unfounded. As the major objective 879 

of our detractors seems to be to maintain their notion that the Modern Maximum was a 880 
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Grand Maximum, possibly unique in the past several thousand years, we should now 881 

look at the Chatzistergos et al. [2017] reconstruction for times before 1900, Figure 39. 882 
 883 

 884 

Figure 39. Comparison of the scaled Chatzistergos et al. [2017] Correction Matrix-885 
based reconstruction of the Sunspot Group Number (blue triangles) and the Svalgaard 886 
& Schatten [2016] Backbone method (pink dots) before 1900.  887 

From this comparison it appears that the Chatzistergos et al. [2017] reconstruction for 888 

times before 1900 is seriously too low (or as they would put it: the Svalgaard & Schatten 889 

[2016] Backbones are seriously in error, being too high for medium or high solar activity). 890 

 891 

How can we resolve this discrepancy? The first (in going towards earlier times) major 892 

differences occur for the cycles peaking in 1870 and 1860. Just prior to that time, Wolf 893 

was moving from Berne to Zürich and even though a Fraunhofer-Merz telescope was 894 

installed in 1864 in the newly built observatory, Wolf never used it after that (but his 895 

assistants, in particular Wolfer later on, did). Instead Wolf used smaller telescopes until 896 

his death in late 1893; see Figure 40.  897 

 898 

 899 
 900 

Figure 40. (Left) The 82 mm aperture (magnification X64) refractor used mostly by 901 
Wolf’s assistants at the Zürich Observatory since 1864, designed by Joseph Fraunhofer 902 
and manufactured in 1822 at the Fraunhofer factory by his assistant Georg Merz. The 903 
telescope still exists and is being used daily by Thomas Friedli (person at center). 904 
(Right) One of several small, portable, handheld telescopes (~40 mm aperture, 905 
magnification X20) used by Wolf almost exclusively from 1860 on, and still in 906 
occasional use today. More on the telescopes can be found at Friedli [2016]. (Photos: 907 
Vera De Geest). 908 

 909 
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We have 18 years of (very nearly) simultaneous observations by Wolf and Wolfer, and as 910 

we determined in Section 5, Wolfer on an annual basis naturally saw 1.65 times as many 911 

groups with the larger telescope as Wolf saw with the smaller telescopes; in addition, 912 

Wolf did not count the smallest groups that would only be visible at moments of very 913 

good seeing, nor the umbral cores in extended active regions. 914 

 915 

So, we can compare Chatzistergos et al. [2017] with the Wolfer Backbone of Svalgaard 916 

& Schatten [2016] and with the Wolf counts, Figure 41. Needless to say, Wolf scaled 917 

with the 1.65 factor agrees very well with the Wolfer Backbone. The progressive 918 

difference between the reconstructions becomes evident going back from ~1895, strongly 919 

suggesting that the daisy-chaining used by Chatzistergos et al. [2017] to connect the 920 

earlier data to their post-1900 RGO reference observer is skewing their reconstruction 921 

towards lower values, aptly illustrating the danger of daisy-chaining. In particular, the 922 

cycles peaking in 1860 and 1870 are clearly too low compared to both Wolf’s and 923 

Wolfer’s counts. The deleterious effect is even greater for the 18th century (Figure 39). 924 

 925 

 926 

Figure 41. Comparison of the annual scaled Chatzistergos et al. [2017] sunspot group 927 
numbers (green dots), to the Group Number for the Wolfer Backbone by Svalgaard & 928 
Schatten [2016] (pink curve) and the Wolf counts with the ‘small telescopes’ (blue 929 
curve matching the Wolfer Backbone) using the right-hand scale (1.65 times smaller 930 
than the left-hand Wolfer scale). 931 

As the derivation of the daisy-chain from RGO to Wolfer by Chatzistergos et al. [2017] is 932 

not transparent enough for closer analysis and cannot be replicated, it is not clear exactly 933 

how the lower values before ~1895 come about.  934 

 935 

19. More On the Active Day Fraction Method 936 
 937 

Yet another article extolling the virtues of the Active Day Fraction Method [Willamo et 938 

al., 2017] have just been published. When the observers’ counts are compared to the 939 

reference observer (RGO) after 1900, the result is very similar to the Svalgaard & 940 

Schatten [2016] group number series, scaled to the same mean: Figure 42, including a 941 

strong linear relationship, Figure 43.  942 
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 943 

 944 

Figure 42. Comparison of the annual scaled Willamo et al. [2017] sunspot group 945 
numbers (blue curve), to the Group Number by Svalgaard & Schatten [2016] (pink 946 
curve). The scaling function (see Figure 43) is y = 0.925 x – 0.139 (R2 = 0.994). The 947 
ratio between the two series (for years with group numbers greater than 1.5) is shown 948 
by small open circles and is not significantly different from unity. 949 

 950 

 951 

Figure 43. Because the Group Numbers are normalized to different observers (RGO 952 
and Wolfer) their values are not necessarily identical, This Figure gives the linear 953 
scaling function y = 0.925 x – 0.139 (R2 = 0.994) to bring the RGO-based values onto 954 
the Wolfer scale. 955 

As with the ‘correction matrix’ method, an artificial non-zero offset must first be 956 

removed. After that, the agreement is extraordinary, showing that the ADF-based method 957 

works well for observers overlapping directly with the RGO reference observer and 958 

presumably sharing the modern conception of what constitutes a sunspot group as well as 959 

conforming to the same PDF. This is, however, not the case for observers before 1900, 960 

Figure 44, where the bad effects of the assumption that the PDF for RGO can be 961 

transferred unchanged to earlier times become apparent.  962 

 963 
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 964 

Figure 44. Comparison of the scaled Willamo et al. [2017] group number series (blue) 965 
to that of Svalgaard & Schatten [2016] (pink) for the entire interval 1750-1996. Their 966 
ratio (for years with group number greater than 1.5) is not different from unity after 967 
1900, but shows a steady decline going back most of the century before that. 968 

 969 

It is clear that the ratio is falling steadily gong back from ~1900 to ~1825 and that the 970 

noise in the 18th century data [e.g. too few days with no spots were reported] is too large 971 

to place much trust in the ADF-method for those years. So, we have the curious situation 972 

that when the data is good, the vilified Svalgaard & Schatten [2016] methodology using 973 

“unsound procedures and assumptions” yields an astounding agreement with a ‘modern 974 

and non-parametric’ method. We take this as verification of both methods when applied 975 

to modern data with common understanding of the nature of solar activity, and as failure 976 

of the ADF-method when older data based on inferior technology and, in particular, 977 

outdated understanding are used. 978 

 979 

21. The ADF Methods Fails for ‘Equivalent Observers’ 980 
 981 

We identify several pairs of ‘equivalent’ observers defined as observers with equal or 982 

nearly equal ‘observational threshold’ areas of sunspots on the solar disk as determined 983 

by the ‘Active Day Fraction’ method [e.g. Willamo et al., 2017]. For such pairs of 984 

observers, the ADF-method would be expected to map the actually observed sunspot 985 

group numbers for the individual observers to two reconstructed series that are very 986 

nearly equal and (it is claimed) represent ‘real’ solar activity without arbitrary choices 987 

and deleterious, error-accumulating ‘daisy-chaining’. We show that this goal has not been 988 

achieved (for the critical period at the end of the 19th century and the beginning of the 989 

20th), rendering the ADF-methodology suspect and not reliable nor useful for studying 990 

the long-term variation of solar activity. 991 

The Active Day Fraction is assumed to be a measure of the acuity of the observer and of 992 

the quality of the telescope and counting technique, and thus might be useful for 993 

calibrating the number of groups seen by the observer by comparing her ADF with a 994 

modern reference observer.  995 

A problem with ADF is that near sunspot maximum, every day is an ‘active day’ so ADF 996 

at such times is nearly always unity and thus does not carry information about the 997 

statistics of high solar activity. This ‘information shadow’ occurs for even moderate 998 

group numbers greater than three. Information gleaned from low-activity times must then 999 

be extrapolated to cover solar maxima under the hard-to-verify assumption that such 1000 
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extrapolation is valid regardless of activity, secularly varying observing technique and 1001 

counting rules, and instrumental technology.  1002 

In this section we test the validity of the assumptions using pairs of high-quality 1003 

observers where within each pair the observers every year reported very nearly identical 1004 

group counts distributed the same way for several decades. The expectation on which our 1005 

assessment rests is that the ADF method shall duly reflect this similarity and yield very 1006 

similar reconstructions, for both observers within each pair. If not, we shall posit that the 1007 

ADF method has failed (at least for the observers under test) and that the method 1008 

therefore cannot without qualification be relied upon for general use. 1009 

 1010 

The original Hoyt & Schatten catalog has been amended and in places corrected and the 1011 

updated and current version [Vaquero et al., 2016] is now curated by the World Data 1012 

Center for the production, preservation and dissemination of the international sunspot 1013 

number in Brussels: http://www.sidc.be/silso/groupnumberv34. Ilya Usoskin has kindly 1014 

communicated the data extracted from the above that were used for the calculation 1015 

[Willamo et al., 2017] of the ADF-based reconstruction of the Group Number. We have 1016 

used that selection (taking into account the correct Winkler 1892 data3) for our 1017 

assessment (can be freely downloaded from http://www.leif.org/research/gn-data.htm). 1018 

We compute monthly averages from the daily data, and yearly averages from months 1019 

with at least 10 days of observations during the year. It is very rare that this deviates 1020 

above the noise level from the straight yearly average of all observations during that year. 1021 

 1022 

23. Winkler and Quimby are Equivalent Observers 1023 
 1024 

Winkler and Quimby form the first pair. Wilhelm Winkler (1842-1910) - a German 1025 

private astronomer and maecenas [Weise et al., 1998] observed sunspots with a Steinheil 1026 

refractor of 4-inch aperture at magnification 80 using a polarizing helioscope from 1878 1027 

until his death in 1910 and reported his observations to the Zürich observers Wolf and 1028 

Wolfer who published them in full in the ‘Mittheilungen’ whence Hoyt & Schatten 1029 

[1998] extracted the group counts for inclusion in their celebrated catalog of sunspot 1030 

group observations5 . The Reverend Alden Walker Quimby of Berwyn, Pennsylvania 1031 

observed from 1892-1921 with a 4.5-inch aperture telescope with a superb Bardou lens 1032 

(1889-1891 with a smaller 3-inch aperture). The observations were also published in full 1033 

in ‘Mittheilungen’ and included in the Hoyt & Schatten catalog. As we shall see below, 1034 

Winkler and Quimby have identical group k’-values with respect to Wolfer and thus saw 1035 

and reported comparable number of sunspot groups. 1036 

 1037 

Figure 45 shows that Winkler and Quimby have (within the errors) the same k’-factors 1038 

(1.295±0.035 and 1.279±0.034) with respect to Wolfer, based on yearly values. For 1039 

monthly values, the factors are also equal (1.25±0.02 and 1.27±0.02) so it must be 1040 

accepted that Winkler and Quimby are very nearly equivalent observers. 1041 

 1042 

                                                 
4 Also available at http://haso.unex.es/?q=content/data 
5 Unfortunately, the data in the original Hoyt & Schatten data files for Winkler in 1892 are not correct. The 

data for Winkler in the data file are really those for Konkoly at O-Gyalla for that year. L.S. has extracted 

the correct data from the original source [Wolf, 1893]. 

http://www.sidc.be/silso/groupnumberv3
http://www.leif.org/research/gn-data.htm
http://haso.unex.es/?q=content/data
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 1043 

Figure 45. (Top) The average number of groups per day for each year 1882-1910 for 1044 
observer Winkler compared to the number of groups reported by Wolfer. (Middle) The 1045 
average number of groups per day for each year 1892-1921 for observer Quimby 1046 
compared to the number of groups reported by Wolfer. Symbols with a small central 1047 
dot mark common years between Winkler and Quimby. (Bottom) The average number 1048 
of groups per day for each year 1896-1928 for the Zürich observer Broger compared to 1049 
the number of groups reported by Wolfer. The slope of the regression line and the 1050 
coefficient of determination R2 are indicated on each panel. The offsets for zero groups 1051 
are not statistically significant. 1052 

For days when two observers have both made an observation, we can construct a 2D-map 1053 

of the frequency distribution of the simultaneous daily observations of the group counts 1054 

occurrence(groups(Observer1), groups(Observer2)), i.e. showing on how many days 1055 

Observer1 reports G1 groups while Observer2 reports G2 groups, varying G1 and G2 1056 

from 0 to a suitable maximum. Figure 46 (Upper Panels) shows such maps for Winkler 1057 
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and Quimby (Observers1) versus Wolfer (Observer2). It is clear that the maps are very 1058 

similar and ‘well-behaved’, with narrow ridges stretching along the regression lines.  1059 

 1060 

 1061 

Figure 46. (Upper Panel Left) Distribution of simultaneous daily observations of group 1062 
counts showing on how many days Winkler reported the groups on the abscissa while 1063 
Wolfer reported the groups on the ordinate axis, e.g. when Winkler reported 5 groups, 1064 
Wolfer reported 6 groups on 100 days during 1882-1910. (Upper Panel Right) Same, 1065 
but for Quimby and Wolfer. The diagonal lines lie along corresponding group values 1066 
determined by the daily k’-factors (≈1.25). (Lower Panel Left) The number of groups 1067 
reported by Winkler (red circles) and by Quimby (blue squares) as a function of the 1068 
number of groups reported by Wolfer on the same days. Also shown are the average 1069 
number of days per year (left-hand scale) when those groups were observed (Winkler 1070 
red triangles; Quimby blue diamonds). The factors are based on the 99% of the days 1071 
where the group count is less than 12. Above that, the small-number noise is too large. 1072 
(Lower Panel Right) Distribution of simultaneous daily observations of group counts 1073 
showing on how many days Quimby reported the groups on the abscissa while Winkler 1074 
reported the groups on the ordinate axis, e.g. on days when Quimby reported 4 groups, 1075 
Winkler also reported 4 groups on about 150 days during 1892-1910. 1076 
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In Figure 46 (Lower Panels) we plot the number of groups reported by Winkler against 1077 

the number of groups reported by Quimby on the same day, to show that Winkler and 1078 

Quimby are equivalent observers. The diagonal line marks equal frequency of groups 1079 

reported by both observers. 1080 

 1081 

The ‘Correction Factor’ is the average factor to convert a daily group count by one 1082 

observer to another. Figure 46 (Lower Panel) showed that Winkler and Quimby have 1083 

almost identical factors for conversion from Wolfer with almost identical distributions in 1084 

time. This is again an indication that Winkler and Quimby are equivalent observers. If so, 1085 

the yearly group numbers reported by the two observers should be nearly equal, which 1086 

Figure 47 shows that they, as expected, are. 1087 

 1088 

 1089 

Figure 47. Yearly average reported group counts by Winkler (thin blue line without 1090 
symbols) and Quimby (thin red line without symbols). The dashed line box outlines the 1091 
years with common data. If we multiply the raw data by the k’-factors we get curves for 1092 
Winkler (blue line with diamonds) and Quimby (red line with triangles) that should 1093 
(and do) reasonably match the raw data for Wolfer (black line with light-yellow 1094 
diamonds). 1095 

 1096 

We have shown that Winkler and Quimby are equivalent observers and that their data 1097 

multiplied by identical (within the errors) k’-factors reproduce the Wolfer observations. 1098 

 1099 

24. Broger and Wolfer are Equivalent Observers 1100 
 1101 

Broger and Wolfer form a second pair. Max Broger (18XX-19ZZ) was hired as an 1102 

assistant at the Zürich Observatory and observed 1896–1936 using the same (still 1103 

existing) Fraunhofer-Merz 82mm ‘Norm telescope’ at magnification 64 as director 1104 

Wolfer. Alfred Wolfer (1854-1931) started as an assistant to Wolf in 1876 and observed 1105 

until 1928. Broger had a k’-value of unity with respect to Wolfer and thus saw and 1106 

reported comparable number of sunspot groups. In addition, there probably was 1107 

institutional consensus as to what would constitute a sunspot group. The observations 1108 
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were direct at the eyepiece and all were published in the ‘Mitteilungen’ and from 1880 on 1109 

in the Hoyt & Schatten catalog.  1110 

 1111 

In Figure 45 we showed the average number of groups per day for each year 1896-1928 1112 

for Broger compared to the number of groups reported by Wolfer. The k’-factor for 1113 

Broger is unity within 2-σ, indicating that Broger and Wolfer are equivalent observers. 1114 

For days when two observers have both made an observation, we can construct a 2D-map 1115 

of the occurrence distribution of the 6778 simultaneous daily observations of counts 1116 

during 1896-1928 similar to Figure 46. Figure 48 (right) shows the map for Broger versus 1117 

Wolfer.  1118 

 1119 
Figure 48. (Right) Distribution of simultaneous daily observations of group counts 1120 
showing on how many days Wolfer reported the groups on the abscissa while Broger 1121 
reported the groups on the ordinate axis, e.g. on days when Wolfer reported 4 groups, 1122 
Broger also reported 4 groups on about 400 days during 1896-1928. (Left) The number 1123 
of groups reported by Broger (dark-blue dots) as a function of the number of groups 1124 
reported by Wolfer on the same days. Also shown are the average number of days per 1125 
year (left-hand scale) when those groups were observed (pink squares). 1126 

 1127 

Figure 48 shows that Broger and Wolfer have almost identical distributions in time. This 1128 

is again an indication that Broger and Wolfer are equivalent observers. If so, the group 1129 

numbers reported by the two observers should be nearly equal, which Figures 49 and 50 1130 

show that they, as expected, are. 1131 
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 1132 
Figure 49. Distribution in time of daily observations of group counts showing the 1133 
fraction of days per year Broger (left) and Wolfer (right) reported the groups on the 1134 
ordinate axis). 1135 

 1136 

 1137 

Figure 50. Yearly average reported group counts by Broger (blue line) and Wolfer 1138 
(black line with light-yellow diamonds). If we multiply Broger’s raw data by his k’-1139 
factor with respect to Wolfer we get the thin red line curve. There might be a hint of a 1140 
slight learning curve for Broger for the earliest years. 1141 

We have shown that Broger and Wolfer are equivalent observers and that Broger’s data 1142 

reproduce the Wolfer observations. Combining the data in Figures 47 and 50 provides us 1143 

with a firm and robust composite reconstruction of solar activity during the important 1144 

transition from the 19th to the 20th centuries, Figure 51: 1145 

 1146 
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 1147 

Figure 51. Composite Group Number series from Wolfer (green dots), Winkler (blue 1148 
diamonds), Quimby (pink squares), and Broger (purple triangles). The dashed line 1149 
shows the RGO (Royal Greenwich Observatory) group number scaled by a factor 0.86 1150 
derived from a fit with Wolfer spanning 1901-1928. The thin green line without 1151 
symbols shows the ADF-based values from Willamo et al. [2017] scaled to fit Wolfer. 1152 

The consistency between Wolfer, Broger*, Quimby*, and Winkler*6 throughout the years 1153 

1880-1928 suggests that there have been no systematic long-term drifts in the Composite. 1154 

On the other hand, the well-known deficit for RGO before about 1890 is clearly evident. 1155 

The ADF-based values seem at first blush to match the Composite reasonably well. 1156 

Unfortunately, the agreement is spurious as we shall show in the following sections. 1157 

 1158 

25. The ADF Observational Threshold 1159 
 1160 

The ADF-method [Willamo et al., 2017] is based on the assumption that the ‘quality’ of 1161 

each observer is characterized by his/her acuity given by an observational threshold area 1162 

S7, on the solar disk of all the spots in a group. The threshold (all sunspot groups with an 1163 

area smaller than that were considered as not observed) defines a calibration curve 1164 

derived from the cumulative distribution function (CDF) of the occurrence in the 1165 

reference dataset (RGO) of months with the given ADF. A family of such curves is 1166 

produced for different values of S. The observational threshold for each observer is 1167 

defined by fitting the actual CDF curve of the observer to that family of calibration 1168 

curves. The best-fit value of S and its 68% (±1σ) confidence interval were defined by the 1169 

χ2 method with its minimum value corresponding to the best-fit estimate of the 1170 

observational threshold. Table 2 gives the thresholds for the observers considered in this 1171 

article. 1172 

Table 2. The columns are: the name of the observer, the Fraction of Active Days, the 1173 
lower limit of S for the 68% confidence interval, the observational threshold area S in 1174 

                                                 
6 The asterisks denote the raw values multiplied by the k’-factor. 
7 Simplified form of the SS used by Willamo et al. [2017]. 
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millionth of the solar disk, the upper limit of S, and the observer’s code number in the 1175 
Vaquero et al. [2016] database. (From Willamo et al., [2017]). 1176 

 1177 

Observer ADF % S low S μsd S high Code 

RGO 86 - 0 - 332 

Spörer 86 0 0 2 318 

Wolfer 77 1 6 11 338 

Broger 78 5 8 11 370 

Weber 81 20 25 31 311 

Shea 80 20 25 31 295 

Quimby 73 17 23 31 352 

Winkler 75 51 60 71 341 

 1178 

26. Does the ADF-method Work for Equivalent Observers? 1179 

We have shown above (Section 23 and 24) that pairs of Equivalent Observers (same 1180 

observational thresholds or same k’-factors) saw and reported the same number of groups. 1181 

As a minimum, one must demand that the group numbers determined using the ADF-1182 

method also match the factually observed equality of a pair of equivalent observers. If the 1183 

ADF-method yields significant difference between what two equivalent observers 1184 

actually reported, we cannot expect the method to give correctly calibrated results for 1185 

those two observers and, by extension, for any observers. We assert that this is true 1186 

regardless of the inner workings and irreproducible computational details of the ADF-1187 

method (or any method for that matter). 1188 

 1189 

27. ADF Fails for Quimby and Winkler 1190 

Figure 52 shows the ADF-based group numbers (from Willamo et al. [2017]) for the 1191 

Equivalent Observers Quimby and Winkler. 1192 

 1193 

 1194 

Figure 52. ADF-based group numbers for Winkler (S = 60, blue triangles) and Quimby 1195 
(S = 23, red dots). The raw, actually observed group numbers for Winkler (k’ = 1.3, 1196 
blue plusses) and Quimby (k’ = 1.3, red crosses) are shown below the ADF-based 1197 
curves. 1198 
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It should be evident that ADF-method fails to produce the expected nearly identical 1199 

counts observed by these two equivalent observers, not to speak about the large 1200 

discrepancy (60 vs. 23) in the S threshold areas. 1201 

 1202 

28. ADF Fails for Broger and Wolfer 1203 

Figure 53 shows the ADF-based group numbers (from Willamo et al. [2017]) for the 1204 

Equivalent Observers Broger and Wolfer. 1205 

 1206 

Figure 53. ADF-based group numbers for Wolfer (S = 6, blue triangles) and Broger    1207 
(S = 8, red dots). The raw, actually observed group numbers for Wolfer (k’ = 1.0, blue 1208 
plusses) and Broger (k’ = 1.0, red crosses) are shown below the ADF-based curves. 1209 

It should be evident that the ADF-method fails to produce the expected nearly identical 1210 

counts observed by these two equivalent observers, in spite of the nearly identical S 1211 

threshold areas. 1212 

 1213 

29. ADF Fails for Weber and Shea 1214 
 1215 

Heinrich Weber (observed 1859-1883) and Charles Shea (observed 1847-1866, 5538 1216 

drawings reduced by Hoyt & Schatten) should also be equivalent observers because they 1217 

have identical S values of 25. Figure 54 shows the ADF-based group numbers (from 1218 

Willamo et al. [2017]) and the actual observed group numbers for Weber and Shea. 1219 

 1220 

 1221 
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Figure 54. ADF-based group numbers for Weber (S = 25, blue triangles) and Shea      1222 
(S = 25, red dots). The raw, actually observed group numbers for Weber (blue plusses) 1223 
and Shea (red crosses) are shown below the ADF-based curves. 1224 

It should be evident that the ADF-method fails to produce the expected nearly identical 1225 

counts observed by these two observers with identical S threshold areas. In addition, the 1226 

actual observations are not consistent with equal S values since Weber reported 40% 1227 

more groups than Shea. Data for 1862 are missing from the database. The observations 1228 

by Shea are preserved in the Library of the Royal Astronomical Society (London) and 1229 

bear re-examination. 1230 

 1231 

30. ADF Fails for Spörer and RGO 1232 

Spörer was labeled a ‘perfect observer’ on account of his ‘observational threshold SS 1233 

area’ being determined to be equal to zero, based on the assumption that the observer can 1234 

see and report all the groups with the area larger than SS, while missing all smaller groups. 1235 

So, Spörer could apparently, according to the ADF calibration method, see and report all 1236 

groups, regardless of size and should never miss any. This suggests a very direct test: 1237 

compute the yearly average group count for both Spörer and the ‘perfect observer’ 1238 

exemplar, the Royal Greenwich Observatory (RGO), and compare them. They should be 1239 

identical within a reasonable (very small) error margin. We find that they are not and that 1240 

RGO generally reported 45% more groups than Spörer, and that therefore, the ADF-1241 

method is not generally applicable 1242 

We concentrate on the interval 1880-1893 where sufficient and unambiguous data are 1243 

available from the following observers: Gustav Spörer (at Anclam), Royal Greenwich 1244 

Observatory (RGO), and Alfred Wolfer (Zürich), as provided by Usoskin (Personal 1245 

Communication, 2017 to Laure Lefèvre) in this format:  1246 
 1247 
Year M D  G  G(ADF) GLo GHi 1248 
1880 1 4  1 1.04806  1  1 1249 
1880 1 7  2 2.07032  2  2 1250 
1880 1 8  3 3.09613  3  3 1251 

It is not clear from the data if the limits GLo and GHi (determining the confidence interval) 1252 

are truncated or rounded to the nearest integer or if they are the actual true values. In any 1253 

case, they are always identical for Spörer. 1254 

Table 1 of Willamo et al. [2017] specifies that Spörer is a ‘perfect observer’ with 1255 

‘observational threshold SS (in millionths of the solar disk)’ equal to zero, based on the 1256 

assumption that the ‘quality’ of each observer is characterized by his/her observational 1257 

acuity, measured by a threshold area SS. The threshold implies that the observer can see 1258 

and report all the groups with the area larger than SS, while missing all smaller groups. So, 1259 

Spörer could apparently, according to the ADF calibration method, see and report all 1260 

groups, regardless of size and should never miss any, except for a few that evolved and 1261 

died without Spörer seeing them. In fact, the GLo and GHi given by Usoskin are identical 1262 

as they should be for perfect data without errors. If so, it suggests a very direct test: 1263 

compute the yearly average group count for both Spörer and RGO and compare them. 1264 

They should be identical within a reasonable (very small) error margin.  1265 

 1266 

Year, M=Month, D=Day, G=Observed group count 

G(ADF)= ADF-based reconstruction 

GLo=Low Limit of G(ADF) 

GHi=High Limit of G(ADF) 
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The following table gives the annual values for Spörer (calculated by Willamo et al. 1267 

[2017]), Spörer (observed and reported), RGO, Wolfer, and the Svalgaard & Schatten 1268 

[2016] Group Number Backbone: 1269 

 1270 

Year Spörer(W) Spörer(O) RGO Wolfer S&S BB 
1880.5 2.18 2.11 2.19 2.69 2.70 
1881.5 3.11 3.03 3.96 4.69 4.62 
1882.5 3.56 3.46 4.48 4.59 4.78 
1883.5 3.57 3.47 4.92 5.90 5.31 
1884.5 3.87 3.78 5.58 5.53 5.84 
1885.5 2.89 2.81 4.28 4.32 4.64 
1886.5 1.93 1.87 2.04 2.17 2.41 
1887.5 1.17 1.12 1.25 1.44 1.35 
1888.5 0.61 0.57 0.72 0.73 0.78 
1889.5 0.32 0.29 0.52 0.60 0.60 
1890.5 0.59 0.55 0.71 1.15 0.69 
1891.5 2.58 2.51 3.41 4.17 3.56 
1892.5 4.08 3.98 6.39 5.98 6.18 
1893.5 5.62 5.50 8.51 8.31 7.73 

Average 2.577 2.504 3.497 3.733 3.656 

Ratio 1.029 1.000 1.397 1.491 1.460 

 1271 

Table 2 shows that Gustav Spörer (1822-1895, observed 1861-1893) and the 1272 

Greenwich observers (1884-1976) are both ‘perfect observers’ [Willamo et al., 1273 

2017] since their S value is zero8. We should therefore expect that they should 1274 

observe and report nearly identical yearly values of the sunspot group numbers, 1275 

as they have the same observational threshold and no groups should be missed.  1276 

 1277 

We here posit that what Spörer actually reported (column three) is what must be 1278 

compared to the reconstructions. It is thus evident that RGO is 40%, Wolfer 49%, and 1279 

S&S BB 46% higher than what Spörer ‘the perfect observer’ saw and reported. And that 1280 

therefore the test has failed. The ADF-method of calibration does not give the correct 1281 

result in this simple, straightforward, and transparent example. Figure 55 shows the 1282 

results in graphical form. 1283 

 1284 

                                                 
8 The data for 1879 for Spörer are anomalously high because all days with zero groups were entered as 

missing in the Hoyt & Schatten catalog. This may have influenced slightly the determination of S. 
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 1285 
 1286 

Figure 55. Annual values of the Sunspot Group Number for Spörer (pink squares; 1287 
calculated by Willamo et al. [2017]), RGO (blue triangles), Wolfer (green diamonds), 1288 
Svalgaard & Schatten [2016] (purple dots). Scaling Spörer up by a factor 1.45 yields the 1289 
black dashed curve. 1290 

 1291 

The difference between Spörer and the real ‘perfect observer’ RGO is vividly evident in 1292 

Figure 46 that shows the fraction of the time where a given number of groups was 1293 

observed as a function of the phase within the sunspot cycle. At high solar activity Spörer 1294 
saw significantly fewer spots than RGO. It is also at such times that the ADF is close to unity (as 1295 
at such times almost every day is an ‘active day’ in every cycle) and therefore does not carry 1296 
information about the size of the cycle. The ADF-method does not yield a correct 1297 

‘observational threshold SS’ for G. Spörer and thus does not form a reliable basis for 1298 

reconstruction of past solar activity valid for all times and observers, and as such must be 1299 

discarded for general use if applied blindly to less than perfect data. 1300 

 1301 

 1302 
 1303 

Figure 56. Frequency of occurrence of counts of groups on the solar disk as a function 1304 
of time during 1880-1893 for RGO (left) and Spörer (right) determined for each year by 1305 
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the number of days where a given number of groups was observed on the disk divided 1306 
by the number of days with an observation. 1307 

 1308 

Spörer needs to be scaled up by a factor 1.45 to match RGO, so can hardly be deemed to 1309 

be a ‘perfect observer’ as determined by the ADF-method. 1310 

 1311 

31. The Problem with Zero Groups 1312 

Even if we compare two equivalent observers there will be a spread in the values. If one 1313 

observer sees, say, four groups on a given day, the other observer will often observe a 1314 

different number, because of variable seeing and of small groups emerging, merging, 1315 

splitting, or disappearing at different times for the two observers. So there is a ‘point-1316 

spread function’ with a round hill of width typically one to two groups, centered on the 1317 

chosen group number value, Figure 57: 1318 

 1319 
Figure 57. The distribution of daily values of the observed Sunspot Group Numbers for 1320 
Wolfer for each bin of Wolf’s group number, normalized to the sum of all groups in 1321 
that bin. (Left) A 3D view of the ‘hills’ for each bin. (Right) A contour plot of the 1322 
distribution. 1323 

So, in general, there will be a neighborhood in the distribution around a given group 1324 

number ‘hill’ where some group numbers are a bit larger and some are a bit smaller than 1325 

the top-of-the-hill number. This holds for all bins except for the zero bin, because there 1326 

are no negative group numbers. As a result, the other observer’s average group number 1327 

for the first observer’s zero bin will be artificially too high. This fundamental flaw can be 1328 

seen in the ADF-series for all observers, rendering the ADF-values generally too high for 1329 

low activity. The purpose of the ADF-method is to bring all observers considered onto 1330 

the same scale. As Figure 58 shows this goal is not realized for low solar activity. 1331 

 1332 
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 1333 

Figure 58. (Left) The monthly mean Group Numbers observed by the equivalent 1334 
observers Broger (light-blue diamonds) and Wolfer (pink squares) during the deep solar 1335 
minimum 1901.0-1902.6. (Right) The Group Numbers for Broger (dark-blue diamonds) 1336 
and Wolfer (red squares) computed by Willamo et al. [2017] using the ADF-method. 1337 
The artificial offset for Broger (0.47) is particularly egregious for GWolfer = 0. 1338 

 1339 

From modern observations we know that during solar minima there are many days (e.g. 1340 

for years 2008: 265, and 2009: 262, and 1913: 311) when there are no spots or groups on 1341 

the disk, regardless of how strong the telescope is and how good the eyesight of the 1342 

observer is. A good reconstruction method should thus not invent groups when there are 1343 

none. 1344 

 1345 

We have identified several pairs of ‘equivalent’ observers and shown that the group 1346 

numbers computed using the ADF-method do not reproduce the equality of the group 1347 

numbers expected for equivalent observers, rendering the vaunted9 ADF-methodology 1348 

suspect and not reliable nor useful for studying the long-term variation of solar activity. 1349 

We suggest that the claim [Willamo et al., 2017] that their “new series of the sunspot 1350 

group numbers with monthly and annual resolution, […] is forming a basis for new 1351 

studies of the solar variability and solar dynamo for the last 250 years” is self-1352 

aggrandizing, and, if their series is used, will hinder such research. It is incumbent on the 1353 

community to resolve this issue [Cliver, 2016] so progress can be made, not just in solar 1354 

physics, but in the several diverse fields using solar activity as input. 1355 

 1356 

32. ADF Calibration is No Better then Straight Average 1357 
 1358 

Figure 59 shows that the ADF-derived group number for the time interval 1840-1930 is 1359 

simply equal (within a constant factor of 1.2) to the average group number computed 1360 

from the raw data in the Vaquero et al. [2016] database with no normalization at all, but 1361 

differ before ~1885 from the Svalgaard & Schatten [2016] backbone-derived group 1362 

number, while agreeing well since 1885. As already pointed out [Svalgaard & Schatten, 1363 

2017] this agreement continues up to the present time. Such wholesale agreement since 1364 

1840 is not expected because of the change in group recognition and definition since the 1365 

time of Wolfer following Wolf’s death in 1893. A simple explanation may be that the 1366 

ADF-method just adds noise to the observational raw data with the noise washing out in 1367 

the average, so that what we see is just a reflection of the changed definition of a group 1368 

                                                 
9 frequentative of Latin vanare: "to utter empty words" 
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combined with changes in technology and observing modes rather than a change in solar 1369 

activity. 1370 

 1371 

 1372 

Figure 59. Yearly average values of the Sunspot Group Number computed using the 1373 
ADF-method [Willamo et al., 2017] (blue triangles and curve; right-hand scale) and 1374 
computed as a simple average of the raw, un-normalized group numbers (red diamonds 1375 
and curve; left-hand scale); both scaled by a constant factor (1.2) to match each other. 1376 
The Svalgaard & Schatten [2016] backbone is shown by the black open circles and 1377 
curve, scaled to match after 1890. 1378 

 1379 

33. Conclusion 1380 

We have shown that the criticism by Lockwood et al. [2016b] and by Usoskin et al. 1381 

[2016] expressed by the statement that “our concerns about the backbone reconstruction 1382 

are because it uses unsound procedures and assumptions in its construction, that it fails to 1383 

match other solar data series or terrestrial indicators of solar activity, that it requires 1384 

unlikely drifts in the average of the calibration k-factors for historic observers, and that it 1385 

does not agree with the statistics of observers’ active-day fractions” is unfounded, 1386 

baseless, and without merit. Let us recapitulate our responses to each of those concerns in 1387 

sequence: 1388 

1) “it uses unsound procedures and assumptions in its construction”. This is 1389 

primarily about whether it is correct to use a constant proportionality factor 1390 

when calibrating observers to the primary observer. We showed in Section 2 1391 

that proportionality is an observational fact within the error of the regression. 1392 

In addition, we clarify in Section 11 some confusion about daisy-chaining 1393 

and show that no daisy-chaining was used for the period 1794-1996 in the 1394 

construction of the backbones. 1395 

2) “it fails to match other solar data series or terrestrial indicators of solar 1396 

activity”. We showed in Section 8 that our group numbers match the 1397 

variation of the diurnal amplitude of the geomagnetic field and the HMF 1398 

derived from the geomagnetic IDV index and in Sections 14 and 16 that they 1399 

match the (modeled) cosmogenic radionuclide record. 1400 
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3) “it requires unlikely drifts in the average of the calibration k-factors for 1401 

historic observers “ We showed in Section 6 that the RGO group counts were 1402 

drifting during the first twenty years of observation and that other observers 1403 

agree during that period that the RGO group count drift is real. 1404 

4) “it does not agree with the statistics of observers’ active-day fractions”. We 1405 

show that the ADF-method fails for observers that the method itself classifies 1406 

as equivalent observers and that the method thus is not generally applicable 1407 

and that it therefore is not surprising that it fails to agree with the backbone 1408 

group number series. 1409 

5) We identified several misrepresentations and (perhaps) misunderstandings. 1410 

We are nevertheless pleased that the subject of revising the records of solar activity has 1411 

become an active area of research, but it should be done right. 1412 
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