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Motivation for Revisiting the
Sunspot Number Series

In the words of Jan Stenflo, http://www.leif.org/research/SSN/Stenflo.pdf,
we can make an “analogy with the cosmic distance scale: One needs a
ladder of widely different techniques valid in a sequence of partially
overlapping regimes. Similarly, to explore the history of solar variability
we need a ladder of overlapping regimes that connect the present
physical parameters (TSI, magnetograms, F10.7 flux, UV radiance, etc.)
with the distant past. The time scale from the present back to Galileo can
only be bridged by the Sunspot Number, which in turn allows the ladder
to be continued by isotope methods, etc”.

Jack Harvey (39 SSN Workshop, Tucson 2013):

Needed as a pure solar activity index back 400 years to tie in with
longer-lived, but less direct proxies.



The SSN Workshops. The Work
and Thoughts of I\/IanyPeopIe

http://[ssnworkshop.wikia.com/wiki/Home 3



Overview (Forensic Solar Physics)

Reconstruction of the Sunspot Group Number
1610-2015: the Backbone Method (with Ken
Schatten)

Reconstruction of Solar Extreme Ultraviolet Flux
1740-2015 (with Olof Beckman)

The Effect of Weighting of Sunspot Counts (with
the Locarno Observers)

The New SILSO Website (with Frédéric Clette)
Solar Physics: Topical Issue (with Ed Cliver)

What is Next? TSI? Cosmic Ray Proxies?
Climate?




Group Count from HS Compared to Raw, Simple, Unnormalized Averages
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The Group
Number

Douglas Hoyt and Ken
Schatten proposed (1995)
to replace the sunspot
number with a count of
Sunspot Groups. H&S
collected almost Y2 million
observations (not all of
: them good) and labored
hard to normalize them to
modern observations
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The Ratio Group/Zurich SSN has
Two Significant Discontinuities

Ratio Rg/Rz for when neitheris <5

Problem with Group Number
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At ~1947 (After Max Waldmeier took over) and at 1876-1910 (Greenwich calibration drifting)

As we found problems with the H&S normalization, we decided
to build a new Group Series from scratch’ 6




Building Backbones

Building a long time series from observations made over
time by several observers can be done in two ways:

« Daisy-chaining: successively joining
observers to the ‘end’ of the series, based on
overlap with the series as it extends so far
[accumulates errors]

« Back-boning: find a ‘good’ primary observer
for a certain [long] interval and normalize all
other observers individually to the primary
based on overlap with only the primary [no
accumulation of errors] N N N N

When several backbones have been constructed we can ' ' '

|

join [daisy-chain] the backbones. Each backbone can be ?_CI:_(F_(? -----
improved individually without impacting other backbones fﬁ fﬁ fﬁ If|3|
N N N N

We have applied this methodology to reconstruct the Group

Sunspot Number [using essentially the Hoyt&Schatten data] ~©aPon Backbone 5



c¢¢¢  The Wolfer Backbone

N N N N Alfred Wolfer observed 1876-1928 with the ‘standard’ 80 mm telescope

Wolfer 53
Quimby 33
Broger 32
Tacchini 25
Guillaume 24
Woinoff 21
Konkoly 20
Mt.Holyoke 19
Wolf small "3
Spoerer "8

" 11928
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Sykora 17
Moncalieri 16
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Ricco 12
Dawson 9
Schmidt " 3 W | ||
Weber 8
Leppig "6
Bernaerts | 3
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Rudolf Wolf from 1860 on
mainly used smaller 37
mm telescope(s) so those
observations are used for
the Wolfer Backbone




Normalization Procedure

Number of Groups: Wolfer vs. Wolf

| Wolfer Yearly Means 1876-1893 o
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For each Backbone we regress each observers group counts for each year against
those of the primary observer, and plot the result [left panel]. Experience shows that
the regression line almost always very nearly goes through the origin, so we force it
to do that and calculate the slope and various statistics, such as 1-o uncertainty
and the F-value. The slope gives us what factor to multiply the observer’s count by
to match the primary’s. The right panel shows a result for the Wolfer Backbone:
blue is Wolf’s count [with his small telescope], pink is Wolfer’s count [with the larger
telescope], and the orange curve is the blue curve multiplied by the slope. It is clear

that the harmonization works well.
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Regress More Observers Against Wolfer...

Schmidt, Winkler Weber, Spbrer
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Schwabe
Shea
Schmidt
Wolf big tel.
Hussey
Stark
Peters
Weber
Pastorff
Spoerer
Carrington
Howlet
Flaugergues
Arago

Schwarzenbrunner

Tevel
Herschel
DelLaRue
Lindener
Derfflinger

The Schwabe Backbone

Schwabe received a 50 mm telescope from Fraunhofer in 1826 Jan 22. This
telescope was used for the vast majority of full-disk drawings made 1826—1867.
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For this
backbone we
use Wolf’s
observations
with large 80mm
aperture
telescopes




The Schwabe And Wolfer Group Backbones

Schwabe Group Number Backbone
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Harmonizing Schwabe and Wolfer Backbones

Harmonizing Schwabe and Wolfer Backbones y Reducing Schwabe BB to Wolfer BB
1861-1883
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Koyama 3-‘17

The Modern Backbones

i SILSO Clette
s114:8333: 401 Kanzelhche

Reducing Locarno BB to Koyama BB
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Mr. Sergio Cortesi,

Locarno.
14



Combined Backbones back to 1800

Schwabe + Wolfer Backbone

Combined

Koyama+Locarno Backbone
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I'\_ \ - r\; \ [BRY ‘~ \ ‘

""" . e, e Wy . . < bl : W : s S

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
Estimated Standard Deviation as a Function of Time . .

3 The Standard Deviation falls from
o Relative SD in % 30% in 1800 to a rather constant
= 8% from 1835 onwards
20 4
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J.C. Staudach’s Drawings 1749-1799

Wolf had this
to be only
one group
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How do we combine the Staudach
and Schwabe Backbones?

Group Numbers 1749-1857 'Bridging' the Staudach-Schwabe Gap

Groups
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Examining the data for the
decades surrounding the
year 1800 it becomes
evident that the group
counts reported by the
observers during that
interval separate into two
categories: ‘low count’
observers and ‘high count’
observers. It is tempting to
lump together all
observers in each
category into two ‘typical
observers’ for the now
overlapping categories.

And now we can regress
one category against the

other and scale the low
category to the high
category, which now

overlaps sufficiently with

the Schwabe Backbone
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We can now scale the Staudach

High) Backbone to Schwabe’s

Comparison of Group Numbers and International Wolf Sunspot Number
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And construct a composite back to ~1750
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‘Brightest Star Method’
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In Edwin Hubble’s (1929) landmark paper showing the galaxy velocity-
distance relation he used, of necessity, the brightest star in nebulae and
the brightest galaxy in clusters as distance indicators, calibrated against
the few nebulae whose distance could be ascertained by more reliable
methods. We could apply the same procedure here and use the highest
group count in each year by any observer as a rough indicator of solar

activity (which still needs to be suitably calibrated)

This may be our only way of assessing the data before ~1730
19




Calibrating “Brightest Star” Data
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14C Cosmic Ray Proxy provides some support for the calibration

We now find the reduction factor
that will best match the backbones
(red curves) that we have
established. For the time before
1800 that factor is 0.88 and we
apply it all the way back to 1610
having no other purely solar data.
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Putting 1t All Together (Pure Solar)

Estimate of 406 Years of Number of Sunspot Groups
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Group Count from RGO Compared to Wolfer Backbone
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Hoyt & Schatten used the
Group Count from RGO
[Royal Greenwich
Observatory] as their
Normalization Backbone.
Why don’t we?

Greenwich Grqg

up Count Not Stable with Respect to Sunspot Groups

atip RGO/Sunspots

@

Because there are
strong indications
that the RGO data is
drifting before ~1900

LCR T

1890

1900 1910 1920 1930

And that is a major

B2 1% 18 1a

José Vaquero found a similar
result which he reported at the

2"d Workshop in Brussels.

Sarychev & Roshchina report in Solar Sys.
Res. 2009, 43: “There is evidence that the

Greenwich values obtained before 1880

and the Hoyt—Schatten series of Rg before

1908 are incorrect”.

reason for the ~1885
change in the level
of the H&S Group
Sunspot Number

And now for something
superficially different 22



The Diurnal Variation of the
Dlrectlon of the Magnetic Needle

onal Geomagnetic Service, BGS, Edinburgh
GDAS 1 g- e Data Hartland lat: S0.995N lon: 355 516E
Declination in degrees east

Date: 22-08-2004

(D@@@

681 10 Days of Varlatlon ]

7401 1 George Graham [London]
=L 1 discovered [1722] that the
| | geomagnetic field varied
660 | 1 during the day in a regular
648 . | | . . . . , , 1  Mmanner
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The Cause of the Dally Variation

Solar |_ Solar
Wind | | Magnetism
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Ocean Current 259,

Balfour
Stewart,
1882,
Encyclopedia
Britannica,
9th Ed.

“The various speculations on the
cause of these phenomena [daily
variation of the geomagnetic field
have ranged over the whole field of
likely explanations. (1) [...], (2) It
has been imagined that convection
currents established by the sun’s
heating influence in the upper
regions of the atmosphere are to
be regarded as conductors
moving across lines of magnetic
force, and are thus the vehicle of
electric currents which act upon
the magnet, (3)[...], (4)[...].

A Dynamo 2



The Cause of the Dally Variation
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We'll use this process in reverse to determine the EUV flux

Balfour
Stewart,
1882,
Encyclopedia
Britannica,
9th Ed.

“The various speculations on the
cause of these phenomena [daily
variation of the geomagnetic field
have ranged over the whole field of
likely explanations. (1) [...], (2) It
has been imagined that convection
currents established by the sun’s
heating influence in the upper
regions of the atmosphere are to
be regarded as conductors
moving across lines of magnetic
force, and are thus the vehicle of
electric currents which act upon
the magnet, (3)[...], (4)[...].

A Dynamo 2



Electron Density due to EUV

<102.7 nm The conductivity at a given height is proportional
F, to the electron number density Ne. In the dynamo
IDE + hv — 0OF + &~ region the ionospheric plasma is largely in
< photochemical equilibrium. The dominant plasma
i species is O*,, which is produced by photo
OT+e =04+ 0 ionization at a rate J (s™') and lost through
2 recombination with electrons at a rate a (s™),
producing the Airglow.

Because the process is slow (the Zenith angle x changes slowly) we have a quasi
steady-state, in which there is no net electric charge, so N; = N, = N. In a steady-

state dN/dt = J cos(x) - aN2=0andso N =(J a® cos(x))

a2
Since the effective conductivity, 2, depends on the number [_4: éf 4
of electrons N, we expect that 2 scales with the square > ‘ e
root V(J) of the overhead EUV flux with A < 102.7 nm. ——

% . a9 .,,/l‘
- 26



North Pole

The E-layer Current System

North X
rY

< > South Pole
; Morning /‘

\\\\ H \‘\ F) .

AN\ R
\\\ ‘\\D STL?N
_ EastY

Y = H sin(D)

_ A current system in the ionosphere is created
dY =H cos(D) dD Forsmalldd  gng maintained by solar EUV radiation

The magnetic effect of this system was what George Graham discovered
27



Solar Cycle and Zenith Angle Control

Diurnal Variation, rY, of Geomagnetic East Component
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Zenith Angle Function Modulated by Sunspot Number 1

Estimate of 406 Years of Number of Sunspot Groups
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The Diurnal Variation of the Declination for
Low, Medium, and High Solar Activity

Diurnal Variation of Declination at Praha (Pruhonice)
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We can eliminate the Zenith Angle dependence by using the annual mean amplitude »g
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A ‘Master’ record can
now be build by
averaging the yearly

PSM-POT-VLJ-SED-
CLF-NGK Chalins

range for the German

and French chains.

We shall normalize all

other stations to this
Master record.

Normalization is
necessary because

of different Iatitude? o

and different
underground "

South Pole

electric conductlvny\
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The range at every minimum is very nearly the same: a ‘floor’
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Because the standard deviation and the number of stations for each year

are known we can compute the 1- o standard error of the mean

31




EUV Bands and Solar Spectrum

Most of the Energetic Photons are in the 0.1-50 nm Band

Solar Spectrum
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Composite F2500 MHz Solar Nicrowave Flux
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rY and F10.7Y2 and EUVY?

Range rY as a Function of SQRT(F10.7)

V@)

Range rY as a Function of SQRT(EUV)
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Reconstructed F10.7 (an EUV proxy)

Relationship Between Range of Diurnal Variation East Component and F10.7
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Reconstructed EUV-UV

Reconstructed EUV Flux 0.1-50 nm
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Range rY matches Group Number well
and can be taken back to 1741

- Compare Group Number GN and Diurnal Range rY 4
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Ever-Present Basal Network?

The constant 2.5-101° photons/cm?/sec EUV flux in the 0.1-50 nm
wavelength range inferred for every sunspot minimum the past 235
years appears to be a ‘basal’ flux, present even when visible solar
activity has died away

The lack of any variation of this basal flux suggests that the flux (and
the network causing it) is always there, presumably also during
Grand Minima

If the magnetic network is always present, this means that a
chromosphere is also a permanent feature, consistent with the
observations of the ‘red flash’ observed during the 1706 and 1715
solar eclipses (Young, 1881). This is, however, a highly contentious
Issue (e.g. Riley et al., 2015), but one of fundamental importance

Young, 1881
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Connection with the Heliospheric Field

As the magnetic field in the solar wind (the Heliosphere) ultimately arises from the magnetic field on
the solar surface filtered through the corona, one would expect an approximate relationship
between the network field and the Heliospheric magnetic field, the latter now firmly constrained
(Svalgaard, 2003, 2015). Here is a comparison of the rY proxy for the EUV flux from the surface
network magnetic field structures, connected in the higher solar atmosphere to the coronal
magnetic field, and then carried out into the Heliosphere to be observed near the Earth:
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Assuming that the EUV flux
results from release of stored
magnetic energy and therefore
scales with the energy of the
network magnetic field (B?), we
can perhaps understand the
correspondence between the
Heliospheric field and the
network field.

Again we are faced with the puzzle that there seems to be a floor’ in both
and with the question what happens to this floor during a Grand Minimum
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Remember This Slide?

Ratio Rg/Rz for when neitherﬁ{ﬁ \
2

Problem with SSN
Problem with Group Number
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At ~1947 (After Max Waldmeier took over) and at 1876-1910 (Greenwich calibration drifting)

We now seek to find out what caused the discontinuity in 1947
40




In 1940s Waldmeier in Zurich began to ‘weight’
larger spots and count them more than once

No. 76
201417 29,384

et
WWWWW
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g
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2 Counting with
L i | g f No weighting
\& N hat]s]
YR 143145 ©
¢ 4L] 6. 2
I & "'E; 145 (47F | 9
E 1461 3 | 1
S o

5x10+44=94 5x10+19=69
94/69 = 1.36

/‘/-

m*"’/ﬁ Recounted 2003-2014: ~55,000 spots

Weighting Rules: “A
spot like a fine point
IS counted as one
spot; a larger spot,
but still without
penumbra, gets the
statistical weight 2, a
smallish spot with
penumbra gets 3,
and a larger one gets
5.” Presumably there
would be spots with
weight 4, too.

When the auxiliary station ‘Locarno’ became operational in 1957 they
adopted the same counting rules as Zurich and continue to this day ,,




Weighting increases the Sunspot

Number by a 'Weight Factor’
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Weighted SSN =10 * GN + weighted SN
Unweighted SSN = 10 * GN + actual real SN
Weight Factor = Weighted SSN / Unweighted SSN
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The Weight Factor Varies a bit with
Activity Level (not surprisingly)

Locarno Weight Factor per Month
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We can use the empirical relationship to remove the effect of
weighting, at least statistically, on a monthly basis
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SSN with/without Weighting

Observed and Corrected International Sunspot Number
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Light blue dots show
yearly values of un-

weighted counts
from Locarno, i.e.
not relying on the

weight factor

formula. The

agreement is
excellent

The inflation due to weighting
explains the second anomaly
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Computing the SSN from the Sunspot Area [SA] requires a larger scale factor from 1947 on
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Comparing Groups and Sunspot Numbers
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Compare Observed International Sunspot Number and SSN Computed from Group Number
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Scaling GN to SSN

SSN
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SSN*=12.09 GN
RZ = 0.9804

GN

We can also see the effect of Weighting as the difference between the

blue and red curves, indicated by the ‘boxes’ around values (green

dots) of the ratio between the ‘observed’ International Sunspot Number
and that scaled from the Group number.

Then what is happening in the slanted box since ~1995?
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The Number of Spots per Group Is
Decreasing and that Skews the SSN
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If the smallest spots are disappearing, the SSN will be affected but F10.7,
EUV, Sunspot Areas, TSI(?) and such other indices will not be as much 47




Does Building a Relative Sunspot Number Make
Sense? A Qualified ‘Yes’ (A personal view)

Our Users want a single series. What to give them?

The Group Number? That correlates very well with other solar
Indices (F10.7, EUV, TSI, Areas)

The SSN afflicted with a decreasing spot/group ratio? That no longer
correlates or where the correlation is changing over time making
long-term comparisons difficult

| propose a compromise (the Wolf Number), namely to adjust the
daily SSN such that it maintains a constant ratio with the Group
Number (e.g. on a yearly basis)

In any event the ‘raw’ [and also published] data will be GN = the
number of groups and SN = the number of [unweighted] spots.

Needless to say there will be opposition to this, but there is always
opposition to anything new.
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So, here Is the Wolf Number
(replacing Caution with Courage)

Monthly Average Wolf Numbers WN Since 1818
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V2RI Is the New Series on the WDC/SILSO website
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The result of
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What is Next? TSI? Cosmic Ray Proxies? Climate???
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Opposition and Rearguard Action

As Jack Harvey (39 SSN Workshop, Tucson 2013) pointed out: It's Ugly INn there!
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Opposition and Rearguard Action

As Jack Harvey (39 SSN Workshop, Tucson 2013) pointed out:
It's ugly in there!

. (©)  There was a Seminar at HAO a week ago (7/14 by Usoskin):
/ f,:;:jlpresenting the Modern Grand Maximum as an ‘Observational Fact

J
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These illustrious authors seem to advocate a series very close to ours 53
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The open solar magnetic
flux (OSF) is the main
heliospheric parameter

driving the modulation of

cosmic rays.

The OSF has been
modeled by quantifying
the occurrence rate and
magnetic flux content of
coronal mass ejections

fitted to geomagnetic data.

The OSF and the cycle-
variable geometry of the
heliospheric current sheet
allows reconstruction of
the cosmic ray modulation
potential, @.

Reconciliation !
“This just in’

llya G. Usoskin, Rainer Arlt, Eleanna Asvestari, Ed Hawkins, Maarit Kapyla, Gennady A.
Kovaltsov, Natalie Krivova, Michael Lockwood, Kalevi Mursula, Jezebel O'Reilly, Matthew
Owens, Chris J. Scott, Dmitry D. Sokoloff, Sami K. Solanki, Willie Soon, and José M.

Vaquero, Astronomy & Astrophysics, July 21, 2015

54



Conclusions

Both the International Sunspot Number and the
Group Sunspot Number had serious errors

Correcting the errors reconciles the two series

The new pure solar series are confirmed by the
geomagnetic records and by the cosmic ray
records

There i1s no Grand Modern Maximum, rather
several similar maxima about 120 years apart

There i1Is much more work to be done:
“Hoc opus, hic labor”

The end
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Abstract

The New Sunspot Series, Methods, Results, Implications, Opposition

We have reconstructed the sunspot group count, not by comparisons with other reconstructions and
correcting those where they were deemed to be deficient, but by a re-assessment of original sources.
The resulting series is a pure solar index and does not rely on input from other proxies, e.g.
radionuclides, auroral sightings, or geomagnetic records. ‘Backboning’ the data sets, our chosen
method, provides substance and rigidity by using long-time observers as a stiffness character. Solar
activity, as defined by the Group Number, appears to reach and sustain for extended intervals of time
the same level in each of the last three centuries since 1700 and the past several decades do not
seem to have been exceptionally active, contrary to what is often claimed.

Solar Extreme Ultraviolet (EUV) radiation creates the conducting E—layer of the ionosphere, mainly by
photo ionization of molecular Oxygen. Solar heating of the ionosphere creates thermal winds which by
dynamo action induce an electric field driving an electric current having a magnetic effect observable
on the ground, as was discovered by G. Graham in 1722. The current rises and sets with the Sun and
thus causes a readily observable diurnal variation of the geomagnetic field, allowing us the deduce the
conductivity and thus the EUV flux as far back as reliable magnetic data reach. High—quality data go
back to the ‘Magnetic Crusade’ of the 1830s and less reliable, but still usable, data are available for
portions of the hundred years before that. J.R. Wolf and, independently, J.—A. Gautier discovered the
dependence of the diurnal variation on solar activity, and today we understand and can invert that
relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare
that to the F10.7 flux and the sunspot number, and find that the reconstructed EUV flux reproduces
the F10.7 flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as
currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at
least as measured by the EUV and related indices. The reconstruction suggests that the EUV flux
reaches the same low (but non—zero) value at every sunspot minimum (possibly including Grand

Minima), representing an invariant ‘solar magnetic ground state’. 56



