Using Old Geomagnetic Data to Say Something about the Sun

Leif Svalgaard Oct. 16, 2013

The Russian Observatories

Helsinki [Finland] established on 28th March 1838 by imperial decree of Czar Nicholas I. First director J.J. Nervandor (1805-1848).

Ready for business: July 1st, 1844, continued until 1905. Last few years unreliable because of disturbances from electric tramway traffic started in 1901.

Variometer Invented by Gauss

(Doktinetore.												
Ar 1999 Manad December												
Timme //												
Noma.	Dat.	o'	10'	20		10	10'	. T 31.1.4				
Strees.			- and de	0.000	0.50.00							
ý.		1799,25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70 4922	17. 7,10	93102	77 81,85	72,520				
in the second		0-1,50	70.6,22	9 . 9 , 5 .	,,.	7	9.5 , 15	777,00				
Gen		909.00	1		902.50	951,80	162.90	79954				
Section 14		7.7.51	77752	2.5 \$ 190	754300	out a sea	256.20	2000200				
al in disso. A traces		90000	7.53 377	258 100	257302	200 40	1.1.2 170	279.900				
142		1.5.1.1		25 7405		12000	20200	1 20/2010				
Noteres		0.50-0-0	2-6 24	0.0.20		10000	ace u	77900				
Sugar		0.2.00		0.5 11	195	1120	72 7100	797,00				
. Const.					10 9 101	V		, n. 1				
P. ,		727,75	248,32	748,00	90-0,49	750,35	25000	799 200				
Second Second	1	7:000	7: 3 . 47	252177	752107	2.50040	9:2020	. V?? ? ***	ŀ			
-15 -1	1	9 19,10	20.40	25,10	1. 212101	2	7	- 7 Y Y Y Y Y				
Therefor	۳ ^۲	760,72	762,1	96200	20300	761,40	260,00	2000				
· . estan, 7	14	757,25	95-2.95	777490	20.0420	223.0	220,00	72.980				
	15	20 400	1.	,, .	2 J.	1 2 . 200	1	490 , 4				
I solden	10	20007	756.75	7 5 2,00	25 9,20	9 600,00	760,00	799,00				
- Degalo	4 17	200,00	960,00	961,00	396 24	2600	20082	12 1 1				
Sindire.	1. 18	756,00	758127	758020	787195	2000	75902	277700				
. drage	~ 19	2.5 0.57	257.57	959,22	753.90	961.51	261.42	799.00				
	· 20	957,05	250,2	250,57	752,25	250,00	247,54	729.00				
. Hours	21	24 3 ,75	242.07	20 10 ,20	- v ~, v	200369	75220	725				
degla	1 22	745,20	945,05	949.00	747,35	954.72	960.50	799,00				
Com	1 23	954,50	754,75	.756,00	175605	756,05	957.40	779,00				
Second.	< 24	756.00	256.27	957.17	25000	957.12	25610	2.59 40				
Juni.	.: 25	75.2 100	25.9142	159.35	9,0012	95.02	151 ,50	79.00				
Magte	> 20	175.9.20	257,62	-18-7,92	96:120	26-192	-160,92	19420				
Ceteries	27	254,90	25-5700	250,00	77 57472	900,00	249.97	1.19,00				
Jetons	28	185,10	95 5,10	754,25	251.21	252.0	95150	793.00				
Hugh		. 51,40	757.17	-749,4-	1181.95	2509105	- 950,55	200.00				
Haylo	-3 30	960,25	1958 57	957,17	\$ 52.60	452.32	172.10	7470.64				
June 2.	: 31	762.2	Salar	76014	36.4.10	15000	158.2	202.20				
		· · ·	· ·	· · ·	1							
						1						
				1								
		1	1	1		1	1	1				

The Raw Data

1844-1856 10 minute cadence1856-1897 1 hour cadence

2.5 million observations

ų L

Staff: Director and 12 observers [students]

Many hundred notebooks

Detail of Raw Data

Deklination År 1949 Månad December Timme 11										
Namn.	Dat.	o'	10'	20	20	16	50'	Tika		
. Eterso Sucarea	1 ₁ 1 1 1 1 1 2 1 3	949,85 958,50 959,30	95 3,40	954,22 959,55	959,40 - 162,67 968010	961,92 963,22	976,90	79350	, ,	

Digitized by pupils in elementary schools all across Finland

Sample Data

Regular daily variation

Magnetic storm

Fig. 10b. The most violent magnetic storm in 1844-1853 occurred on December 20, 1847. The figure depicts declination variations in December 17-22, 1847. The greatest peak-to-peak values of D were about 3° in a few hours being roughly ten times larger than the regular variation shown in Fig. 10a.

Relation to HMF Strength B

Wolf's Discovery: $rD = a + b R_W$

 $dY = H \cos(D) dD$ For small dD

A current system in the ionosphere is created and maintained by solar FUV radiation

The Diurnal Variation of the Declination for Low, Medium, and High Solar Activity

All Geomagnetic Observatories Show the Relationship with Sunspot Number

H Scale Value Problem at Helsinki

Also for Declination in 1886

Figure 4: Diurnal variation of H [left] and of D [right] at Helsinki for three years with sunspot number ~25.

Creates Problems for Assessment of Long-Term Variation of Activity

Bartels' u-index

24-hour running means of the Horizontal Component of the low- & midlatitude geomagnetic field remove most of local time effects and leaves a Global imprint of the Ring Current [Van Allen Belts]:

A quantitative measure of the effect can be formed as a series of the unsigned differences between consecutive days: The InterDiurnal Variability, IDV-index

IDV is strongly correlated with HMF B, but is blind to solar wind speed V

Since we can also estimate solar wind speed from geomagnetic indices [Svalgaard & Cliver, JGR 2007] we can calculate the radial magnetic flux from the total B using the Parker Spiral formula:

There seems to be both a Floor and a Ceiling and most importantly no longterm trend since the 1830s.

Re-evaluation of Cosmic Ray Data

Still problem with the 1880-1890s and generally with low values

Conclusion

- Important to correct data for scale value errors
- Signs of consensus on Cosmic Ray data
- No Modern Grand Maximum
- This is still controversial, hence my current interest