
 1

Leif Svalgaard
MI Programming

408250 & 408251

http://iSeries400.org

 2

 3

Introduction

Why Program at the Machine-Level?
Leaving aside the precise definition of Machine-Level for a bit, a good reason is that it is just plain ol’ fun.
It certainly is different from cranking out RPG-programs. Then there are all the standard reasons that have
to do with wringing more performance out of your system with the usual caveats about only optimizing
what is worth optimizing. There are many APIs on the AS/400 that are just machine-level instructions in
disguise, and at times bad ones at that. When you are using such an API, you are doing machine-level
programming, but often without understanding precisely what is going on and often forced into a clumsy
and tedious format required by the high-level language you are using. If you know how to program at the
machine-level, you will find it easier to use APIs from your high-level language, and will use them with
more confidence. Finally, there are things that you just can’t do in any reasonable, other way without going
to the machine-level.

What is the Machine-Level?
One definition is that it simply is the lowest level at which you can work as a programmer. This level
constitutes an abstract machine, and you program to that abstraction. There are always levels below that
you ordinarily don’t care about, and in fact often don’t want even to know about. The AS/400 is somewhat
unusual because there are two machine-levels that play a role in practice. The upper one is called the MI-
level and the lower one is the CISC/RISC platform. MI, or the Machine Interface, is in a very real sense
what makes your machine an AS/400 rather than just a souped-up PowerPC. This book will show you how
to program to the MI-level. We shall also examine the RISC platform in detail so you will understand
something of what goes on “under the covers”.

Above and Below the MI
The operating system that controls your machine has two parts. Over time some misleading nomenclature
has been used. You have probably heard about “horizontal” and “vertical” micro-code. These names have
fallen out of favor, mainly for legal reasons. Since “micro-code” is considered part of the hardware you can
own micro-code. IBM doesn’t want you to own the operating system, so requires you to license it instead,
hence had to change the names. Today, names like OS/400 and SLIC (System Licensed Internal Code) are
used. Basically, OS/400 is programmed to the MI-level and SLIC is programmed to the PowerPC RISC
platform. This is often expressed by saying that OS/400 (and your applications) are above the MI and SLIC
is below the MI, hence justifying talking about the machine interface.

Old MI and New MI
Just as the AS/400 hardware has evolved, MI has too. MI was designed to be extensible and new operations
and functionality have been added over time as needed. We are at a point now where one can talk about the
“old” or classic MI supporting the “old programming model”, OPM, and the “new” MI supporting the ILE
programming model with its emphasis on C-style programs. Today’s RISC-based AS/400 only support the
ILE programming model, but a special module in SLIC takes care of transforming OPM program objects
into ILE modules bound into an ILE program. The module that does that has been called the “Magic”
module. There is this notion that there is some magic involved in MI-programming. I don’t like magic.
There is a famous quote from the Science Fiction master Arthur C. Clarke that “any sufficiently advanced
technology is indistinguishable from magic”. One purpose of this book is to dispel some of the magic by
seeking an actual understanding of what is happening.

Is MI Hard and Arcane?
It is a common misconception that machine-level programming is hard. There may be some truth to that at
the RISC level, but that certainly is not so at the MI-level. MI is a very expressive language with powerful
data structuring facilities that makes programming easy and straightforward. I can still remember my very
first MI-program (some time back in 1989). I converted a 2000-line COBOL program into MI in less than a

 4

week and it ran the first time dropping the time it took to generate a 5250 datastream from 0.337 seconds to
0.017 seconds for a speed-up factor of 20. If I can do it, so can you.

What About All Those MI-Instructions?
Analysis of several large production-type MI-programs containing thousands of instructions show that only
10 instructions comprise almost 80% of all instructions used:

Mnemonic Freq % of Total Instruction Description
CPYBLA 19.89 % 19.89 % Copy Bytes Left Adjusted
CPYNV 10.86 % 30.75 % Copy Numeric Value
B 10.03 % 40.78 % Branch
CMPNV 9.79 % 50.57 % Compare Numeric value
ADDN 7.95 % 58.52 % Add Numeric
CMPBLA 6.53 % 65.05 % Compare Bytes Left Adjusted
CPYBLAP 4.27 % 69.32 % Copy Bytes Left Adjusted with Pad
CALLX 3.80 % 73.12 % Call External (program)
SUBN 3.62 % 76.74 % Subtract Numeric
CALLI 2.67 % 79.41 % Call Internal (subroutine)

Fundamental operations include copying characters (CPYBLA and CPYBLAP), copying numbers (CPYNV),
branching (B), and comparisons (CMPBLA for characters and CMPNV for numbers). These alone make up
more than 61% of all instructions coded. The moral of this exercise was to show that a lot could be
accomplished with a little, so you should be able to quickly become productive. Ovid said “Add little to
little and there will be a big pile”, same thing here.

Small Programs or Large Programs
Some people advocate only writing very small programs in MI. Useful programs can be as short as a single
instruction (with an implied return instruction). The argument is that maintaining MI programs is hard. This
is actually not the case, rather, well-written MI-programs are easy to maintain (as are most well-written
programs in any language). What was true, was that finding people with the skills needed was hard. That is
another one of the reasons for this very book. When you have worked your way through the book, you will
find that acquiring MI-skills was not all that hard.

I know of whole applications written solely in MI, comprising tens of thousands of lines of source code.
Experience shows that these applications are not any harder to maintain than applications written in other
languages. Because of the interoperability of programs on the AS/400 (one of the delivered promises of
ILE) it probably would make good sense to write pieces of the application in languages best suited for that
particular piece, with MI taking its place among the others on an equal footing doing what it does best.

Why is MI so Secret?
As we all know, IBM has not been very helpful in supplying information about MI-programming. The
hoped for support, expressed in NEWS 3X/400 September 1989, that “You may decide that you would like
IBM to let the S/38 and AS/400 “be all that they can be” by openly supporting MI” did not come to pass.
There have been a handful of articles in the various AS/400 publications, and only recently has there been a
mailing list (MI400@MIDRANGE.COM) to cater for the curious-minded AS/400 programmers. The IBM
public documentation for the MI language is very sparse. The MI Functional Reference Manual, which
describes each (of a subset, only) MI instruction doesn’t even have one single MI example within it’s many
pages. The System API Reference manual has a tiny chapter, dedicated to the MI language syntax, but all
of this information not really enough to be a working set of reference materials for programming in MI.

 5

Getting Your Own MI-Compiler

MI-Compilers
If you want to program in MI, you of course will need a compiler. While you could purchase an MI-
compiler for the S/38 from IBM (the “PRPQ”), IBM claimed than no MI-compiler for the AS/400 was
available. Several people discovered early on that contrary to this claim, every AS/400 was, in fact, shipped
with an MI-compiler built in. What is missing is a convenient way to invoke the compiler, i.e. there is no
CRTMIPGM command. Some people would you sell a simple front-end program as “An MI-compiler” for
several thousand dollars. Maybe to stop that practice (or for reasons unknown), IBM finally documented an
API named QPRCRTPG (Create Program) to invoke the compiler. You can find this information (at least
until IBM pulls it again) at this web-site:

 “http://as400bks.rochester.ibm.com/cgi-bin/bookmgr/bookmgr.cmd/BOOKS/QB3AVC00/7.0”.

The method described at the above URL is needlessly complex and even wrong if you follow the
instructions to the letter (hint: one of the CL-programs blows up because the source presented to it exceeds
the 2000-character limit imposed on a variable in CL) and as such we shall not duplicate that material here.
Instead we shall write an RPG-program that will invoke the API. If you do not have an RPG compiler, you
can download a ready-made savefile with the resulting compiler front-end from our website at this URL:
http://iSeries400.org/micomp.exe. You will learn more from trying to build one yourself following the
steps given in this book.

The Create Program (QPRCRTPG) API converts the symbolic representation (read: simple source text) of a
machine interface (MI) program into an OPM program object. This symbolic representation is known as
the intermediate representation of a program. The QPRCRTPG API creates a program object that resides in
the *USER domain and runs in the *USER state. In later chapters we shall examine the domain/state
concepts in detail.

Create Program (QPRCRTPG) API
The QPRCRTPG API is documented in the books for V3R2 and in the System API manual for later releases.
Here is the an on-line reference http://publib.boulder.ibm.com/pubs/html/as400/online/v3r2eng.htm. Below
I excerpt here the relevant information for your convenience (who knows for how long the above link is
still good?). Much of the detailed description (shown in a smaller font) may not make much sense to your
at this stage, so you should just consider it to be reference material, skim it, and continue with confidence.

What makes the API a little tricky to use is that you do not pass it the name of a member in a source file as
you would ordinarily do, but instead, you pass the API a large character array containing the source. For
this reason, a front-end is usually required to read the source records into an array. Here is first the
parameter list for the API:

 | 1 | Program source statements | In | Char(*) |
 | 2 | Length of program source statements | In | Binary(4) |
 | 3 | Qualified program name | In | Char(20) |
 | 4 | Program text | In | Char(50) |
 | 5 | Qualified source file name | In | Char(20) |
 | 6 | Source file member information | In | Char(10) |
 | 7 | Source file last changed date and time | In | Char(13) |
 | 8 | Qualified printer file name | In | Char(20) |
 | 9 | Starting page number | In | Binary(4) |
 | 10 | Public authority | In | Char(10) |
 | 11 | Option template | In | Char(*) |
 | 12 | Number of option template entries | In | Binary(4) |
 | 13 | Error code (optional) | I/O | Char(*) |
 |____|__|_____|___________|

 6

The MI-Compiler Front-End
We must first decide which language to use for our compiler front-end. Every AS/400 has a CL-compiler,
but the limitation of 2000 characters for the size of the variable to hold the MI source string is severe. Most
AS/400 shops have an RPG-compiler, but even RPG has limitations. Other languages are not used broadly
enough to be viable for my purpose, so I decided to write the front-end in MI! Of course, I still have to
compile the front-end, but since the front-end code is small (about 200 lines) I can embed the code in an
RPG array and have a simple RPG-program call the QPRCRTPG API to generate the MI front-end program.

 /*==
 * This program creates MI compiler front-end CRTMIPGM in *CURLIB=
 * Source statements for the MI compiler are found in array MI. =
 *==
 E MI 1 208 80
 I DS
 I B 1 40#SRCLN
 I I 'CRTMIPGM *CURLIB' 5 24 #PGMLB
 I 25 74 #TEXT
 I I '*NONE' 75 94 #SRCFL
 I 95 104 #MBR
 I 105 117 #CHGDT
 I 105 105 #CENT
 I 106 107 #YY
 I 108 111 #MMDD
 I 112 117 #HMS
 I 118 137 #PRTFL
 I B 138 1410#STRPG
 I 142 151 #AUT
 I 152 327 #OP
 I B 328 3310#NOOPT
 C CALL 'QPRCRTPG'
 C PARM MI
 C PARM 16640 #SRCLN
 C PARM #PGMLB
 C PARM 'MI Comp' #TEXT
 C PARM #SRCFL
 C PARM #MBR
 C PARM #CHGDT
 C PARM ' ' #PRTFL
 C PARM 0 #STRPG
 C PARM '*USE' #AUT
 C PARM '*REPLACE'#OP
 C PARM 1 #NOOPT
 C MOVE *ON *INLR

You can easily recognize the parameters to the QPRCRTPG API. All we have to do now is to populate the
array MI with the appropriate code (as shown below), compile the RPG program and run it. The result is
the CRTMIPGM program object. Now, you should try this right away.

Below are the contents of the MI array. The curious ‘*/’ in the first line has a matching ‘/*’ at the beginning
of the RPG-program. Comments in MI are free-form text (can be spread over several lines) starting with
‘/*’ and ending with ‘*/’. That makes the entire code part of the RPG-program an MI-comment. In fact, the
program is at the same time a valid RPG-program and a valid MI-program. You can give it to either
compiler and it will compile and run. Why would I do a thing like this? Maintenance. I can enhance the
front-end and make it a real pre-compiler supported added functionality. I have, in fact, done that already
with the %INCLUDE facility. I can then test the result as I would test any other MI-program.

Don’t worry yet about how the code in the array works. We shall get to all that in due time. For now, just
look at it as an example of a non-trivial MI-program. This is not a toy program

Here is then, finally, the RPG-array:

** */
DCL SPCPTR .MBR PARM;
DCL SPCPTR .FIL PARM;
DCL SPCPTR .DET PARM;
DCL OL *ENTRY (.MBR, .FIL, .DET) PARM EXT MIN(1);
DCL DD MBR CHAR(10) BAS(.MBR);
DCL DD FIL CHAR(10) BAS(.FIL);
DCL DD DET CHAR(10) BAS(.DET);

 7

DCL SPC PCO BASPCO;
 DCL SPCPTR .PCO DIR;

DCL SPC SEPT BAS(.PCO);
 DCL SPCPTR .SEPT(2000) DIR;

DCL SPCPTR .UFCB INIT(UFCB);
DCL DD UFCB CHAR(214) BDRY(16);
 DCL SPCPTR .ODP DEF(UFCB) POS(1);
 DCL SPCPTR .INBUF DEF(UFCB) POS(17);
 DCL SPCPTR .OUTBUF DEF(UFCB) POS(33);
 DCL SPCPTR .OPEN-FEEDBACK DEF(UFCB) POS(49);
 DCL SPCPTR .IO-FEEDBACK DEF(UFCB) POS(65);
 DCL SPCPTR .NEXT-UFCB DEF(UFCB) POS(81);

 DCL DD * CHAR(32) DEF(UFCB) POS(97);
 DCL DD FILE CHAR(10) DEF(UFCB) POS(129) INIT("QMISRC");
 DCL DD LIB-ID BIN (2) DEF(UFCB) POS(139) INIT(-75);
 DCL DD LIBRARY CHAR(10) DEF(UFCB) POS(141) INIT("*LIBL");
 DCL DD MBR-ID BIN (2) DEF(UFCB) POS(151) INIT(73);
 DCL DD MEMBER CHAR(10) DEF(UFCB) POS(153);

 DCL DD ODP-DEVICE-NAME CHAR(10) DEF(UFCB) POS(163);
 DCL DD ODP-DEVICE-INDEX BIN (2) DEF(UFCB) POS(173);

 DCL DD FLAGS-PERM-80 CHAR(1) DEF(UFCB) POS(175) INIT(X'80');
 DCL DD FLAGS-GET-20 CHAR(1) DEF(UFCB) POS(176) INIT(X'20');
 DCL DD REL-VERSION CHAR(4) DEF(UFCB) POS(177) INIT("0100");
 DCL DD INVOC-MARK-COUNT BIN (4) DEF(UFCB) POS(181);
 DCL DD MORE-FLAGS CHAR(1) DEF(UFCB) POS(185) INIT(X'00');
 DCL DD * CHAR(23) DEF(UFCB) POS(186);

 DCL DD RECORD-PARAM BIN (2) DEF(UFCB) POS(209) INIT(1);
 DCL DD RECORD-LENGTH BIN (2) DEF(UFCB) POS(211) INIT(92);

 DCL DD NO-MORE-PARAMS BIN (2) DEF(UFCB) POS(213) INIT(32767);

DCL SPC ODP BAS(.ODP);
 DCL DD * CHAR(16) DIR;
 DCL DD DEV-OFFSET BIN (4) DIR;

DCL SPCPTR .DMDEV;
DCL SPC DMDEV BAS(.DMDEV);
 DCL DD MAX-DEVICE BIN (2) DIR;
 DCL DD NBR-DEVICES BIN (2) DIR;
 DCL DD DEVICE-NAME CHAR(10) DIR;
 DCL DD WORKAREA-OFFSET BIN (4) DIR;
 DCL DD WORKAREA-LENGTH BIN (4) DIR;
 DCL DD LUD-PTR-INDEX BIN (2) DIR;
 DCL DD DM-GET BIN (2) DIR;

DCL SPCPTR .GETOPT INIT(GETOPT);
DCL DD GETOPT CHAR(4);
 DCL DD GET-OPTION-BYTE CHAR(1) DEF(GETOPT) POS(1) INIT(X'03');
 DCL DD GET-SHARE-BYTE CHAR(1) DEF(GETOPT) POS(2) INIT(X'00');
 DCL DD GET-DATA-BYTE CHAR(1) DEF(GETOPT) POS(3) INIT(X'00');
 DCL DD GET-DEVICE-BYTE CHAR(1) DEF(GETOPT) POS(4) INIT(X'01');

DCL SPCPTR .NULL;
DCL OL GET (.UFCB, .GETOPT, .NULL);
DCL OL OPEN (.UFCB);
DCL OL CLOSE(.UFCB);

DCL SPC INBUF BAS(.INBUF);
 DCL DD INBUF-DATE CHAR(12) DEF(INBUF) POS(1);
 DCL DD INBUF-LINE CHAR(80) DEF(INBUF) POS(13);
 DCL DD INBUF-KEYWORD CHAR(9) DEF(INBUF-LINE) POS(1);
 DCL DD INBUF-NEWMBR CHAR(10) DEF(INBUF-LINE) POS(10);

DCL SPCPTR .SOURCE;
DCL DD LINE(10000) CHAR(80) AUTO;
DCL DD LINE-NBR BIN(4);
DCL DD READ-NBR BIN(4);
DCL DD SAVE-NBR BIN(4);
DCL DD SKIP-NBR BIN(4);
DCL DD INCL-NBR BIN(2);

DCL SPCPTR .SIZE INIT(SIZE);
DCL DD SIZE BIN(4);

 8

DCL SPCPTR .PGM INIT(PGM);
DCL DD PGM CHAR(20);
 DCL DD PGM-NAME CHAR(10) DEF(PGM) POS(1);
 DCL DD PGM-LIB CHAR(10) DEF(PGM) POS(11) INIT("*CURLIB");

DCL SPCPTR .PGM-TEXT INIT(PGM-TEXT);
DCL DD PGM-TEXT CHAR(50) INIT(" ");

DCL SPCPTR .PGM-SRCF INIT(PGM-SRCF);
DCL DD PGM-SRCF CHAR(20) INIT("*NONE");

DCL SPCPTR .PGM-SRCM INIT(PGM-SRCM);
DCL DD PGM-SRCM CHAR(10) INIT(" ");

DCL SPCPTR .PGM-SRCD INIT(PGM-SRCD);
DCL DD PGM-SRCD CHAR(13) INIT(" ");

DCL SPCPTR .PRTF-NAME INIT(PRTF-NAME);
DCL DD PRTF-NAME CHAR(20);
 DCL DD PRTF-FILE CHAR(10) DEF(PRTF-NAME) POS(1) INIT("QSYSPRT ");
 DCL DD PRTF-LIB CHAR(10) DEF(PRTF-NAME) POS(11) INIT("*LIBL ");

DCL SPCPTR .PRT-STRPAG INIT(PRT-STRPAG);
DCL DD PRT-STRPAG BIN(4) INIT(1);

DCL SPCPTR .PGM-PUBAUT INIT(PGM-PUBAUT);
DCL DD PGM-PUBAUT CHAR(10) INIT("*ALL");

DCL SPCPTR .PGM-OPTS INIT(PGM-OPTS);
DCL DD PGM-OPTS(16) CHAR(11) INIT("*REPLACE ", "*NOADPAUT ",
 "*NOCLRPSSA ", "*NOCLRPASA ", "*SUBSCR ",
 "*LIST ", "*ATR ", "*XREF ");

DCL SPCPTR .NBR-OPTS INIT(NBR-OPTS);
DCL DD NBR-OPTS BIN(4);

DCL OL QPRCRTPG (.SOURCE, .SIZE, .PGM, .PGM-TEXT, .PGM-SRCF,
 .PGM-SRCM, .PGM-SRCD, .PRTF-NAME, .PRT-STRPAG,
 .PGM-PUBAUT, .PGM-OPTS, .NBR-OPTS) ARG;

DCL SYSPTR .QPRCRTPG INIT("QPRCRTPG", CTX("QSYS"), TYPE(PGM));

DCL DD NBR-PARMS BIN(2);
DCL EXCM * EXCID(H'5001') BP(EOF) IMD;

DCL DD START CHAR(80);
 DCL DD * CHAR(12) DEF(START) POS(1) INIT("/* INCLUDE: ");
 DCL DD NEWMBR CHAR(10) DEF(START) POS(13);
 DCL DD * CHAR(58) DEF(START) POS(23) INIT(" */");

DCL DD STOP CHAR(80);
 DCL DD * CHAR(80) DEF(STOP) POS(1) INIT("/* END INCLUDE */");

/**/

ENTRY * (*ENTRY) EXT;
 CPYNV LINE-NBR, 1;
 CPYNV INCL-NBR, 0;
 CPYNV SKIP-NBR, 0;

 CPYBWP .NULL, *;
 CPYNV NBR-OPTS, 6; /* YES: *LIST; NO: *ATR, *XREF */
 STPLLEN NBR-PARMS;
 CMPNV(B) NBR-PARMS, 3/NEQ(PREPARE-FILE);
 CMPBLA(B) DET, <10|*DETAIL >/EQ(YES-DETAIL);
 CMPBLA(B) DET, <10|*NOLIST >/EQ(NO-LIST);
 B PREPARE-FILE;
YES-DETAIL: CPYNV(B) NBR-OPTS, 8/NNAN(PREPARE-FILE);
NO-LIST: CPYNV(B) NBR-OPTS, 5/NNAN(PREPARE-FILE);

PREPARE-FILE:
 CPYBLAP FILE, "QMISRC", " ";
 CMPNV(B) NBR-PARMS, 1 /EQ(SET-MEMBER);
 CPYBLA FILE, FIL;
SET-MEMBER:
 CPYBLA MEMBER, MBR;
 CPYBLA PGM-NAME, MBR;
OPEN-FILE:
 CPYNV READ-NBR, 0;
 CALLX .SEPT(12), OPEN, *;
 ADDSPP .DMDEV, .ODP, DEV-OFFSET;

 9

NEXT-SOURCE-RECORD:
 CALLX .SEPT(DM-GET), GET, *;
 ADDN(S) READ-NBR, 1;
 SUBN(SB) SKIP-NBR, 1/NNEG(NEXT-SOURCE-RECORD);
 CMPBLA(B) INBUF-KEYWORD, "%INCLUDE "/EQ(INCLUDE-MEMBER);
 CPYBLA LINE(LINE-NBR), INBUF-LINE;
 ADDN(S) LINE-NBR, 1;
 B NEXT-SOURCE-RECORD;

EOF:
 CALLX .SEPT(11), CLOSE, *;
 CMPNV(B) INCL-NBR, 0/HI(END-INCLUDE);
 CPYBLAP LINE(LINE-NBR), <23|/*'/*'/*"/*"*/; PEND;;;>, " ";
 MULT SIZE, LINE-NBR, 80;
 SETSPP .SOURCE, LINE;
 CALLX .QPRCRTPG, QPRCRTPG, *;
 RTX *;

ERROR:
 RTX *;

INCLUDE-MEMBER:
 ADDN(S) INCL-NBR, 1;
 CPYBLA NEWMBR, INBUF-NEWMBR;
 CALLX .SEPT(11), CLOSE, *;
 CPYBLA MEMBER, NEWMBR;
 CPYBLA LINE(LINE-NBR), START;
 ADDN(S) LINE-NBR, 1;
 CPYNV(B) SAVE-NBR, READ-NBR/NNAN(OPEN-FILE);

END-INCLUDE:
 CPYBLA LINE(LINE-NBR), STOP;
 ADDN(S) LINE-NBR, 1;
 SUBN(S) INCL-NBR, 1;
 CPYBLA MEMBER, MBR;
 CPYNV(B) SKIP-NBR, SAVE-NBR/NNAN(OPEN-FILE);

PEND;

The curious statement “CPYBLAP LINE(LINE-NBR), <23|/*'/*'/*"/*"*/; PEND;;;>, " ";” catches
strings and comments that are not closed. Without this statement, the translator is prone to crashing
(“dumping”) if end-of-file is encountered and a string or comment is still open.

The CRTMIPGM Command
It is most convenient to use CRTMIPGM from a command. Create the source member CRTMIPGM in the
source file QCMDSRC:

 CMD PROMPT('Create MI program')
 PARM KWD(PGM) TYPE(*CHAR) LEN(10) MIN(1) +
 PROMPT('Program Source Member')
 PARM KWD(FILE) TYPE(*CHAR) LEN(10) +
 DFT(QMISRC) +
 PROMPT(' in Source File')
 PARM KWD(LIST) TYPE(*CHAR) LEN(10) +
 DFT(*LIST) +
 PROMPT(' LIST option')

Then use option 14 with prompting to create the command:

 Create Command (CRTCMD)
 Type choices, press Enter.
 Command > CRTMIPGM Name
 Library > LSVALGAARD Name, *CURLIB
 Program to process command . . . > CRTMIPGM Name, *REXX
 Library > *LIBL Name, *LIBL, *CURLIB
 Source file > QCMDSRC Name
 Library > LSVALGAARD Name, *LIBL, *CURLIB
 Source member > CRTMIPGM Name, *CMD
 Threadsafe *NO *YES, *NO, *COND

You can the either run it from the command line:

===> CRTMIPGM PGM(yourpgm) FILE(QMISRC) LIST(*LIST)

 10

or (if the defaults are to your liking):

===> CRTMIPGM yourpgm

You can also prompt the command:

 Create MI program (CRTMIPGM)
 Type choices, press Enter.
 Program Source Member yourpgm Character value
 in Source File QMISRC Character value
 LIST option *LIST Character value

Note, that the source file is by default QMISRC on the library list. The following options are selected
automatically in the front-end:

 *REPLACE *NOADPAUT *NOCLRPSSA *NOCLRPASA *SUBSCR *LIST *ATR *XREF

The *LIST option on the command cuts the last two options from the above set, meaning, in effect *LIST
only. *NOLIST cuts the last three, and *DETAIL cuts none.

At this point I suggest that you copy the RPG-source of CRTMIPGM to a member with a different name in
QMISRC (create the 92-character source file first, if needed), e.g. QMISRC/TEST, then try to compile TEST:

===> CRTMIPGM test

A listing can be found in the spoolfile QSYSPRT. Before continuing, make sure that all this works and that
you understand the process (even if the code is still voodoo or ‘magic’).

Hello World
It is customary in programming language books to start your first programming lesson by showing how to
write a program that displays the text “Hello World” in that particular language. Some languages ask you
to marvel over the fact that this program can be written as a single statement, in which case, of course, the
exercise is vacuous, because you haven’t learnt anything by writing display “Hello World”. Here is what
an MI-version might look like:

CPYBLAP MSG-TEXT, "Hello World", " ";
CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
RTX *;
%INCLUDE SHOWMSG

The first line copies (CPY) the bytes (B) left-aligned (LA) from the 11-bytes long literal “Hello World” to
the variable MSG-TEXT, then pads (P) the result with blanks (“ ”) until the end of the receiver. Note, that
instructions are generally executing from right-to-left, so that “CPYBLA A, B” copies B to A. This is the
opposite of RPG’s and COBOL’s “MOVE A to B” that work left-to-right. This may take some time to get
used to, but is similar to mathematical expressions, e.g. A = B, means assign B to A. Or A = sqrt(B), which
means: take B, extract its square-root, then assign the result to A.

The second line calls (CALL) the internal (I) subroutine SHOW-MESSAGE. Which presumably is going to
show the message (possibly on the display device). Finally, the program returns (RT) to its external caller
(X). Commas separate operands and a semi-colon (;) terminates each instruction. Instructions are conven-
tionally written one to a line, but they don’t need to be. MI is completely free-form. Except for literal
strings, everything must be in UPPER CASE. This is one of the restrictions we will relax in a later chapter
when we introduce more pre-processing facilities in our MI front-end.

We haven’t said anything about the fourth line (%INCLUDE SHOWMSG). We are hiding something messy
here. The display the text, we are sending a message to a job using the QMHSNDM API. This API is not at the
MI-level, but is a rather high-level system function. There is nothing that says that we have to stay at the
machine-level all the time. In fact, if there is a higher-level function that does the job using a reasonable
amount of resources, by all means use it. The problem with QMHSNDM is that it takes ten parameters
specifying all kinds of complicated details that we really don’t want to know about. There are two main
approaches to this problem, the first is to make a separate, external program that you simply call with the

 11

text to show, the second is to have an internal subroutine that you just call, after having loaded a common
variable (MSG-TEXT) with the text to display. The declaration, variables, and code for the subroutine are
held in a separate source member (QMISRC/SHOWMSG) and are simply included into your MI-program.
This is one of the main reasons why it was handy to provide an include facility in our pre-processing MI
front-end.

One thing of note here, is that as stated before, MI is completely free form, notice how we included the
SHOWMSG source file at the bottom of the MIHELLO source file. In languages such as RPG, all variable
definitions must be before the first calculation line so that, in essence, they are defined before they are first
referenced. In MI there is no such restriction on the placement of variable definitions.

Below is the code to store in the QMISRC/SHOWMSG source member; we’ll discuss how it works in a later
chapter, but I guess that you can see that it basically defines and initializes the parameters to QMHSNDM and
then calls the API with those values:

/* SHOW A MESSAGE */

DCL SPCPTR .MSG-ID INIT(MSG-ID);
DCL DD MSG-ID CHAR (7) INIT(" ");

DCL SPCPTR .MSG-FILE INIT(MSG-FILE);
DCL DD MSG-FILE CHAR(20) INIT(" ");

DCL SPCPTR .MSG-TEXT INIT(MSG-TEXT);
DCL DD MSG-TEXT CHAR(70);

DCL SPCPTR .MSG-SIZE INIT(MSG-SIZE);
DCL DD MSG-SIZE BIN(4) INIT(70);

DCL SPCPTR .MSG-TYPE INIT(MSG-TYPE);
DCL DD MSG-TYPE CHAR(10) INIT("*INFO");

DCL SPCPTR .MSG-QS INIT(MSG-QS);
DCL DD MSG-QS CHAR(20) INIT("*REQUESTER");

DCL SPCPTR .MSG-QSN INIT(MSG-QSN);
DCL DD MSG-QSN BIN(4) INIT(1);

DCL SPCPTR .REPLY-Q INIT(REPLY-Q);
DCL DD REPLY-Q CHAR(20) INIT(" ");

DCL SPCPTR .MSG-KEY INIT(MSG-KEY);
DCL DD MSG-KEY CHAR(4);

DCL SPCPTR .ERR-CODE INIT(ERR-CODE);
DCL DD ERR-CODE BIN(4) INIT(0);

DCL OL QMHSNDM (.MSG-ID, .MSG-FILE, .MSG-TEXT, .MSG-SIZE,
 .MSG-TYPE, .MSG-QS, .MSG-QSN, .REPLY-Q,
 .MSG-KEY, .ERR-CODE) ARG;

DCL SYSPTR .SEPT(6440) BAS(SEPT-POINTER);
DCL SPC PROCESS-COMMUNICATION-OBJECT BASPCO;
 DCL SPCPTR SEPT-POINTER DIR;

DCL INSPTR .SHOW-MESSAGE;
ENTRY SHOW-MESSAGE INT;
 CALLX .SEPT(4268), QMHSNDM, *; /* SEND MSG TO MSGQ */
 B .SHOW-MESSAGE;

Enter, compile, and run the MIHELLO program. You should see a result similar to this:

 Display Messages
 Queue : LSVALGAARD Program : *DSPMSG
 Library . . . : QUSRSYS Library . . . :
 Severity . . . : 00 Delivery . . . : *BREAK
 Type reply (if required), press Enter.
 From . . . : LSVALGAARD 07/24/00 16:55:31
 Hello World

 12

MI Functional Reference Manual
The MI Functional Reference Manual is available online (http://www.as400.ibm.com/tstudio/tech_ref/mi/).
You can also order it from IBM. It is a very large document (1440 pages), but it is a must-have. The price is
about $100.00 depending on what version you want. There is very little difference between versions, so
your best deal is to take the latest one you can get. Here is how to order it:

Go to http://www1.ibmlink.ibm.com/
Select IBMLink for the United States.
Select the PubsCenter link.
Choose United States as Country
Select Search for Publications
On the Search screen, enter “Machine Interface”
Click the Go button.
You should get a list of the publications you are looking for.
.

 13

Data Types and Your First Real MI-Program

Data Types
When you think about machine-level programming for a conventional computer, you may think in terms of
assembly language with registers, addresses, and explicit type manipulation (e.g. different instructions for
adding binary halfwords and floating point numbers). The AS/400 is radically different at the MI-level,
although not at the RISC-level. At the MI-level, there are no accessible registers (some other - older -
computer systems didn’t have registers either), no addresses (here the AS/400 is unique, although some
computers worked with ‘descriptors’), and many instructions are polymorphic (know what to do based on
the type of their operands). What are being manipulated in MI-programs are primitive data-items and
objects. Primitive data-items can be referred to directly as operands in instructions. Objects are represented
by pointers. Primitive data-items can also be referenced by pointers to them. We are not trying to be
complete this early in the book and some of the finer details will be introduced further on.

Character Data Type
In MI, all operands must be declared with a declare statement DCL. Primitive data-items are declared using
the Data Definition modifier DD: DCL DD. The most common data type is the character string. Here is how
to declare the 30-character string MY-TEXT:

DCL DD MY-TEXT CHAR(30);

We can also give it an initial value:

DCL DD MY-TEXT CHAR(30) INIT(“Hello”);

A question arises here: the data-item is 30 characters long, will the INIT clause only initialize the first five
characters (the length of “Hello”) or will something else happen? This is very easy to test. Let’s modify our
HELLO program as follows:

DCL DD MY-TEST1 CHAR(30);
DCL DD MY-TEST2 CHAR(30) INIT("Hello");

 CPYBLA MSG-TEXT, MY-TEST1;
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

 CPYBLA MSG-TEXT, MY-TEST2;
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

 RTX *;

%INCLUDE SHOWMSG

Note, that although MI is completely free-form, there is a benefit to sensible indentation and use of white
space. Compile and run it:

 Display Messages
 System: AS400
 Queue : LSVALGAARD Program : *DSPMSG
 Library . . . : QUSRSYS Library . . . :
 Severity . . . : 00 Delivery . . . : *BREAK

 Type reply (if required), press Enter.
 From . . . : LSVALGAARD 07/25/00 15:18:22
 .
 From . . . : LSVALGAARD 07/25/00 15:18:25
 Hello . .

As you can see, the INIT clause initializes the remainder of the data-item to spaces (blanks). We can learn
more from this simple test. MSG-TEXT is longer than 30 characters (in fact, it is 70 characters long), so the
CPYBLA instruction (without the P for padding) copies as many characters as given by the length of the
source (second) operand to the destination and leaves the rest of the destination unchanged. When you are
in doubt as to what a particular instruction or clause does, don’t use it in a program you are writing hoping
things will work out. Test it first by modifying the HELLO program just as we did above.

 14

When you use quotes in literal strings, you can use either single quotes (‘) or double quotes (“), although
they must match as a pair, so “Hello’ is not valid, but “a single ‘ quote” and “a double “” quote” are fine,
the latter having the same value as ‘a double “” quote’.

Numeric Data Types
MI supports the following numeric data types (each shown as an example):

DCL DD MY-HALFWORD BIN(2) INIT(10000); /* 2 byte halfword (16 bits) */
DCL DD MY-FULLWORD BIN(4) INIT(1000000); /* 4 byte fullword (32 bits) */
DCL DD MY-SHORT-FLOAT FLT(4) INIT(F‘3.1416’); /* 4 byte floating point */
DCL DD MY-LONG-FLOAT FLT(8) INIT(E‘-1.5E+05’); /* 8 byte floating point */
DCL DD MY-ZONED ZND(8,2) INIT(Z‘-123.45’); /* 8 digit zoned with 2 decimals */
DCL DD MY-PACKED PKD(9,2) INIT(P‘+123.45’); /* 9 digit packed with 2 decimals */

As MI is “old” technology, there is no BIN(8) data type denoting a doubleword integer, although the 64-
bit RISC processors naturally support these in hardware. Binary numbers can be unsigned. You declare that
by using the UNSGND clause, as in:

DCL DD MY-UNSIGNED-HALFWORD BIN(2) UNSGND INIT(50000); /* 2 byte unsigned (16 bits) */

Note, that data-item names can be long. Note also, the peculiar way you have to specify initial values of
floating-point, zoned, and packed data-items. This is related to the way you specify constants in
instructions. The compiler needs to know what type the constant has. For packed and zoned data-items the
first number, e.g. in PKD(15,5) is the total number of digits including the decimals and the second number
after the comma, the 5, is how many of those digits are to be used for the digits after the decimal point . So
in the example, the largest value our PKD(15,5) data-item can represent is ‘9999999999.99999’ This
should be of no surprise to RPG and CL-programmers.

To try out some of this, modify our (ever-useful) HELLO program to read:

DCL DD MY-HALFWORD BIN(2) INIT(1000);
DCL DD MY-FULLWORD BIN(4) INIT(1000000);
DCL DD MY-ZONED ZND(10,2); /* nnnnnnnn.dd */

 ADDN MY-ZONED, MY-HALFWORD, MY-FULLWORD;
 CPYBLAP MSG-TEXT, MY-ZONED, " ";
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

 RTX *;

%INCLUDE SHOWMSG

I used the ADDN (Add Numeric) instruction to compute MY-ZONED = MY-HALFWORD + MY-FULLWORD. The
fact that the three operands are of different types is no problem at all because the ADDN instruction is
polymorphic (knows how to handle different types). To see the result, we now copy the result to MSG-TEXT
and send the message as before. Because a zoned number has one digit per character, copying the result as
a character string with CPYBLAP will work just fine. Here is what we get:

 From . . . : LSVALGAARD 07/25/00 20:44:00
 0100100000

Which after positioning the decimal point in the correct place, is 100100.00, just as we would expect.

Data Names
Although reserved words (like DCL, INIT, and instruction mnemonics) have to be UPPER case, you have
more freedom with data names. A name can be up to 48 characters long and consist of any sequence of
most of the printable characters, except the ones in the following set:

 blank / , ; () : < + ‘ “ %

In addition, the first character of a name cannot be one of

 - 0 1 2 3 4 5 6 7 8 9

 15

Here are some valid names:
 ThisIsAVeryLongNameUsingMixedCaseWords
 A-COBOL-STYLE-NAME
 #RGPNM
 CUSTOMER_NAME_12
 .PROGRAM-OBJECT

Names that begin with a period (.) are not inserted into the symbol table and cannot be referenced by the
AS/400 debuggers. I personally use such names to signify pointers because of their readability (I never
want to follow pointer chains with the debugger anyway). Names should neither be too long nor too short
and cryptic. A good name is one you can read aloud over the telephone. Nothing new here.

Comments
Comments can occur anywhere except in literal values and inside other comments, so cannot be nested. As
we have seen, comments are bracketed by the special delimiters “/*” and “*/”, just like in CL-programs. A
comment can span several lines. Beware of “run-away” comments where the ending delimiter “*/” is
missing. Comments are treated as blanks, so they are significant in delimiting names and tokens.

Hexadecimal Constants
Character strings, binary integers, and floating-point values can be specified in hexadecimal notation, albeit
in a different way for each:

DCL DD MY-TEXT CHAR(7) INIT(X‘C1C2C3C4C500’); /* ABCDEnull */
DCL DD MY-BINARY BIN(2) INIT(H‘07D0’); /* 2000 */
DCL DD MY-SHORT-FLOAT FLT(4) INIT(XF‘BFC00000’); /* -1.5 */
DCL DD MY-LONG-FLOAT FLT(8) INIT(XE‘BFF8000000000000’); /* -1.5 */

Binary numbers are right-justified with zero-fill on the left, so H‘01’ is the same as H‘0001’, which is, of
course, just the BIN(2) representation of the number 1. As before, whenever in doubt about what something
will do (or won’t do) or you just want to explore something, modify the HELLO program:

DCL DD MY-HALFWORD1 BIN(2) INIT(H'01'); /* is this H‘0100’ or H‘0001’ ? */
DCL DD MY-HALFWORD2 BIN(2) INIT(H'0001');
DCL DD MY-TEXT CHAR(2);

 CPYBLA MY-TEXT, MY-HALFWORD1; /* make copy to character type */
 CVTHC MSG-TEXT(1:4), MY-TEXT; /* convert to hexadecimal form */
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

 CPYBLA MY-TEXT, MY-HALFWORD2;
 CVTHC MSG-TEXT(1:4), MY-TEXT;
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 . . .

The three periods simply mean that the remaining boilerplate is understood, viz.:

 RTX *;

%INCLUDE SHOWMSG

Convert Hexadecimal to Character
Notice the new instruction: CVTHC MSG-TEXT(1:4), MY-TEXT. If we had just copied the binary value to
MSG-TEXT with CPYBLA MSG-TEXT, MY-HALFWORD1 the message would contain non-printable characters and
we wouldn’t be able to tell the result. What we need is an instruction that converts the binary value into a
string of hexadecimal digits that we can immediately understand. This is precisely what the CVTHC–
instruction does. Its name (Convert Hexadecimal to Character) is somewhat misleading, as it really
converts an arbitrary character string into its hexadecimal representation (i.e. goes the other way, “ABC” ->
X‘C1C2C3’). The instruction does require a character data-item and not a numeric data-item; that is why
we had to first copy the numeric item to a character item. If you run the program, you’ll see that the two
values are the same. Yet another example of how you can easily try things out (promise: this is the last time
I’ll harp on that).

 16

Another thing that the CVTHC-instruction insists on, is that the receiver must be exactly twice as long as
the source, so we need a character item 4 bytes long to hold the hexadecimal representation of a 2-byte
value. However, this isn’t that strange if you think about it. If you look at the example where the three bytes
for “ABC” expands to 6 bytes for X‘C1C2C3’ you can see the reason why.. You can accomplish that by a
substring notation: MSG-TEXT(1:4), meaning the substring starting in position 1 and extending 4 characters
to the right.

Compile Errors
Now is the time to deal with the problem of errors. You will make errors (I make many each and every
day), so here goes. My first version of showing the hexadecimal value of a binary number looked like this:

DCL DD MY-HALFWORD BIN(2) INIT(H'01');
DCL DD MY-TEXT CHAR(2);

 CVTHC MSG-TEXT(1:4), MY-HALFWORD;
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 . . .

When compiling it, I got this message:

Processing command failure, refer to job log for details.

The job log contained:

 Intermediate representation of program (IRP) contains 1 errors. Probable
 compiler error.

No, it’s not a misprint or typo. The MI-translator (to use the proper term) was designed to process output
from the HLL compilers, so if there were errors in the MI-statements, there probably was an error in the
HLL compiler.

The MI-translator listing is spooled to QSYSPTR:

 5769SS1 V4R4M0 990521 Generated Output
 SEQ INST Offset Generated Code *... ... 1 2 3 4 5 .
 00001 DCL DD MY-HALFWORD BIN(2) INIT(H'0001')
 00002 DCL DD MY-TEXT CHAR(2)
 00003 0001 000004 1086 600B 2001 2004 CVTHC MSG-TEXT(1:4), MY-HALFWORD
 0001
 00004 0002 00000E 0293 001C 0000 001B CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE
 00005 0003 000016 22A1 0000 RTX *
 /* INCLUDE: SHOWMSG */
 . . . (lines omitted)

 MSGID ODT ODT Name Semantics and ODT Syntax Diagnostics
 MSGID MI Instruction Stream Semantic Diagnostics
* CPF6412 Attributes of instruction X'0001' operand 2 not valid.

Clearly, a numeric data-item was not valid. It is not every time that the MI-compiler (back to a more
traditional name) is that nice, sometimes there is no clue to where the error is, and sometimes there is even
no clue to what the error is. It is therefore a good idea to code a little, try it, code a little more, try it, etc.
Errors are then most likely in what you just added. Don’t type in pages and pages before compiling.

Conditions and Branching
Testing a condition and branching to a different point in the program depending on that condition is a
fundamental operation. MI is very rich in this respect. Let us start with a simple loop executing 5 times;
each time around the loop we simply display the loop counter:

DCL DD LOOP-COUNTER ZND(6,0); /* zoned number for ease of display */

 CPYNV LOOP-COUNTER, 0; /* Copy Numeric Value 0 to LOOP-COUNTER */
LOOP: /* a label, LOOP */
 ADDN LOOP-COUNTER, LOOP-COUNTER, 1; /* LOOP-COUNTER = LOOP-COUNTER + 1 */
 CPYBLAP MSG-TEXT, LOOP-COUNTER, " "; /* show LOOP-COUNTER */
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 CMPNV(B) LOOP-COUNTER, 5/LO(LOOP); /* if LOOP-COUNTER < 5, go to LOOP */
 . . .

 17

CPYNV (Copy Numeric Value) is another polymorphic instruction that copies the second numeric operand
of any type to the first numeric operand of any type, with automatic type conversion (here from binary 0 to
zoned 0000000). Then we add 1 to LOOP-COUNTER and show the result. Nothing new here. Except that one
could gripe about the inconsistency of the instruction mnemonics, CPYNV has a “V” but ADDN has not. This
hits me at least once a week.

The crucial instruction is the polymorphic Compare Numeric Value: CMPNV(B) , that compares the zoned
LOOP-COUNTER with an immediate binary value 5 and sets one of four conditions:

 • LO (if the first operand is lower than the second),
 • HI (if it is higher),
 • EQ (if they are equal),
 • UNOR (“unordered”, if any of the operands is an invalid floating-point number, a so-called NaN –

Not a Number).

A branch extender or modifier (B) to the operation code then directs the machine to execute one of more
branches depending on the condition. In our case, we want to re-execute the loop if the condition is LO (we
have not reached the end). The syntax for this is: CMPNV(B) LOOP-COUNTER, 5/LO(LOOP). You can branch
on several conditions in the same instruction:

 CMPNV(B) LOOP-COUNTER, 5/LO(LOOP),HI(ERROR),EQ(DONE)

You reverse a condition by prefixing it with the letter N (for Not), e.g. /NLO(GREATER-EQUAL).

Labels and Branch Points
Labels are names followed by a colon (:). A point in the program marked with a label (labeled as is it) is
called a branch point. You can only branch (goto, jump,…) to a labeled branch point. The standard error
on other systems where you branch into the middle of some data and your program goes down (and maybe
takes the system with it) cannot occur on an AS/400. Well, let’s say it is much harder to make that happen.

Short Form of Instructions
Several instructions allow a shortened syntax if two operands are the same, e.g.:

 ADDN LOOP-COUNTER, LOOP-COUNTER, 1; /* LOOP-COUNTER = LOOP-COUNTER + 1 */

can be shortened with the modifier (S) to:

 ADDN(S) LOOP-COUNTER, 1; /* LOOP-COUNTER = LOOP-COUNTER + 1 */

You can combine the short modifier with the branch modifier as in the following example that uses the
Subtract Numeric (SUBN) instruction to execute the loop counting the LOOP-COUNTER down from 5 to 0:

 CPYNV LOOP-COUNTER, 5;
LOOP:
 CPYBLAP MSG-TEXT, LOOP-COUNTER, " ";
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 SUBN(SB) LOOP-COUNTER, 1/POS(LOOP); /* if positive (> 0) loop again */

Here, the decrement, the test, and the branch are all handled by the same instruction. The preferred
condition names for this instruction are:

 • POS (result>0),
 • NEG (result<0),
 • ZER (result=0),

but HI, LO, and EQ work just the same. The order of the instruction-modifiers does not matter, so for
example SUBN(SB) is the same as SUBN(BS), although it is best to stick to the same order throughout.

Structured Data
In RPG and COBOL we are familiar with the concept of a record, that contains various fields. We say that
the record contains structured data. Consider the following COBOL record:

 18

01 MY-RECORD.
 02 MY-BINARY PIC S9(9) BINARY.
 02 FILLER PIC X(1) VALUE “=”.
 02 MY-PACKED PIC S9V9(8) PACKED.
 02 FILLER PIC X(6) VALUE SPACES.

It has a direct counterpart in MI as follows:

DCL DD MY-RECORD CHAR(16);
 DCL DD MY-BINARY BIN(4) DEF(MY-RECORD) POS(1);
 DCL DD * CHAR(1) DEF(MY-RECORD) POS(5) INIT(“=”);
 DCL DD MY-PACKED PKD(9,8) DEF(MY-RECORD) POS(6);
 DCL DD * CHAR(6) DEF(MY-RECORD) POS(11) INIT(“ ”);

Fields are defined (DEF) on the record starting in the character position stated (POS). The special name “*”
means “no name” or “FILLER” in COBOL. We can now assign values to the fields and move the record as
a unit:

 CPYNV MY-PACKED, P'3.14159265';
 CPYNV MY-BINARY, MY-PACKED;
 CVTHC MSG-TEXT(1:32), MY-RECORD;
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

with this result: 000000037E314159265F404040404040

Note, that the moving 3.14159265 to the binary integer yields (as we expect) the number 3.

Here is a somewhat more complicated structure (that we’ll use in a later section):

DCL DD MACHINE-ATTR CHAR(256) BDRY(16);
 DCL DD BYTES-PROVIDED BIN(4) DEF(MACHINE-ATTR) POS(1) INIT(256);
 DCL DD BYTES-AVAILABLE BIN(4) DEF(MACHINE-ATTR) POS(5);
 DCL DD THE-ATTRIBUTES CHAR(248) DEF(MACHINE-ATTR) POS(9);

 DCL DD THE-TIMESTAMP CHAR(8) DEF(THE-ATTRIBUTES) POS(1);
 DCL DD THE-TIME-HI BIN(4) UNSGND DEF(THE-TIMESTAMP) POS(1);
 DCL DD THE-TIME-LO BIN(4) UNSGND DEF(THE-TIMESTAMP) POS(5);

 DCL DD SERIAL-NBR CHAR(8) DEF(THE-ATTRIBUTES) POS(1);

 DCL DD NETWORK-ATTRS CHAR(190) DEF(THE-ATTRIBUTES) POS(1);
 DCL DD SYSTEM-NAME CHAR(8) DEF(NETWORK-ATTRS) POS(1);
 DCL DD * BIN(2) DEF(NETWORK-ATTRS) POS(9);
 DCL DD NEW-SYSTEM-NAME CHAR(8) DEF(NETWORK-ATTRS) POS(11);
 DCL DD * BIN(2) DEF(NETWORK-ATTRS) POS(19);
 DCL DD LOCAL-NETWORK-ID CHAR(8) DEF(NETWORK-ATTRS) POS(21);
 DCL DD * BIN(2) DEF(NETWORK-ATTRS) POS(29);

Note, how THE-TIME-HI is defined on THE-TIMESTAMP, which in turn is defined on THE-ATTRIBUTES,
which is turn is defined on MACHINE-ATTR. Note also, how the substructures THE-TIMESTAMP, SERIAL-
NBR and NETWORK-ATTRS are all redefinitions of THE-ATTRIBUTES.

Again, the best way to describe the above data structure is in COBOL:

01 MACHINE-ATTR.
 02 BYTES-PROVIDED PIC S9(9) BINARY VALUE 256.
 02 BYTES-AVAILABLE PIC S9(9) BINARY.
 02 THE-ATTRIBUTES PIC X(248).

 02 THE-TIMESTAMP REDEFINES THE-ATTRIBUTES.
 03 THE-TIME-HI PIC 9(9) BINARY.
 03 THE-TIME-LO PIC 9(9) BINARY.

 02 SERIAL-NBR REDEFINES THE-ATTRIBUTES.
 PIC X(8).

 02 NETWORK-ATTRS REDEFINES THE-ATTRIBUTES.
 03 SYSTEM-NAME PIC X(8).
 03 FILLER PIC S9(4) BINARY.
 03 NEW-SYSTEM-NAME PIC X(8).
 03 FILLER PIC S9(4) BINARY.
 03 LOCAL-NETWORK-ID PIC X(8).
 03 FILLER PIC S9(4) BINARY.

 19

Our First “Real” MI-Program
Using the structure we have just defined, we shall now proceed to write our first “real” MI-program,
defined as one that does something useful, instead of just serving as a learning tool as our venerable HELLO
program did. There is a very useful MI-instruction called Materialize Machine Attributes (MATMATR). As
you can guess, this instruction gives us all kinds of information about the machine you are running on. The
description of this single instruction in the MI Functional Reference Manual (see later, how to get one)
takes up 34 pages of dense text! The instruction is coded with two operands, basically like this:

 MATMATR .MACHINE-ATTR, MATMATR-CONTROL;

The second operand, MATMATR-CONTROL, is simply a 2-character control value whose contents determine
what the instruction “materializes”. You will see that very many MI-instructions use the concept of
materializing information from internal sources and making it available to you in a suitable data structure,
that is often called a template. The first operand is not the template, but a pointer to the template. We’ll
explore the concept of a pointer in great detail later. For now, all we need is how to make a pointer point to
our data structure. The kind of pointer that simply points to some data is called a space pointer. You
declare a space pointer by using the SPCPTR modifier and you can in the declare-statement directly
initialize the pointer to point to the desired data structure, like this:

DCL SPCPTR .MACHINE-ATTR INIT(MACHINE-ATTR);
DCL DD MACHINE-ATTR CHAR(256) BDRY(16);

For reasons we’ll come to later, this template has to aligned on a 16-byte boundary, indicated by the
BDRY(16) clause. Note our naming convention of having a pointer to a data-item have the same name as
the item, except prefixed by a period. Other people have conventions that use a prefix of “?”, “@”, or as in
C: “*”.

We got the layout of the template from the MI Functional Reference (maybe we should invent a new
acronym: MIFR). The MIFR also lists the value of the control parameter. The values we are interested in
are:
 X‘0004’ Get the machine Serial Number
 X‘0100’ Get the Internal Clock value
 X‘0130’ Get Network Attributes

Declare the control operand as:

DCL DD MATMATR-CONTROL CHAR(2);

The program code is now straightforward:

 CPYBLA MATMATR-CONTROL, X'0004'; /* Get Serial Number */
 MATMATR .MACHINE-ATTR, MATMATR-CONTROL;
 CPYBLAP MSG-TEXT, SERIAL-NBR, " "; /* Text */
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

 CPYBLA MATMATR-CONTROL, X'0100'; /* Get Timestamp */
 MATMATR .MACHINE-ATTR, MATMATR-CONTROL;
 CVTHC MSG-TEXT(1:16), THE-TIMESTAMP; /* Binary */
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

 CPYBLA MATMATR-CONTROL, X'0130'; /* Get Network Attrs */
 MATMATR .MACHINE-ATTR, MATMATR-CONTROL;
 CPYBLAP MSG-TEXT(1:30), NETWORK-ATTRS, " "; /* mixed */
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 . . .

The result should be similar to this:

 From . . . : LSVALGAARD 07/26/00 21:46:57
 1234567 <= serial number
 810566576CDA8000 <= current internal time valu
 AS400 APPN <= system name, etc

For completeness, we show the entire program (MIMCHATR) on a single page below. Copy and paste it to a
file, transfer it to the AS/400, compile and run it.

 20

/* Materialize Machine Attributes */
DCL DD MATMATR-CONTROL CHAR(2);
DCL SPCPTR .MACHINE-ATTR INIT(MACHINE-ATTR);

DCL DD MACHINE-ATTR CHAR(256) BDRY(16);
DCL DD MACHINE-ATTR CHAR(256) BDRY(16);
 DCL DD BYTES-PROVIDED BIN(4) DEF(MACHINE-ATTR) POS(1) INIT(256);
 DCL DD BYTES-AVAILABLE BIN(4) DEF(MACHINE-ATTR) POS(5);
 DCL DD THE-ATTRIBUTES CHAR(248) DEF(MACHINE-ATTR) POS(9);

 DCL DD THE-TIMESTAMP CHAR(86) DEF(THE-ATTRIBUTES) POS(1);
 DCL DD THE-TIME-HI BIN(4) UNSGND DEF(THE-TIMESTAMP) POS(1);
 DCL DD THE-TIME-LO BIN(4) UNSGND DEF(THE-TIMESTAMP) POS(5);

 DCL DD SERIAL-NBR CHAR(8) DEF(THE-ATTRIBUTES) POS(1);

 DCL DD NETWORK-ATTRS CHAR(190) DEF(THE-ATTRIBUTES) POS(1);
 DCL DD SYSTEM-NAME CHAR(8) DEF(NETWORK-ATTRS) POS(1);
 DCL DD * BIN(2) DEF(NETWORK-ATTRS) POS(9);
 DCL DD NEW-SYSTEM-NAME CHAR(8) DEF(NETWORK-ATTRS) POS(11);
 DCL DD * BIN(2) DEF(NETWORK-ATTRS) POS(19);
 DCL DD LOCAL-NETWORK-ID CHAR(8) DEF(NETWORK-ATTRS) POS(21);
 DCL DD * BIN(2) DEF(NETWORK-ATTRS) POS(29);

 CPYBLA MATMATR-CONTROL, X'0004'; /* Get Serial Number */
 MATMATR .MACHINE-ATTR, MATMATR-CONTROL;
 CPYBLAP MSG-TEXT, SERIAL-NBR, " "; /* Text */
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

 CPYBLA MATMATR-CONTROL, X'0100'; /* Get Timestamp */
 MATMATR .MACHINE-ATTR, MATMATR-CONTROL;
 CVTHC MSG-TEXT(1:16), THE-TIMESTAMP; /* Binary */
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

 CPYBLA MATMATR-CONTROL, X'0130'; /* Get Network Attrs */
 MATMATR .MACHINE-ATTR, MATMATR-CONTROL;
 CPYBLAP MSG-TEXT(1:30), NETWORK-ATTRS, " "; /* mixed */
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

 RTX *;

%INCLUDE SHOWMSG

 21

Pointers, Pointers, and Pointers

Space Data Object
In chapter 2 we developed a program (MIMCHATR) to materialize machine attributes into a structured
character data-item called a template. The various data-items were declared to be in specific positions
relative to the beginning of the area. Creating and (especially maintaining) such a sequence of absolute
positions is tedious and prone to errors. There is a much more elegant way of specifying a data structure by
using a space data object, which is defined as a based (i.e. beginning at a location in memory identified by
a pointer) 32,767-character string. What in effect we are doing is telling the MI-compiler that no matter
what the data ‘looks’ like in memory, at the location the pointer this structure is based upon points to, we
want to map this layout over it so that we can access it using the structures data-items. A space data object
is an internal program declaration of a storage mapping. No real space in memory is allocated for the
structure, but the structure is laid over an actual character string determined by the pointer, allowing us to
reference sections of the data by the data-item names we used in defining the data space object. Here is the
declaration of the materialization area using a space data object (DCL SPC):

DCL DD MATERIALIZE-AREA CHAR(256) BDRY(16); /* This is the actual data-item */

DCL SPCPTR .MACHINE-ATTR INIT(MATERIALIZE-AREA); /* Points to actual data-item */
DCL SPC MACHINE-ATTR BAS(.MACHINE-ATTR); /* based upon the pointer */
 DCL DD BYTES-PROVIDED BIN(4) DIR;
 DCL DD BYTES-AVAILABLE BIN(4) DIR;

 DCL DD THE-TIMESTAMP CHAR(8) DIR POS(9);
 DCL DD THE-TIME-HI BIN(4) UNSGND DIR;
 DCL DD THE-TIME-LO BIN(4) UNSGND DIR;

 DCL DD SERIAL-NBR CHAR(8) DIR POS(9);

 DCL DD NETWORK-ATTRS CHAR(190) DIR POS(9);
 DCL DD SYSTEM-NAME CHAR(8) DIR;
 DCL DD * BIN(2) DIR;
 DCL DD NEW-SYSTEM-NAME CHAR(8) DIR;
 DCL DD * BIN(2) DIR;
 DCL DD LOCAL-NETWORK-ID CHAR(8) DIR;
 DCL DD * BIN(2) DIR;

If you compare this with the previous definition, you will appreciate the simplicity gained. There is no need
to tediously count character positions as the “direct” (DIR) clause instructs the compiler to automatically
increment its internal position counter from its previous value, starting at 1 and increasing this internal
position counter with the size of each item. You can still, if needed, specify a POS clause to explicitly
change the position counter. We did this thrice to specify that THE-TIMESTAMP, SERIAL-NBR, and
NETWORK-ATTR all start at the same position (and thus overlay each other). Because a space data object
only maps into the real area and could map into different areas by changing the pointer, we cannot initialize
data-items in the map, so the following would be an incorrect definition;

DCL SPCPTR .MACHINE-ATTR INIT(MATERIALIZE-AREA); /* Points to actual data-item */
DCL SPC MACHINE-ATTR BAS(.MACHINE-ATTR); /* based upon the pointer */
 DCL DD BYTES-PROVIDED BIN(4) DIR;
 DCL DD BYTES-AVAILABLE BIN(4) DIR;

 DCL DD THE-TIMESTAMP CHAR(8) DIR POS(9);
 DCL DD THE-TIME-HI BIN(4) UNSGND DIR INIT(X’0101’); /*<- incorrect */
 DCL DD THE-TIME-LO BIN(4) UNSGND DIR;
…

But we can do it in the actual data-item being pointed to, in the instruction section of the program:

 CPYNV BYTES-PROVIDED, 256;

The rest of the code stays the same.

 22

Setting a Space Pointer
While the INIT clause can establish addressability to a data-item in a space pointer declaration, like the one
we used above: DCL SPCPTR .MACHINE-ATTR INIT(MATERIALIZE-AREA), the connection, in this example
that the space pointer MACHINE-ATTR is to point to the area of memory that the compiler has allocated for
the MATERIALIZE-AREA data-item, is established once when the program starts. If we need to point to a
different area, we need a way to set addressability in a space pointer dynamically under program control.
The Set Space Pointer (SETSPP) instruction does just that. So, instead of initializing the pointer in the
declaration, we could have written:

DCL DD MATERIALIZE-AREA CHAR(256) BDRY(16); /* This is the actual data-item. */
DCL SPCPTR .MACHINE-ATTR; /* Does not point to anything yet */

 SETSPP .MACHINE-ATTR, MATERIALIZE-AREA; /* Only now can be use the data */
 CPYNV BYTES-PROVIDED, 256; /* based on the pointer */

Explore Pointers: Materialize Invocation Stack
This problem comes up regularly: how do I find out which program called the current program? As
programs call each other an invocation stack is built up. You can see the contents of the stack using the
DSPJOB command, selection 11:

 Program
Rqs or
Lvl Procedure Library Statement Instruction
 QCMD QSYS 043B
 QUICMENU QSYS 00C1
 1 QUIMNDRV QSYS 0502
 2 QUIMGFLW QSYS 04B5
 3 QUICMD QSYS 0419
 MIINVSTK LSVALGAARD 000F

This problem is well suited to explore various pointer types and their use and is non-trivial. A quick look
though the MIFR table of contents finds an MI instruction named MATINVS (MATerialize INVocation
Stack) that looks to be a prime candidate to help us achieve a solution. The MATINVS MI-instruction takes
as its first operand a space pointer to the materialization area and as its second operand a new kind of
pointer that we haven’t covered yet, called a system pointer, to the job for which to retrieve the invocation
stack. At this point we are only interested in our own job. Using a null operand, “*”, selects our own job.
So this is the instruction we shall use:

 MATINVS .THE-STACK, *; /* OWN JOB */

The stack has no set depth, so we don’t know how many programs will be on it. There are two methods we
could use static memory or dynamically allocated memory.

Static Storage Method
One way (which we shall use initially) is to allocate a fixed area of a reasonably large size, say fifty
programs. As before, the template begins with two binary numbers, the first giving the size of the
materialization area, the second will be set to how many bytes were actually returned (“materialized”) by
the instruction. The number of entries on the stack is returned as a binary number in the third position. The
list of entries is returned in the materialization area. Because each entry of the list contains pointers and
because pointers (for historical reasons) must be aligned on 16-byte boundaries, the entire area must also be
aligned on a 16-byte boundary. Finally, the list within the area must also be aligned on a 16-byte boundary.
The net effect of all these alignment requirements is a 4-byte “hole” or slack-area. In descriptions of the
MI-instructions in the MIFR, such holes are often designated as “reserved”. When creating data definitions
in MI programs, such unused space is conventionally named “*”. You could also simply omit any reference
to it, if data-item following the unused space is defined by its explicit position using the POS(n) clause.
Here is then the full declaration:

DCL SPCPTR .THE-STACK;
DCL DD THE-STACK CHAR(6416) BDRY(16);
 DCL DD STK-BYTES-PRV BIN(4) DEF(THE-STACK) POS(1);
 DCL DD STK-BYTES-AVL BIN(4) DEF(THE-STACK) POS(5);
 DCL DD STK-NBR-OF-ENTRIES BIN(4) DEF(THE-STACK) POS(9);
 DCL DD * BIN(4) DEF(THE-STACK) POS(13);

 23

 DCL DD STK-ENTRY(50) CHAR(128) DEF(THE-STACK) POS(17);

Note how we declare an array of 50 entries. According to the MIFR, each entry must be 128 characters
long. The exact layout of an invocation stack entry is given in all its gory details in the MIFR. What is of
immediate interest to us is only the fact the a system pointer to the program occupying this position of the
stack is stored starting in position 33 within each entry:

DCL DD THE-ENTRY CHAR(128) BDRY(16);
 DCL SYSPTR .THE-ENTRY-PGM DEF(THE-ENTRY) POS(33);

To process the n’th entry, we must either copy it to an entry holding area (like the one we just declared):
CPYBLA THE-ENTRY, STK-ENTRY (n), or define a space data object based on a space pointer set dynamically
to the n’th entry: SETSPP .THE-ENTRY, STK-ENTRY(n) using this declaration instead:

DCL SPCPTR .THE-ENTRY;
DCL DD THE-ENTRY CHAR(128) BAS(.THE-ENTRY);
 DCL SYSPTR .THE-ENTRY-PGM DEF(THE-ENTRY) POS(33);

To materialize the stack, we code:

GET-STACK:
 CPYNV STK-BYTES-PRV, 6416; /* area size provided */
 SETSPP .THE-STACK, THE-STACK; /* point to the area */
 MATINVS .THE-STACK, *; /* your own job */

We process the stack entries with a simple loop:

DCL DD PGM-NBR BIN(4);

 CPYNV PGM-NBR, 0;
NEXT-PROGRAM:
 ADDN(S) PGM-NBR, 1;
 CMPNV(B) PGM-NBR, STK-NBR-OF-ENTRIES/HI(DONE);
 CPYBWP THE-ENTRY, STK-ENTRY(PGM-NBR);
 . . . /* process this entry */
 B NEXT-PROGRAM;
DONE:

Since each entry returned contains at least one pointer, we need a special copy-instruction CPYBWP (Copy
Bytes With Pointers). Pointers carry special tag bits that must be set for the pointer to be valid. The usual
copy instructions do not preserve the tag bits, hence the special instruction. We shall deal extensively with
the issue of tag bits later on.

Alternatively, we can use a space pointer to point dynamically to the current entry, and then access the
entry through a space data object based on the pointer:

 CPYNV PGM-NBR, 0;
NEXT-PROGRAM:
 ADDN(S) PGM-NBR, 1;
 CMPNV(B) PGM-NBR, STK-NBR-OF-ENTRIES/HI(DONE);
 SETSP .THE-ENTRY, STK-ENTRY(PGM-NBR);
 . . . /* process this entry */
 B NEXT-PROGRAM;
DONE:

In both cases, the code for processing the entry is the same. We want to show the name of the program
object and the name of the library (called a context at the MI-level) where the program object is stored. The
materialized entry returned from MATINVS does not contain this information directly. Instead, we just get a
system pointer to the program object, remember how we defined the data-item .THE-ENTRY-PGM as a
system pointer (SYSPTR) at position 33 of THE-ENTRY?. A system pointer uniquely identifies an object in
the system, but the identifier is in an internal binary format. The Materialize Pointer (MATPTR) instruction
can return the symbolic identification (i.e. the type, name, and context) of the object identified by the
pointer. As with all materialize-instructions we provide a space pointer to the area where we want the
information to be returned:

DCL SPCPTR .PTR-TEMPLATE INIT(PTR-TEMPLATE);
DCL DD PTR-TEMPLATE CHAR(76);
 DCL DD PTR-PROVIDED BIN(4) DEF(PTR-TEMPLATE) POS(1);
 DCL DD PTR-RETURNED BIN(4) DEF(PTR-TEMPLATE) POS(5);
 DCL DD PTR-TYPE CHAR(1) DEF(PTR-TEMPLATE) POS(9);

 24

 DCL DD PTR-DATA CHAR(68) DEF(PTR-TEMPLATE) POS(10);
 DCL DD PTR-CTX-TYPE CHAR(2) DEF(PTR-DATA) POS (1);
 DCL DD PTR-CTX-NAME CHAR(30) DEF(PTR-DATA) POS (3);
 DCL DD PTR-OBJ-TYPE CHAR(2) DEF(PTR-DATA) POS (33);
 DCL DD PTR-OBJ-NAME CHAR(30) DEF(PTR-DATA) POS (35);
 DCL DD PTR-... CHAR(4) DEF(PTR-DATA) POS (65);

First, we specify how much of the data that could be materialized we are really interested in, then we
materialize the object information for THE-ENTRY-PGM identified by the system pointer returned in the
stack entry:

 CPYNV PTR-PROVIDED, 76;
 MATPTR .PTR-TEMPLATE, .THE-ENTRY-PGM;

Dealing with Exceptions
If we run the program that we have put together so far (try it) we get a “hardware protection” error
(MCH6801) at security levels above 30 (and you don’t run below, do you?). This is because some of the
programs in the stack are located in the system domain, and therefore are not accessible from a user-state
program:

 QCMD QSYS user domain
 QUICMENU QSYS system domain
 1 QUIMNDRV QSYS system domain
 2 QUIMGFLW QSYS system domain
 3 QUICMD QSYS system domain
 MIINVST0 LSVALGAARD user domain

We would like to monitor for this exception and deal gracefully with the situation, e.g. simply skip
programs we are not allowed to see. You can declare an exception monitor (EXCM) to catch exceptions and
direct the flow of the program to your exception handler. Here is how:

DCL EXCM * EXCID(H'4401') BP(NEXT-PROGRAM) CV("MCH") IMD;

This monitor is unnamed (the “*”) and takes effect immediately (the IMD) upon the exception being
signaled transferring control to the branch point (the BP) NEXT-PROGRAM. The exception identifier has two
parts, a hexadecimal value (the EXCID) and a so-called compare value (the CV). A tricky detail is that for
MCH (Machine Check) exceptions, the value reported (e.g. MCH6801) is not what you should use as the
exception identifier in the exception monitor. Instead, the first two digits and the last two digits must be
converted from decimal to hexadecimal separately. Since the decimal value 68 = 6*10+8 has the
hexadecimal value 44 = 4*16+4, we must monitor for MCH4401 to detect MCH6801. I have given up on
trying to see the logic behind this and have accepted that that’s the way it works. For CPF and other
exceptions, no such conversion is needed as they are already in hex format; only MCH exceptions have this
quirk. This difference is constant pain.

We can now complete the processing to show the value of the pointer and the names of the context and
program using our standard show-message routine:

 CPYNV PGM-NBR, 0;
NEXT-PROGRAM:
 ADDN(S) PGM-NBR, 1;
 CMPNV(B) PGM-NBR, STK-NBR-OF-ENTRIES/HI(DONE);
 CPYBWP THE-ENTRY, STK-ENTRY(PGM-NBR);

 CPYNV PTR-PROVIDED, 76;
 MATPTR .PTR-TEMPLATE, .THE-ENTRY-PGM;

 CPYBREP MSG-TEXT, " ";
 CVTHC MSG-TEXT(1:32), THE-ENTRY(33:16);

 CPYBLAP MSG-TEXT(34:11), PTR-CTX-NAME, " ";
 CPYBLAP MSG-TEXT(46:11), PTR-OBJ-NAME, " ";
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 B NEXT-PROGRAM;

DONE:
 RTX *;

%INCLUDE SHOWMSG

 25

Here is a typical result (note that only the user domain programs are showing):

 From . . . : LSVALGAARD 08/03/00 20:20:43
 00000000000000002433117B98000200 QSYS QCMD
 0000000000000000067C6EE75F000200 LSVALGAARD MIINVSTK

Automatic Storage Allocation
We had allocated an array of 50 entries for the materialized invocation stack. The materialized data was
part of the static storage that is allocated when the program is first called. If we do not wish to be limited to
a predefined number of entries, it is possible to allocate the stack in automatic storage and to modify its
size dynamically as needed. The first step is to declare the stack with the AUTO clause with the smallest
possible size (8 characters) holding only the number of bytes provided and the number of bytes available
for materialization:

DCL SPCPTR .THE-STACK;
DCL DD THE-STACK CHAR(8) AUTO BDRY(16);
 DCL DD STK-BYTES-PRV BIN(4) DEF(THE-STACK) POS(1);
 DCL DD STK-BYTES-AVL BIN(4) DEF(THE-STACK) POS(5);

We then set the number of bytes provided to cover the minimum size, set a space pointer to point to the
materialization area, and materialize the stack:

 CPYNV STK-BYTES-PRV, 8; /* Minimum */
 SETSPP .THE-STACK, THE-STACK; /* Point to the receiver area */
 MATINVS .THE-STACK, *; /* Materialize the minimum */

As result we get the number of bytes needed, STK-BYTES-AVL, to receive all entries in the stack. The
Modify Automatic Storage instruction, MODASA, can then be used to change the size of the area pointed to:

 MODASA .THE-STACK, STK-BYTES-AVL; /* Change size of area */

Because this operation may allocate a different area of storage, we need to repeat the instruction that sets a
space pointer to point to the area, and then finally materialize the invocation stack again::

 SETSPP .THE-STACK, THE-STACK; /* Point to changed area */
 MATINVS .THE-STACK, *; /* Materialize full stack */

To access the entries, we can define an array as before. Since we cannot define a variable size array, we
define the array with size 1, and then switch off subscript checking (using the Override Program Attribute
instruction, OVRPGATR):

 DCL DD STK-NBR-OF-ENTRIES BIN(4) DEF(THE-STACK) POS(9);
 DCL DD STK-ENTRY(1) CHAR(128) DEF(THE-STACK) POS(17);

 OVRPGATR 1, 2; /* Do not constrain array references */

To summarize:

DCL SPCPTR .THE-STACK;
DCL DD THE-STACK CHAR(8) AUTO BDRY(16);
 DCL DD STK-BYTES-PRV BIN(4) DEF(THE-STACK) POS(1);
 DCL DD STK-BYTES-AVL BIN(4) DEF(THE-STACK) POS(5);
 DCL DD STK-NBR-OF-ENTRIES BIN(4) DEF(THE-STACK) POS(9);
 DCL DD STK-ENTRY(1) CHAR(128) DEF(THE-STACK) POS(17);

GET-STACK:
 CPYNV STK-BYTES-PRV, 8; /* Minimum */
 SETSPP .THE-STACK, THE-STACK; /* Point to the receiver area */
 MATINVS .THE-STACK, *; /* Materialize the minimum */

 MODASA .THE-STACK, STK-BYTES-AVL; /* Change size of area */

 SETSPP .THE-STACK, THE-STACK;
 MATINVS .THE-STACK, *;

 OVRPGATR 1, 2; /* Do not constrain array references */

 CPYNV PGM-NBR, 0;
NEXT-PROGRAM:
 …

 26

Instruction Pointers
We have several times used the following instruction to call the SHOW-MESSAGE subroutine without really
understanding its operands:

 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

The third operand .SHOW-MESSAGE is an instruction pointer. The CALLI instruction stores the return point in
this pointer variable then goes to the SHOW-MESSAGE entry point which is internal to our program:

DCL INSPTR .SHOW-MESSAGE; /* declare instruction pointer */
ENTRY SHOW-MESSAGE INT;
 . . . /* other processing . . . */
 B .SHOW-MESSAGE; /* return to where it came from */

This may look very strange in the source code, and if you’re not thinking in MI-mode when reading the
source, it may look like the final branch statement of SHOW-MESSAGE will actually cause the SHOW-
MESSAGE subroutine to be executed again causing an endless loop. However what really happens is that
when SHOW-MESSAGE is finished, the subroutine returns using a branch-instruction (B) passing program
control back to the return point instruction that is pointed to by .SHOW-MESSAGE pointer.

 27

Arithmetic and Timestamps

Timestamps
The AS/400 maintains an internal clock whose value is often used as a fine-grained timestamp. The clock
value is 64 bits long and increments by 4096 every microsecond (or at least looks like it does as the exact
way it counts may depend on the hardware implementation). The starting time (12:03:06.3148pm on
August 23rd, 1928) of the counter was chosen such that the most significant bit would change (“roll over”)
at the end of day on December 31st, 1999. In this chapter we shall develop a program to convert the
timestamp into a more conventional text format: YYYYMMDDhhmmss. This allows us to explore several
arithmetical instructions on various data types. We learned in Chapter 2 how to materialize the machine
clock. The materialization area had this structure:

DCL DD MACHINE-CLOCK CHAR(2) INIT(X'0100');
DCL SPCPTR .MACHINE-ATTR INIT(MACHINE-ATTR);
DCL DD MACHINE-ATTR CHAR(24) BDRY(16);
 DCL DD MAT-MAX-SIZE BIN(4) DEF(MACHINE-ATTR) POS(1) INIT(16);
 DCL DD MAT-ACT-SIZE BIN(4) DEF(MACHINE-ATTR) POS(5);
 DCL DD MAT-TIMESTAMP CHAR(8) DEF(MACHINE-ATTR) POS(9);
 DCL DD MAT-TIME-HI BIN(4) UNSGND DEF(MAT-TIMESTAMP) POS(1);
 DCL DD MAT-TIME-LO BIN(4) UNSGND DEF(MAT-TIMESTAMP) POS(5);

Convert Timestamp to Date and Time
The 8-character timestamp consists of two unsigned binary halves, a high-order part and a low-order part.
We need to do this because MI does not support 8-byte binary values BIN(8). Instead, we shall use packed
decimal arithmetic, so the first task is to convert the 8-byte binary value into a packed decimal number. Let
us define the following variables:

DCL DD TIMESTAMP PKD(21,0); /* Can hold 64 bits unsigned */
DCL DD TIMESTAMP-HI PKD(11,0); /* Can hold 32 bits unsigned */
DCL DD TIMESTAMP-LO PKD(11,0); /* Can hold 32 bits unsigned */
DCL DD TWO**32 PKD(11,0) INIT(P'4294967296'); /* 232 */

Since we can copy the unsigned 32-bit binary halves of the timestamp to their corresponding packed
values, TIMESTAMP-HI and TIMESTAMP-LO, we can easily compute the packed decimal full value of the
timestamp: TIMESTAMP = TIMESTAMP-HI * 232 + TIMESTAMP-LO:

 CPYNV TIMESTAMP-LO, MAT-TIME-LO; /* copy unsigned binaries */
 CPYNV TIMESTAMP-HI, MAT-TIME-HI;

 MULT TIMESTAMP, TIMESTAMP-HI, TWO**32;
 ADDN(S) TIMESTAMP, TIMESTAMP-LO;

Since the clock increments by 4096 every microsecond there are 4,096,000,000 “clicks” in one second. To
compute the number of seconds that have elapsed since the starting time, we must divide by 4,096,000,000:

 DIV(SR) TIMESTAMP, 4096000000; /* Now seconds, rounded */

Because we had decided to work to an accuracy of one second only, we rounded the result using the R
operation extender on the Divide instruction (DIV). Although the AS/400 internal clock starting time of
12:03:06.3148pm on August 23rd, 1928 gave a easy number to work with for the start of the year 2000, it
also gives us a ugly number to use for date arithmetic, so we will make some initial adjustments to the
timestamp returned by the MATMATR instruction internally in our program to make the mathematics a little
easier. We can compensate for the awkward starting time within the day by adding the number of seconds
from the previous midnight up to 12:03:06pm:

 ADDN(S) TIMESTAMP, 43386; /* 12:03:06pm */

We now have the number of seconds elapsed since the beginning of the starting day. To get the number of
days, NBR-DAYS, that have elapsed, we divide by the number of seconds in a day, 86400, and retain the
remainder as the number of seconds, NBR-SECONDS, elapsed within the last day. The Divide with
Remainder instruction (DIVREM quotient, dividend, divisor, remainder) does this handily:

 28

 DIVREM NBR-DAYS, TIMESTAMP, 86400, NBR-SECONDS;

Converting to a Date
Taking into account the intricacies of the calendar is eased by the fact that year 2000 is a leap year, so we
don’t need to use the 100-year rule. Again, to make the calculations easier, we can compensate for the
awkward starting day by reducing the number of days by 131, thus making the starting day the beginning of
the year 1929:

 SUBN(S) NBR-DAYS, 131; /* Was: Aug 23,1928, Now: Jan 01,1929 */

Four consecutive years, called a period, contains 1461 days. The number of periods that have elapsed and
the number of days within the last period are simply the quotient and the remainder of the above NBR-DAYS
divided by 1461:

 DIVREM NBR-PERIODS, NBR-DAYS, 1461, NBR-DAYS;

Now, the number of years elapsed is the number of periods times four; add to that the beginning year, 1929,
and we are almost there:

 MULT NBR-YEARS, NBR-PERIODS, 4;
 ADDN(S) NBR-YEARS, 1929;

The number of days within the last period divided by the number of days in a year gives the number of
complete years that must still be added:

 DIVREM ADD-YEARS, NBR-DAYS, 365, NBR-DAYS;
 ADDN YEAR, NBR-YEARS, ADD-YEARS;

We accumulate the result as zoned numbers in:

DCL DD YYYYMMDDHHMMSS CHAR(14);
 DCL DD YEAR ZND(4,0) DEF(YYYYMMDDHHMMSS) POS(1);
 DCL DD MONTH ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(5);
 DCL DD DAY ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(7);
 DCL DD HOUR ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(9);
 DCL DD MIN ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(11);
 DCL DD SEC ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(13);

The remainder was the number of days within the last incomplete year. We save that in NBR-OF-DAYS for
later on. Because of the choice of starting year, 1929, the last year of any period (for which ADD-YEARS is
3) is a leap year, e.g. 1932. If ADD-YEARS is less than 3, we know that the year is not a leap year. The task
now is to find the month based of NBR-DAYS. We define a table with 12 entries where entry number m is
the number of days from the beginning of the year until month m. To find the month, we loop through the
table from the end until the entry value is not less than NBR-DAYS:

 /* Day Base for: JanFebMarAprMayJunJulAugSepOctNovDec*/
DCL DD DAYS CHAR(36) INIT("000031059090120151181212243273304334");
DCL DD DAYS-ACCUM(12) ZND(3,0) DEF(DAYS) POS(1);

 CPYNV M, 13;
 CMPNV(B) ADD-YEARS, 3/LO(FIND-MONTH);
LEAP-YEAR:
 CMPNV(B) NBR-DAYS, 59/LO(FIND-MONTH),EQ(FEB-29TH);
 SUBN(S) NBR-DAYS, 1;
FIND-MONTH: <--------------------.
 SUBN(S) M, 1; |
 SUBN(B) DAY-MONTH, NBR-DAYS, DAYS-ACCUM(M)/NEG(FIND-MONTH); ----’
 ADDN DAY, DAY-MONTH, 1;
 CPYNV(B) MONTH, M/POS(COMPUTE-TIME);
FEB-29TH:
 CPYNV MONTH, 2;
 CPYNV DAY, 29;

COMPUTE-TIME:

Study the above code carefully. Note especially how February 29th is handled. Note also the use of two
branch-conditions in:

 CMPNV(B) NBR-DAYS, 59/LO(FIND-MONTH),EQ(FEB-29TH);

 29

Because the month value, M, is always positive (that is: greater than zero), we can save a branch-instruction
by using POS as a branch-condition in

 CPYNV(B) MONTH, M/POS(COMPUTE-TIME);

to avoid falling into the FEB-29TH processing. The final step is to compute the hours, minutes, and seconds:

COMPUTE-TIME:
 DIVREM HOUR, NBR-SECONDS, 3600, NBR-SECONDS;
 DIVREM MIN, NBR-SECONDS, 60, SEC;

Complete Program to Show Current Date and Time
Putting everything together we get the following complete program (MIRTVDT):

DCL DD MACHINE-CLOCK CHAR(2) INIT(X'0100');
DCL SPCPTR .MACHINE-ATTR INIT(MACHINE-ATTR);
DCL DD MACHINE-ATTR CHAR(24) BDRY(16);
 DCL DD MAT-MAX-SIZE BIN(4) DEF(MACHINE-ATTR) POS(1) INIT(16);
 DCL DD MAT-ACT-SIZE BIN(4) DEF(MACHINE-ATTR) POS(5);
 DCL DD MAT-TIMESTAMP CHAR(8) DEF(MACHINE-ATTR) POS(9);
 DCL DD MAT-TIME-HI BIN(4) UNSGND DEF(MAT-TIMESTAMP) POS(1);
 DCL DD MAT-TIME-LO BIN(4) UNSGND DEF(MAT-TIMESTAMP) POS(5);

DCL DD TIMESTAMP PKD(21,0); /* CAN HOLD 64-BIT UNSIGNED */
DCL DD TIMESTAMP-HI PKD(11,0);
DCL DD TIMESTAMP-LO PKD(11,0);
DCL DD TWO**32 PKD(11,0) INIT(P'4294967296');
DCL DD NBR-SECONDS PKD(15,0);
DCL DD NBR-DAYS BIN(4);
DCL DD NBR-YEARS BIN(4);
DCL DD ADD-YEARS BIN(4);
DCL DD NBR-PERIODS BIN(4);
DCL DD DAY-MONTH BIN(4);
DCL DD D BIN(4);
DCL DD S BIN(4);
DCL DD M BIN(4);
 /* DAY BASE FOR: JanFebMarAprMayJunJulAugSepOctNovDec*/
DCL DD DAYS CHAR(36) INIT("000031059090120151181212243273304334");
DCL DD DAYS-ACCUM (12)ZND(3,0) DEF(DAYS) POS(1);

DCL DD YYYYMMDDHHMMSS CHAR(14);
 DCL DD YEAR ZND(4,0) DEF(YYYYMMDDHHMMSS) POS(1);
 DCL DD MONTH ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(5);
 DCL DD DAY ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(7);
 DCL DD HOUR ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(9);
 DCL DD MIN ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(11);
 DCL DD SEC ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(13);

/***/

 MATMATR .MACHINE-ATTR, MACHINE-CLOCK;
 CPYNV TIMESTAMP-LO, MAT-TIME-LO;
 CPYNV TIMESTAMP-HI, MAT-TIME-HI;
 MULT TIMESTAMP, TIMESTAMP-HI, TWO**32;
 ADDN(S) TIMESTAMP, TIMESTAMP-LO;
 DIV(SR) TIMESTAMP, 4096000000; /* NOW SECONDS */
 ADDN(S) TIMESTAMP, 43386; /* 12:03:06 PM */
 DIVREM NBR-DAYS, TIMESTAMP, 86400, NBR-SECONDS;
 SUBN(S) NBR-DAYS, 131; /* WAS: AUG 23,1928, NOW: JAN 01,1929 */
 DIVREM NBR-PERIODS, NBR-DAYS, 1461, NBR-DAYS; /* 4 YEARS */
 MULT NBR-YEARS, NBR-PERIODS, 4;
 ADDN(S) NBR-YEARS, 1929;
 DIVREM ADD-YEARS, NBR-DAYS, 365, NBR-DAYS;
 ADDN YEAR, NBR-YEARS, ADD-YEARS;
 CPYNV M, 13;
 CMPNV(B) ADD-YEARS, 3/LO(FIND-MONTH);
LEAP-YEAR:
 CMPNV(B) NBR-DAYS, 59/LO(FIND-MONTH),EQ(FEB-29TH);
 SUBN(S) NBR-DAYS, 1;
FIND-MONTH:
 SUBN(S) M, 1;
 SUBN(B) DAY-MONTH, NBR-DAYS, DAYS-ACCUM(M)/NEG(FIND-MONTH);
 ADDN DAY, DAY-MONTH, 1;
 CPYNV(B) MONTH, M/POS(COMPUTE-TIME);
FEB-29TH:
 CPYNV MONTH, 2;

 30

 CPYNV DAY, 29;

COMPUTE-TIME:
 DIVREM HOUR, NBR-SECONDS, 3600, NBR-SECONDS;
 DIVREM MIN, NBR-SECONDS, 60, SEC;

SHOW-DATE-TIME:
 CPYBLAP MSG-TEXT, YYYYMMDDHHMMSS, " ";
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 RTX *;

%INCLUDE SHOWMSG

If we wanted to include the usual date/time separators, we could have defined them as part of the result
structure:

DCL DD YYYYMMDDHHMMSS CHAR(19);
 DCL DD YEAR ZND(4,0) DEF(YYYYMMDDHHMMSS) POS(1);
 DCL DD * CHAR(1) DEF(YYYYMMDDHHMMSS) POS(5) INIT(“/”);
 DCL DD MONTH ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(6);
 DCL DD * CHAR(1) DEF(YYYYMMDDHHMMSS) POS(8) INIT(“/”);
 DCL DD DAY ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(9);
 DCL DD * CHAR(1) DEF(YYYYMMDDHHMMSS) POS(11) INIT(“ ”);
 DCL DD HOUR ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(12);
 DCL DD * CHAR(1) DEF(YYYYMMDDHHMMSS) POS(14) INIT(“:”);
 DCL DD MIN ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(15);
 DCL DD * CHAR(1) DEF(YYYYMMDDHHMMSS) POS(17) INIT(“:”);
 DCL DD SEC ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(18);

 31

Calling Other Programs

External Program Objects
The Original Program Model with its run-time binding of programs was once touted as an important
advantage of the AS/400 over other platforms. Later the pendulum swung completely to the other extreme
where linking modules together was the fashion and late binding was being shunned as being old-
fashioned. Then with Java, the pendulum swung back again. Actually, both approaches have their
advantages depending on what your requirements are. A program is a separate, directly executable object
having (as all objects at the MI-level) both an external symbolic representation (CONTEXT, PROGRAM) and an
internal representation as a resolved system pointer. A program is called using the CALLX (Call eXternal)
instruction with the first operand being (ordinarily) a system pointer to the program object. A second
operand specifies an argument list. A third operand identifies a list of alternate return points, but is usually
left as a null operand (“*”) which will cause the next MI instruction after the CALLX to be executed after
the program called by the CALLX returns control.

Obtaining a System Pointer
There are several ways of obtaining a system pointer:

 ● Initializing the pointer using the INIT clause on a Declare statement
 ● Resolving the pointer using the Resolve System Pointer instruction (RSLVSP)
 ● Copying an existing pointer using the Copy Bytes With Pointers instruction (CPYBWP)
 ● Retrieving a pointer from the System Entry Point Table (SEPT - discussed in a later chapter)
 ● Counterfeiting the pointer (discussed in a later chapter)

Initializing a System Pointer
Here is the main syntax for the initial value of a program system pointer:

DCL SYSPTR pointername INIT(“programname”, CTX(“libraryname”), TYPE(PGM))

The initialization takes place the first time the pointer is used in a session.

Resolving a System Pointer
You can also explicitly insert addressability to an object into a system pointer using the Resolve System
Pointer instruction (RSLVSP). The instruction takes a 34-byte structure (the template) as its second operand
and returns a resolved system pointer in its first operand (provided that the object can be found):

 DCL DD RESOLVE CHAR(34);
 DCL DD RESOLVE-TYPE CHAR(2) DEF(RESOLVE) POS(1);
 DCL DD RESOLVE-NAME CHAR(30) DEF(RESOLVE) POS(3);
 DCL DD RESOLVE-AUTH CHAR(2) DEF(RESOLVE) POS(33);

 DCL SYSPTR .MYPGM;

 CPYBLA RESOLVE-TYPE, X‘0201’;
 CPYBLAP RESOLVE-NAME, “MYPGM”, “ ”;
 RSLVSP .MYPGM, RESOLVE, *, *;

The object type (“02” for a program) and subtype (ordinarily “01”) specify what kind of object we are
trying to address. A list of a number of AS/400 objects showing their types and subtypes can be found in
Appendix 2. Note that the object name is 30 characters long padded as necessary on the right with blanks,
hence the CPYBLAP-instruction. The last element of the structure (and the last operand) used to contain the
authority that should be associated with the pointer. The ability to set authority in a pointer is no longer
used for user-domain objects because it constitutes a potential security breach (there is no way to retract or
remove the authority once it has been granted). The third operand is a system pointer identifying a context
to be searched, or null (“*”) specifying that the library list should be used:

 RSLVSP system pointer, template, context, authority

 32

Copying a System Pointer
In Chapter 3 we saw an example where a stack entry was copied to a local holding area. Because the entry
contained a pointer that we needed to use later on, a special copy-instruction “Copy Bytes With Pointers”
(CPYBWP) was used that maintain the tag bits of the pointer:

NEXT-PROGRAM:
 ADDN(S) PGM-NBR, 1;
 CMPNV(B) PGM-NBR, STK-NBR-OF-ENTRIES/HI(DONE);
 CPYBWP THE-ENTRY, STK-ENTRY(PGM-NBR);

System Entry Point Table (SEPT)
Every AS/400 has a space object called the System Entry Point Table, or SEPT for short. The SEPT is a
table containing ‘pre-resolved’ system pointers to a large number of OS/400 programs, and the location
within the table for a particular system pointer (that is for general use) has remained the same across every
OS/400 release. The SEPT allows a quick look-up of the system pointer for a particular system program
that can then be used as the second parameter in the CALLX instruction. The SEPT will be covered briefly
later in this chapter, and in much more detail in a later chapter.

Counterfeiting a Pointer
Although not part of the normal programming paradigm for the AS/400 it is possible to construct pointers
“out of thin air” for RISC-based AS/400s. This is possible because RISC-based AS/400s rely on detecting
this blatant security breach instead of preventing it. The detection code can be removed and you end up
with a valid pointer (valid, but counterfeit – in the sense of not being issued (and checked) by the system).
We shall also discuss this in detail, in later chapters.

Encapsulated Objects
With a system pointer to an object you can perform operations on the object that are appropriate for the
object: you can execute a program, search an index, retrieve controlled information about the object, etc.
You are generally not supposed to be able to access the object in an uncontrolled manner, such as
inspecting or changing data internal to the object. Objects are said to be encapsulated and thus inviolate. To
access or change data inside an object you need a space pointer to that data. There is an MI-instruction to
create a space pointer from another pointer, “Set Space Pointer From Pointer”, SETSPPFP, so you might
think that the following code fragment would do the trick:

DCL SYSPTR .SYSPTR; /* a system pointer */
DCL SPCPTR .SPCPTR; /* a space pointer */

 SETSPPFP .SPCPTR, .SYSPTR; /* set space pointer */

In fact, it does create a valid space pointer, but not to the system object as we want. Instead, a space pointer
to the “primary associated space” is created. For many encapsulated objects – especially program objects,
the associated space does not contain much of interest, so the freshly minted space pointer is often rather
useless. This is, of course, carefully designed to be so.

The Argument List
This is also called the operand list, hence the “OL” in the syntax for declaring it. First, here is how you
declare the argument list in the calling program (the caller):

DCL OL name (parg1, parg2, …, pargn) ARG

Second, here is how you declare the corresponding list in the called program (the callee):

DCL OL name (parg1, parg2, …, pargn) PARM EXT MIN(m)

The number, m, of arguments passed (or parameters received) can be smaller (MIN(m)) than the maximum
number, n, implied by the number of items (pargn) in the list. Up to 255 items can be specified. The “Store

 33

Parameter List Length”-instruction (STPLLEN) can be used to obtain the actual number of parameters
passed.

The arguments (parameters) are almost always space pointers to data-items, although they don’t have to be.
Many HLLs require arguments to be space pointers, so if you wish to be sure that your program could be
called by an HLL-program it is wise to stick to that convention. The arguments must be declared before the
operand list.

Program Call Example
To illustrate the technique we show two sample programs. MICPGM1 calls MICPGM2 with two arguments.
MICPGM2 can handle up to three parameters and simply replaces the values of any parameters received by a
suitable text, which is displayed by MICPGM1 when control returns to it.

Here is the main program:

DCL SPCPTR .ARG1 INIT(ARG1); /* pointer to 1st argument */
DCL DD ARG1 CHAR(10); /* 1st argument */

DCL SPCPTR .ARG2 INIT(ARG2); /* pointer to 2nd argument */
DCL DD ARG2 CHAR(10); /* 2nd argument */

DCL OL MICPGM2 (.ARG1, .ARG2) ARG; /* argument list */
DCL SYSPTR .MICPGM2; /* system pointer to callee */

DCL DD RESOLVE CHAR(34);
 DCL DD RESOLVE-TYPE CHAR(2) DEF(RESOLVE) POS(1);
 DCL DD RESOLVE-NAME CHAR(30) DEF(RESOLVE) POS(3);
 DCL DD RESOLVE-AUTH CHAR(2) DEF(RESOLVE) POS(33);

ENTRY * EXT;
RESOLVE-TO-PGM:
 CPYBLA RESOLVE-TYPE, X'0201'; /* program type */
 CPYBLAP RESOLVE-NAME, "MICPGM2" , " "; /* 30-char name */
 RSLVSP .MICPGM2, RESOLVE, *, *; /* * is liblist */

LOAD-ARGUMENTS-AND-CALL:
 CPYBLAP ARG1, "ARG1", " "; /* value of 1st arg */
 CPYBLAP ARG2, "ARG2", " "; /* value of 2nd arg */

 CALLX .MICPGM2, MICPGM2, *; /* call the program */

BACK-FROM-CALL:
 CAT MSG-TEXT, ARG1, ARG2; /* concatenate ARGs */
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

RETURN:
 RTX *;

%INCLUDE SHOWMSG

Note the ENTRY statement. It defines an entry point to the program. By default that would be the first
executable instruction, but you can also define it explicitly as we just did. In our example, it has no special
name (“*”) and is an external entry point (EXT). Note also the use of the Concatenate-instruction (CAT) that
concatenates ARG1 and ARG2 into MSG-TEXT, padding with blanks on the right.

The called program, MICPGM2, accepts up to three parameters. Each parameter is a space pointer declared
to be a parameter (PARM):

DCL SPCPTR .PARM1 PARM;
DCL DD PARM1 CHAR(10) BAS(.PARM1);

The PARM1 data item is based on a parameter space pointer (.PARM1) as indicated by the BAS clause.

DCL SPCPTR .PARM2 PARM;
DCL DD PARM2 CHAR(10) BAS(.PARM2);

DCL SPCPTR .PARM3 PARM;
DCL DD PARM3 CHAR(10) BAS(.PARM3);

The parameters are external (EEEXXXTTT) and at least one must be present:

 34

DCL OL MICPGM2 (.PARM1, .PARM2, .PARM3) PARM EEEXXXTTT MIN(1);
DCL DD NBR-PARMS BIN(2);

The entry point specifies the operand list defining possible parameters:

ENTRY * (MICPGM2) EXT;
 STPLLEN NBR-PARMS; /* get number of actual parameters */
 CPYBLAP PARM1, "PARM1", " "; /* just mark the parameter */

We could unconditionally return “PARM1” in the first parameter because we are assured by the system that
there will be at least one. For the remaining parameters, we need a guard based on the number of
parameters to only allow returning a value if the parameter is present:

 CMPNV(B) NBR-PARMS, 2/LO(=+2); /* if NBR-PARMS not < 2 */
 CPYBLAP PARM2, "PARM2", " ";: /* parm2 = “PARM2” */

 CMPNV(B) NBR-PARMS, 3/LO(=+2); /* if NBR-PARMS not < 3 */
 CPYBLAP PARM3, "PARM3", " ";: /* parm3 = “PARM3” */

At the end, we simply return to the caller:

RETURN:
 RTX *;

Relative Branch Conditions
Did you notice the curious branch targets (=+2) in the above guards? Let me rewrite the guards in a more
traditional way:

 CMPNV(B) NBR-PARMS, 2/LO(AFTER-2);
 CPYBLAP PARM2, "PARM2", " ";
AFTER-2:
 CMPNV(B) NBR-PARMS, 3/LO(AFTER-3);
 CPYBLAP PARM3, "PARM3", " ";
AFTER-3:

Labels should be informative as to what the code is doing and not simply place names. I had to invent two
labels with little informational contents (AFTER-2 and AFTER-3) just to have targets for the branch
conditions. Instead of using an actual label name as a branch condition, MI allows relative branch targets.
Both positive and negative values may be used. The relative condition ‘=+2’ means skip forward two (2)
instructions (including the instruction with this condition), so we could just as well have written:

 CMPNV(B) NBR-PARMS, 2/LO(=+2);
 CPYBLAP PARM2, "PARM2", " ";
AFTER-2:
 CMPNV(B) NBR-PARMS, 3/LO(=+2);
 CPYBLAP PARM3, "PARM3", " ";
AFTER-3:

As always, you can only jump to a branch point (the ‘:’ after the label). Because MI is free-form, we can
write the label on the same line as the instruction being skipped:

 CMPNV(B) NBR-PARMS, 2/LO(=+2);
 CPYBLAP PARM2, "PARM2", " "; AFTER-2:

 CMPNV(B) NBR-PARMS, 3/LO(=+2);
 CPYBLAP PARM3, "PARM3", " "; AFTER-3:

Finally, since we are actually not using the label names, we can simply omit them (but keep the colons):

 CMPNV(B) NBR-PARMS, 2/LO(=+2);
 CPYBLAP PARM2, "PARM2", " ";:

 CMPNV(B) NBR-PARMS, 3/LO(=+2);
 CPYBLAP PARM3, "PARM3", " ";:

Now the code is no longer cluttered with the arbitrary, invented labels. Some people indent the guarded
instructions for added clarity (?):

 CMPNV(B) NBR-PARMS, 2/LO(=+2);
 CPYBLAP PARM2, "PARM2", " ";:

 35

 CMPNV(B) NBR-PARMS, 3/LO(=+2);
 CPYBLAP PARM3, "PARM3", " ";:

An Optimization
Since resolving a pointer takes time, one often uses a first-time flag to avoid unnecessary, subsequent
executions of the resolve instruction. The RESOLVE-TYPE can serve as a convenient first-time flag having
an initial value of all zeroes:

 DCL DD RESOLVE CHAR(34);
 DCL DD RESOLVE-TYPE CHAR(2) DEF(RESOLVE) POS(1) INIT(X‘0000’);
 DCL DD RESOLVE-NAME CHAR(30) DEF(RESOLVE) POS(3);
 DCL DD RESOLVE-AUTH CHAR(2) DEF(RESOLVE) POS(33);

 CMPBLA(B) RESOLVE-TYPE, X‘0000’/NEQ(=+4); /* if TYPE = zeroes */
 CPYBLA RESOLVE-TYPE, X‘0201’; /* TYPE = 0201 */
 CPYBLAP RESOLVE-NAME, “MYPGM”, “ ”; /* NAME = … */
 RSLVSP .MYPGM, RESOLVE, *, *;: /* Resolve .MYPGM */

The System Entry Point Table
To speed up access to operating system functions and also to prevent programs with the same name being
present in a context (library) on the library list to be called instead, as you remember, the system maintains
a list of pre-resolved system pointers to operating systems functions and APIs called the System Entry
Point Table (the SEPT). It contains more than 6,000 entries and the number grows with each release of
OS/400. In a later chapter we shall look at the SEPT in detail. For now, we’ll just touch briefly upon how to
use the SEPT. We have used the Send Message API, QMHSNDM, several times (in the SHOWMSG include file).
It is SEPT entry number 4268. We call the API like this:

 CALLX .SEPT(4268), QMHSNDM, *; /* SEND MSG TO MSGQ */

The SEPT is accessed through a pointer found in the Process Communication Object (about which much
more later). Here is how we declare the array of system pointers, which is the SEPT:

DCL SYSPTR .SEPT(6440) BAS(SEPT-POINTER);
DCL SPC PROCESS-COMMUNICATION-OBJECT BASPCO;
 DCL SPCPTR SEPT-POINTER DIR;

The secret to all this is the curious BASPCO clause, meaning “based on the PCO (Process Communication
Object)”. A list of public entries into the SEPT and their numbers will be given in appendix 4.

 36

Getting/Setting File Member Information

File Member Information
In this chapter we shall solve a problem that seems to crop up again and again. How to change the date,
type, and text information for a physical file member. Often a file is maintained on a PC rather than on the
AS/400 and it is desirable to maintain the date information (when created, modified, etc) so that it is the
same on both platforms. There is no API to do this, so we have to roll our own. This chapter focuses on
how we find out where the various pieces of information are stored and in what format we will find this
information. An alternative way of changing some of this information is to open the file member and look
at the Open Data Path. We shall explore that approach in a later chapter.

File Member Cursors
Records for physical files are stored in members. A physical file can have one or more members. An MI-
system object, called tthe cursor, identifies each member. A cursor can point directly to a data space (for
arrival sequence files) or to a data space through a dataspace index (for keyed sequence files). The object
type/subtype for a member cursor is x‘0D50’. The cursor name consists firstly of the 10-character
filename, then the 10-character member name and is finally padded out with blanks for a total of 30
characters. Given that representaion, we can then resolve a system pointer to the cursor using code similar
to the following:

 CPYBLA RESOLVE-TYPE, X'0D50';
 CPYBLAP RESOLVE-NAME(1:30), PARM-FILE, " ";
 CPYBLA RESOLVE-NAME(11:10), PARM-MEMBER;
 RSLVSP .CURSOR, RESOLVE, .CONTEXT, *;

We can also dump the object using SST (note that the object is in the system domain, 8000):

 DISPLAY/ALTER/DUMP 09/05/00 17:33:09 PAGE 1
CURSOR SUBTYPE: 50 NAME: QMISRC MIHELLO ADDRESS: 0419D793F7 000000
SEGMENT HEADER (YYSGHDR)
 TYPE 0001 SIZE 0008 NEWFLAGS 00 FLAGS 89 DOMAIN 8000 OBJECT 0419D793F7 000000 SPACE 0419D793F7 0007F0
EPA HEADER (YYEPAHDR)
 ATT1 80 JOPT 00 TYPE 0D STYP 50
 NAME QMISRC MIHELLO SPATT 80 SPIN 00
 SPSZ 00000810 PBAU 3F10 DVER 4100 TIME 07/27/00 20:09:55
 UPSG 0E6792A4C7 000000 AGSG 0000000000 000000 CTSG 173A0D5C03 000000 OSG 0419D793F7 000000
 RCV2 0002 ASP 0000 PERF 03000000 MDTS 09/03/00 21:06:14
 JPSG 0000000000 000000 CBSG 0000000000 000000 JID 00000000000000000000
 OWAU FF1C IPL NUM 00000073 AL1S 0000000000 000000 GRAU 0000
 GRP 000000000000 MAXS 0000 INFO 0000000000000000 ATT2 E0
 COLB 00 LEVL 00000000 USCNT 0000 USDAY 0000
 DJID 00 DENP 0000000000 000000 POSG 3130B03F48 000000 DIRP 0000000000 000000
 AUR 0071 JGEN 0000 TEMP 000000000000000000000000

 000000 0001000800898000 0419D793F7000000 4001000000000000 0419D793F70007F0 *..........P.7...P.7..0*
 000020 80000D50D8D4C9E2 D9C340404040D4C9 C8C5D3D3D6404040 4040404040404040 *...&QMISRC MIHELLO *
 000040 4040800000000810 000000083F104100 81069260B4628000 0E6792A4C7000000 * -........G...*
 000060 0000000000000000 173A0D5C03000000 0419D793F7000000 0002000003000000 *...........*......P.7...........*
==> 000080 813665D6701C0000 0000000000000000 0000000000000000 0000000000000000 *...O............................*
 0000A0 0000FF1C00000073 0000000000000000 0000000000000000 0000000000000000 *................................*
 0000C0 0000000000000000 E000000000000000 0000000000000000 0000000000000000 *................................*
 0000E0 3130B03F48000000 0000000000000000 0071000000000000 0000000000000000 *................................*

Note the modify-timestamp (MDTS) at offset x‘80’. This is one of the items we might want to change. The
address of the associated space is at offset x‘07F0’. We build a space pointer to the associated space from
the resolved system pointer with the (now) familiar “Set Space Pointer From Pointer”-instruction:

 SETSPPFP .CURSOR-SPACE, .CURSOR;

The Member Header
Investigating the associated space for the cursor we see that at offset x‘04’ there is a 4-byte binary value (x
‘00000490’) that when added to the address of the associated space (x‘…0007F0’) points to an area
(x‘…000c80’) where the member descriptive text, type and source change dates are stored. This area is
known as the member header:

DCL SPCPTR .CURSOR-SPACE;
DCL SPC CURSOR-SPACE BAS(.CURSOR-SPACE);

 37

 DCL DD CSR-MBR-HEADER BIN(4) DEF(CURSOR-SPACE) POS(5);

Here is the associated space (so you can see for yourself):

ASSOCIATED SPACE
 0007E0 9000000000000490 0000083C000000B0 * *
 000800 00000140000001C6 0000028000000000 000002C000000000 0000000000000000 *... ...F........................*
 000820 T 0000000000000000 0000000000000000 0000000000000000 0419D793F7000D10 *..........................P.7...*
 000840 0000000000000000 0000000000000000 0000000000000000 0000000000000000 *................................*
 000860 0000000000000000 0000000000000000 8000000000000000 0000000000000000 *................................*
 000880 0000000000000000 0000000000000000 2C00000000000000 0000000000000000 *................................*
 0008A0 C4C2000000000000 0000000000000000 0000000000000000 0000000000000000 *DB..............................*
 0008C0 0000000000000000 0000000000000000 D4C9C8C5D3D3D640 4040000000000000 *................MIHELLO *
 0008E0 0000000000000000 00000000000000C1 D900E80000000000 0000000000000000 *...............AR.Y.............*
 000900 0000000000000000 0000000000000000 0000000000000000 0000000000000000 *................................*
 000920 0000000000000000 0000000000000000 00010001C4C1E3C1 C2C1E2C540400000 *....................DATABASE ..*
 000940 0000000000000000 0010000E000F06B0 0012004500130013 006F004500450045 *.........................?......*
 000960 0013004500450045 000D001100000001 0000000000000000 0000000000000000 *................................*
 000980 0000000000000000 0000000000000000 0000000000000000 0000000000000000 *................................*
 0009A0 0000000000000000 0000000000000000 0000000000000090 0000000000000000 *................................*
 0009C0 0000000000000000 0000000000000000 0000000000000000 0000000000000000 *................................*
 3 LINES 0419D793F7 0009E0 TO 0419D793F7 000A20 SAME AS ABOVE
 000A40 0000000000000000 0022000000000000 0000000300000480 0000000000000000 *................................*
 000A60 0000000000000000 0000000000000000 T 0000000200300000 0000000000003000 *................................*
 000A80 T 0000000000000000 0419D793F7000D10 0000000000000000 34FE0DEF61000B00 *..........P.7.............../...*
 000AA0 8181000000000000 0000000000000000 0000000000000000 0000000000000000 *................................*
 000AC0 T 0000000000000000 0000000000000000 8000000000000000 0419D793F7000C80 *..........................P.7...*
 000AE0 0000000000000000 0000000000000000 0000000000000000 0000000000000000 *................................*
 4 LINES 0419D793F7 000B00 TO 0419D793F7 000B60 SAME AS ABOVE
 000B80 0000000000000000 0000000000000000 0000000000000000 0000000003000000 *................................*
 000BA0 2500000000C3D7C6 0000000000800000 0000003C00000000 0000000000000000 *.....CPF........................*
 000BC0 0000000000000000 0000000000000000 0000000000000000 0000000000000000 *................................*
 000C20 0000000000000000 005C000000000001 D4C9E2D9C3404040 404000F1C6C4C6C3 *.........*......MISRC .1FDFC*
 000C40 F9C2C6C4C5F5C5C5 00000000005C0001 0000000100000000 0000000300000000 *9BFDE5EE.....*..................*
 000C60 0000000000000000 0000000000000000 T 0000000000000000 0000000000000000 *................................*

 000C80 T 0000000000000000 26259A9FB5000D10 T 0000000000000000 171C8C8A02000D10 *................................*
 000CA0 0000000000000000 3130B03F48001910 0000000000000000 0000000000000000 *................................*
 000CC0 0000000000000000 0000000000000000 8018FFFFE3C5E7E3 4B4B4B4040404040 *....................TEXT... *
 000CE0 4040404040404040 4040404040404040 4040404040404040 4040404040404040 * *
 000D00 404040404040D4C9 4040404040404040 0000000000000000 0000F1F0F0F0F7F2 * MI 100072*
 000D20 F7F2F0F0F5F5F5F1 F0F0F0F7F2F7F2F0 F0F9F5F500C4D500 00271003E801F3D5 *72005551000727200955.DN.....Y.3N*
 000D40 F1F0F0F0F9F0F5F0 F3F3F4F5F5404040 4040404040404040 4040000000000000 *1000905033455 *
 000D60 0000000000000000 0000000000000000 0000000000000000 0000000000000000 *................................*

Further analysis (which I’ll spare you) reveals that the format of the member header is as follows:

DCL SPCPTR .MBR-HEADER;
DCL SPC MBR-HEADER BAS(.MBR-HEADER);
 DCL SYSPTR .MHDR-PREV-MCB DIR;
 DCL SYSPTR .MHDR-NEXT-MCB DIR;
 DCL SYSPTR .MHDR-FILE-CB DIR;
 DCL SYSPTR .MHDR-SHARE-DIR DIR;
 DCL SYSPTR .MHDR-DATA-DICT DIR;

 DCL DD MHDR-STATUS CHAR(2) DIR;
 DCL DD * CHAR(2) DIR;
 DCL DD MHDR-TEXT CHAR(50) DIR;
 DCL DD MHDR-TYPE CHAR(10) DIR;
 DCL DD * CHAR(10) DIR;

 DCL DD MHDR-CHANGE-DATE CHAR(13) DIR;
 DCL DD MHDR-CREATE-DATE CHAR(13) DIR;

 DCL DD MHDR-PREFRD-UNIT CHAR(1) DIR;
 DCL DD MHDR-ALLOC-TYPE CHAR(2) DIR;
 DCL DD MHDR-INIT-RECS BIN(4) DIR;
 DCL DD MHDR-RECS-EXTEND BIN(2) DIR;
 DCL DD MHDR-NBR-EXTENDS BIN(2) DIR;
 DCL DD MHDR-RECOVER-OPT CHAR(1) DIR;

 DCL DD MHDR-SAVE-DATE CHAR(13) DIR;
 DCL DD MHDR-RSTR-DATE CHAR(13) DIR;
 DCL DD MHDR-%-DLT-ALLOW CHAR(1) DIR;
 DCL DD MHDR.USER-AREA BIN(4) DIR;
 DCL DD MHDR-OLD-S-DATE CHAR(13) DIR;
 DCL DD MHDR-OLD-R-DATE CHAR(13) DIR;
 DCL DD MHDR........... CHAR(1) DIR;

We can get a pointer to the member header by using the “Add to Space Pointer”-instruction (ADDSPP) that
adds the binary value at offset x‘04’ (which we’ll use as the 3rd operand) to the space pointer to the
associated space (which we’ll use as the 2nd operand) yielding the required space pointer to the member
header, returned to us by ADDSPP in the 1st operand:

 ADDSPP .MBR-HEADER, .CURSOR-SPACE, CSR-MBR-HEADER;

 38

Unfortunately, we cannot add a negative offset to get at the functional space of the object (where the
system pointer is pointing to). If you try to, you get a run-time exception that the address is outside of the
bounds of the associated space. What we really would like to do is to manufacture a space pointer directly
from the system pointer. That problem we just solved in chapter 7 and we’ll apply the solution here:

 CPYBWP .POINTER, .CURSOR;
 CPYBREP PTR-OFFSET, X'00';
 CALLX .MIMAKPTR, MIMAKPTR, *;

And now we can access the modify-timestamp:

DCL SPC MBR-CURSOR BAS(.POINTER);
 DCL DD MBR-CHANGE-TIMESTAMP CHAR(8) DEF(MBR-CURSOR) POS(129);

Converting Dates to Timestamps
Back in chapter 4, we went through the data structures and algorithm needed for converting an MI-
timestamp to a more readable date and time. The reverse conversion uses the same data structures and the
code is straightforward (but still interesting). A new twist is that we don’t want the real century, but only
IBM’s goofy “century-flag”:

DCL DD CENTURY ZND(2,0) DEF(YYYYMMDDHHMMSS) POS(1);
DCL DD CENTURY-FLAG ZND(1,0) DEF(YYYYMMDDHHMMSS) POS(2);
DCL DD CYYMMDDHHMMSS CHAR(13) DEF(YYYYMMDDHHMMSS) POS(2);

DCL INSPTR .DATE-TO-TIMESTAMP;
ENTRY DATE-TO-TIMESTAMP INT;
 ADDN CENTURY, CENTURY-FLAG, 19;
 SUBN NBR-YEARS, YEAR, 1925; /* 1st period: 1925, 26, 27, 28 */
 DIVREM NBR-PERIODS, NBR-YEARS, 4, ADD-YEARS; /* 0 1 2 3 */
 MULT NBR-DAYS, NBR-PERIODS, 1461;
 MULT D, ADD-YEARS, 365;
 ADDN(S) NBR-DAYS, D;
 CPYNV M, MONTH;
 ADDN(S) NBR-DAYS, DAYS-ACCUM(M);
 ADDN(S) NBR-DAYS, DAY;
 CMPNV(B) ADD-YEARS, 3/NEQ(=+2); /* leap year fiddling: */
 CMPNV(B) MONTH, 2/HI (=+2);: /* February is one day */
 SUBN(S) NBR-DAYS, 1;: /* longer in the 3rd year */
 MULT NBR-SECONDS, NBR-DAYS, 86400;
 MULT S, HOUR, 60; /* S = minutes */
 ADDN(S) S, MIN;
 MULT(S) S, 60; /* S = seconds */
 ADDN(S) S, SEC;
 ADDN(S) NBR-SECONDS, S;
 SUBN(S) NBR-SECONDS, 114955386; /* AUG 23, 1928, 12:03:06pm */
 MULT TIMESTAMP, NBR-SECONDS, 4096000000;
 DIVREM BIN-TIME-HI, TIMESTAMP, TWO**32, BIN-TIME-LO;
 B .DATE-TO-TIMESTAMP;

We’ll need this conversion because we’ll want our API to work in date/time format rather than in 64-bit
internal timestamp format.

Must be System State
Because we are trying to modify a system domain object, we need to (e.g. using SST to) make MIMBRINF a
system state program as outlined in chapter 7. The MIMAKPTR program that we call should then also be a
system state program (or at least an “inherit state”-program). You could avoid this proliferation of system
programs by incorporating (the one-line) MIMAKPTR program into MIMBRINF and patching the resulting
program accordingly. By now, you can do this in stride.

Parameters
For the final revision of MIBMRINF, we will modify it to accept two parameters; a control block that
specifies the operation to perform and the member to perform it on; and an information block with the type,
change dates/times, and the descriptive text. We’ll also decide to have a separate operation for changing
each of the pieces of the information block because this is often what we need in practice. It is rare that we
need to change more than one piece at a time. In any case, the code setting up the parameters is trivial
boilerplate code that you can easily change to fit your needs.

 39

DCL SPCPTR .PARM-CONTROL PARM;
DCL SPCPTR .PARM-INFO PARM;

DCL OL PARAMETERS(.PARM-CONTROL, .PARM-INFO) EXT PARM MIN(2);

DCL DD PARM-CONTROL CHAR(32) BAS(.PARM-CONTROL);
 DCL DD PARM-OPERATION CHAR(1) DEF(PARM-CONTROL) POS(1);
 /* G - GET INFO FOR MBR */
 /* S - SET SOURCE DATE/TIME */
 /* O - SET OBJECT DATE/TIME */
 /* T - SET MEMBER TYPE */
 /* D - SET DESCRIPTIVE TEXT */
 DCL DD PARM-FEEDBACK CHAR(1) DEF(PARM-CONTROL) POS(2);
 /* BLANK - OK */
 /* E - ERROR */
 /* O - OPERATION UNKNOWN */
 DCL DD PARM-LIBRARY CHAR(10) DEF(PARM-CONTROL) POS(3);
 /* *LIBL - LIBRARY LIST */
 DCL DD PARM-FILE CHAR(10) DEF(PARM-CONTROL) POS(13);
 DCL DD PARM-MEMBER CHAR(10) DEF(PARM-CONTROL) POS(23);
 /* *FILE - MEMBER = FILE */

DCL DD PARM-INFO CHAR(86) BAS(.PARM-INFO);
 DCL DD PARM-TYPE CHAR(10) DEF(PARM-INFO) POS(1);
 DCL DD PARM-DATE-SRC CHAR(13) DEF(PARM-INFO) POS(11);
 DCL DD PARM-DATE-OBJ CHAR(13) DEF(PARM-INFO) POS(24);
 DCL DD PARM-TEXT CHAR(50) DEF(PARM-INFO) POS(37);

Command CHGMBR and Command Processing Program CHGMBRCL
This time we’ll make a simple command and an associated command [processing CL-program to set up the
parameters (in particular to allow simple prompting). You can modify these simple programs to suit your
needs. This is not rocket science. First the command (CHGMBR in file QCDMSRC):

 CMD PROMPT('Change File Member Information')
 PARM KWD(LIBRARY) TYPE(*CHAR) LEN(10) PROMPT('Library')
 PARM KWD(FILE) TYPE(*CHAR) LEN(10) PROMPT('File')
 PARM KWD(MEMBER) TYPE(*CHAR) LEN(10) PROMPT('Member')
 PARM KWD(TYPE) TYPE(*CHAR) LEN(10) PROMPT('Type')
 PARM KWD(DATESRC) TYPE(*DATE) PROMPT('Source date')
 PARM KWD(TIMESRC) TYPE(*TIME) PROMPT('Source time')
 PARM KWD(DATEOBJ) TYPE(*DATE) PROMPT('Object date')
 PARM KWD(TIMEOBJ) TYPE(*TIME) PROMPT('Object time')
 PARM KWD(TEXT) TYPE(*CHAR) LEN(50) PROMPT('Descriptive Text')
 PARM KWD(TEST) TYPE(*CHAR) LEN(1) PROMPT('Test, Yes/No')

Create the command:

 ===> CRTCMD CMD(CHGMBR) PGM(CHGMBRCL) REPLACE(*YES)

Here is a typical prompt screen:

 Change File Member Information (CHGMBR)

 Type choices, press Enter.

 Library > *LIBL Character value
 File > QMISRC Character value
 Member > MIHELLO Character value
 Type > MI Character value
 Source date 7/27/2000 Date
 Source time 11:22:33 Time
 Object date 9/02/2000 Date
 Object time 22:33:44 Time
 Descriptive Text > 'Hello World' .
 .
 Test, Yes/No > Y Character value

The last parameter is for testing. If “Y” the member information is retrieved and the information block is
sent as a message to the requesting job’s message queue. The full command line for the above prompt was:

 40

 ===> CHGMBR LIBRARY(*LIBL) FILE(QMISRC) MEMBER(MIHELLO) TYPE(MI) DATESRC('7/27/
2000') TIMESRC('11:22:33') DATEOBJ('9/02/2000') TIMEOBJ('22:33:44') TEXT('Hello
World') TEST(Y)

Only parameters that are given will be changed by the program.

Command Processing Program
Compile the CL-program CHGMBRCL in QCLSRC that is to serve as command processing program:

PGM PARM(&PARMLIB &PARMFILE &PARMMBR &PARMTYPE &PARMDSRC &PARMTSRC +
 &PARMDOBJ &PARMTOBJ &PARMTEXT &PARMTEST)

 DCL &PARMLIB *CHAR LEN(10)
 DCL &PARMFILE *CHAR LEN(10)
 DCL &PARMMBR *CHAR LEN(10)
 DCL &PARMTYPE *CHAR LEN(10)
 DCL &PARMDSRC *CHAR LEN(07) /* DATE WHEN SOURCE CHANGED */
 DCL &PARMTSRC *CHAR LEN(06) /* TIME WHEN SOURCE CHANGED */
 DCL &PARMDOBJ *CHAR LEN(07) /* DATE WHEN OBJECT CHANGED */
 DCL &PARMTOBJ *CHAR LEN(06) /* TIME WHEN OBJECT CHANGED */
 DCL &PARMTEXT *CHAR LEN(50)
 DCL &PARMTEST *CHAR LEN(1) /* Y/N */

 DCL &CONTROL *CHAR LEN(32)
 DCL &QUALNAME *CHAR LEN(30)
 DCL &INFO *CHAR LEN(86)

 CHGVAR &QUALNAME VALUE(&PARMLIB *CAT &PARMFILE *CAT &PARMMBR)
 IF (&PARMMBR *EQ ' ') GOTO DONE

 IF (&PARMTYPE *EQ '*NONE ') +
 THEN(DO)
 CHGVAR &CONTROL VALUE('T ' *CAT &QUALNAME)
 CHGVAR &INFO VALUE(' ')
 CALL PGM(MIMBRINF) PARM(&CONTROL &INFO)
 ENDDO
 ELSE +
 IF (&PARMTYPE *NE ' ') +
 THEN(DO)
 CHGVAR &CONTROL VALUE('T ' *CAT &QUALNAME)
 CHGVAR &INFO VALUE(&PARMTYPE)
 CALL PGM(MIMBRINF) PARM(&CONTROL &INFO)
 ENDDO

 IF (&PARMDSRC *NE '0000000') +
 THEN(DO)
 CHGVAR &CONTROL VALUE('S ' *CAT &QUALNAME)
 CHGVAR &INFO VALUE(&PARMTYPE *CAT &PARMDSRC *CAT &PARMTSRC)
 CALL PGM(MIMBRINF) PARM(&CONTROL &INFO)
 ENDDO

 IF (&PARMDOBJ *NE '0000000') +
 THEN(DO)
 CHGVAR &CONTROL VALUE('O ' *CAT &QUALNAME)
 CHGVAR &INFO VALUE(&PARMTYPE *CAT ' ' +
 *CAT &PARMDOBJ *CAT &PARMTOBJ)
 CALL PGM(MIMBRINF) PARM(&CONTROL &INFO)
 ENDDO

 IF (&PARMTEXT *EQ '*NONE ') +
 THEN(DO)
 CHGVAR &CONTROL VALUE('D ' *CAT &QUALNAME)
 CHGVAR &INFO VALUE(&PARMTYPE +
 *CAT ' ' +
 *CAT ' ')
 CALL PGM(MIMBRINF) PARM(&CONTROL &INFO)
 ENDDO
 ELSE +
 IF (&PARMTEXT *NE '*NONE ') +
 THEN(DO)
 CHGVAR &CONTROL VALUE('D ' *CAT &QUALNAME)
 CHGVAR &INFO VALUE(&PARMTYPE +
 *CAT ' ' +
 *CAT &PARMTEXT)
 CALL PGM(MIMBRINF) PARM(&CONTROL &INFO)
 ENDDO

DONE:

 41

 IF (&PARMTEST *EQ 'Y') +
 THEN(DO)
 CHGVAR &CONTROL VALUE('G ' *CAT &QUALNAME)
 CALL PGM(MIMBRINF) PARM(&CONTROL &INFO)
 SNDMSG MSG(&INFO) TOUSR(*REQUESTER)
 ENDDO
ENDPGM

When you run the command, with TEST(Y), the test message that is sent looks like this:

 Type reply (if required), press Enter.
 From . . . : LSVALGAARD 09/06/00 22:31:22
 MI 10007271122331000902223344Hello World

The Complete MIMBRINF Program

DCL SPCPTR .PARM-CONTROL PARM;
DCL SPCPTR .PARM-INFO PARM;

DCL OL PARAMETERS(.PARM-CONTROL, .PARM-INFO) EXT PARM MIN(2);

DCL DD PARM-CONTROL CHAR(32) BAS(.PARM-CONTROL);
 DCL DD PARM-OPERATION CHAR(1) DEF(PARM-CONTROL) POS(1);
 /* G - GET INFO FOR MBR */
 /* S - SET SOURCE DATE/TIME */
 /* O - SET OBJECT DATE/TIME */
 /* T - SET MEMBER TYPE */
 /* D - SET DESCRIPTIVE TEXT */
 DCL DD PARM-FEEDBACK CHAR(1) DEF(PARM-CONTROL) POS(2);
 /* BLANK - OK */
 /* E - ERROR */
 /* O - OPERATION UNKNOWN */
 DCL DD PARM-LIBRARY CHAR(10) DEF(PARM-CONTROL) POS(3);
 /* *LIBL - LIBRARY LIST */
 DCL DD PARM-FILE CHAR(10) DEF(PARM-CONTROL) POS(13);
 DCL DD PARM-MEMBER CHAR(10) DEF(PARM-CONTROL) POS(23);
 /* *FILE - MEMBER = FILE */

DCL DD PARM-INFO CHAR(86) BAS(.PARM-INFO);
 DCL DD PARM-TYPE CHAR(10) DEF(PARM-INFO) POS(1);
 DCL DD PARM-DATE-SRC CHAR(13) DEF(PARM-INFO) POS(11);
 DCL DD PARM-DATE-OBJ CHAR(13) DEF(PARM-INFO) POS(24);
 DCL DD PARM-TEXT CHAR(50) DEF(PARM-INFO) POS(37);

DCL EXCM EXCEPTION-LIST EXCID(H'0000') BP(ERROR-DETECTED) IGN;

DCL SYSPTR .CONTEXT;
DCL SYSPTR .CURSOR;
DCL SPCPTR .CURSOR-SPACE;
DCL SPC CURSOR-SPACE BAS(.CURSOR-SPACE);
 DCL DD CSR-MBR-HEADER BIN(4) DEF(CURSOR-SPACE) POS(5);

DCL SPC MBR-CURSOR BAS(.POINTER);
 DCL DD MBR-CHANGE-TIMESTAMP CHAR(8) DEF(MBR-CURSOR) POS(129);

DCL SPCPTR .MBR-HEADER;
DCL SPC MBR-HEADER BAS(.MBR-HEADER);
 DCL SYSPTR .MHDR-PREV-MCB DIR;
 DCL SYSPTR .MHDR-NEXT-MCB DIR;
 DCL SYSPTR .MHDR-FILE-CB DIR;
 DCL SYSPTR .MHDR-SHARE-DIR DIR;
 DCL SYSPTR .MHDR-DATA-DICT DIR;

 DCL DD MHDR-STATUS CHAR(2) DIR;
 DCL DD * CHAR(2) DIR;
 DCL DD MHDR-TEXT CHAR(50) DIR;
 DCL DD MHDR-TYPE CHAR(10) DIR;
 DCL DD * CHAR(10) DIR;

 DCL DD MHDR-CHANGE-DATE CHAR(13) DIR;
 DCL DD MHDR-CREATE-DATE CHAR(13) DIR;

 DCL DD MHDR-PREFRD-UNIT CHAR(1) DIR;
 DCL DD MHDR-ALLOC-TYPE CHAR(2) DIR;
 DCL DD MHDR-INIT-RECS BIN(4) DIR;
 DCL DD MHDR-RECS-EXTEND BIN(2) DIR;
 DCL DD MHDR-NBR-EXTENDS BIN(2) DIR;
 DCL DD MHDR-RECOVER-OPT CHAR(1) DIR;

 42

 DCL DD MHDR-SAVE-DATE CHAR(13) DIR;
 DCL DD MHDR-RSTR-DATE CHAR(13) DIR;
 DCL DD MHDR-%-DLT-ALLOW CHAR(1) DIR;
 DCL DD MHDR.USER-AREA BIN(4) DIR;
 DCL DD MHDR-OLD-S-DATE CHAR(13) DIR;
 DCL DD MHDR-OLD-R-DATE CHAR(13) DIR;
 DCL DD MHDR........... CHAR(1) DIR;

DCL SPCPTR .ARG1 INIT(POINTER);
DCL DD POINTER CHAR(16) BDRY(16);
 DCL PTR .POINTER DEF(POINTER) POS(1);

 DCL DD PTR-TYPE CHAR(8) DEF(POINTER) POS(1);
 DCL DD PTR-SEGMENT CHAR(5) DEF(POINTER) POS(9);
 DCL DD PTR-OFFSET CHAR(3) DEF(POINTER) POS(14);

DCL OL MIMAKPTR (.ARG1) ARG;
DCL SYSPTR .MIMAKPTR;

DCL DD RESOLVE CHAR(34);
 DCL DD RESOLVE-TYPE CHAR(2) DEF(RESOLVE) POS(1) INIT(X'0000');
 DCL DD RESOLVE-NAME CHAR(30) DEF(RESOLVE) POS(3);
 DCL DD RESOLVE-AUTH CHAR(2) DEF(RESOLVE) POS(33) INIT(X'0000');

/**/

ENTRY * (PARAMETERS) EXT;
 CPYBLA PARM-FEEDBACK, " ";
 CMPBLA(B) RESOLVE-TYPE, X'0000'/NEQ(TEST-LIBRARY);
RESOLVE-TO-MAKE-POINTER-PGM:
 CPYBLA RESOLVE-TYPE, X'0201';
 CPYBLAP RESOLVE-NAME, "MIMAKPTR", " ";
 RSLVSP .MIMAKPTR, RESOLVE, *, *;

TEST-LIBRARY:
 CMPBLAP(B) PARM-LIBRARY, "*LIBL", " "/NEQ(GET-CONTEXT);
 CPYBWP .CONTEXT, *; /* NULL */
 B TEST-MEMBER;

GET-CONTEXT:
 CPYBLA RESOLVE-TYPE, X'0401';
 CPYBLAP RESOLVE-NAME, PARM-LIBRARY, " ";
 RSLVSP .CONTEXT, RESOLVE, *, *;

TEST-MEMBER:
 CPYBLAP RESOLVE-NAME(1:30), PARM-FILE, " ";
 CPYBLA RESOLVE-NAME(11:10), PARM-FILE;
 CMPBLAP(B) PARM-MEMBER, "*FILE", " "/EQ(=+2);
 CPYBLA RESOLVE-NAME(11:10), PARM-MEMBER;:

RESOLVE-TO-CURSOR:
 CPYBLA RESOLVE-TYPE, X'0D50';
 RSLVSP .CURSOR, RESOLVE, .CONTEXT, *;
 SETSPPFP .CURSOR-SPACE, .CURSOR;
 ADDSPP .MBR-HEADER, .CURSOR-SPACE, CSR-MBR-HEADER;

TEST-OPERATION:
 CMPBLA(B) PARM-OPERATION, "S"/EQ(SET-SOURCE-INFO);
 CMPBLA(B) PARM-OPERATION, "T"/EQ(SET-MEMBER-TYPE);
 CMPBLA(B) PARM-OPERATION, "D"/EQ(SET-DESCRIPTIVE-TEXT);

GET-MBR-OBJECT:
 CPYBWP .POINTER, .CURSOR;
 CPYBREP PTR-OFFSET, X'00';
 CALLX .MIMAKPTR, MIMAKPTR, *;

 CMPBLA(B) PARM-OPERATION, "O"/EQ(SET-OBJECT-INFO);
 CMPBLA(B) PARM-OPERATION, "G"/EQ(GET-INFO-FOR-MBR);
 B OPERATION-ERROR;

GET-INFO-FOR-MBR:
 CPYBLA PARM-TYPE, MHDR-TYPE;
 CPYBLA PARM-TEXT, MHDR-TEXT;
 CPYBLA BIN-TIMESTAMP, MBR-CHANGE-TIMESTAMP;
 CALLI TIMESTAMP-TO-DATE, *, .TIMESTAMP-TO-DATE;
 CPYBLA PARM-DATE-OBJ, CYYMMDDHHMMSS;
 CPYBLA PARM-DATE-SRC, MHDR-CHANGE-DATE;
 B RETURN;

SET-SOURCE-INFO:

 43

 CPYBLA MHDR-CHANGE-DATE, PARM-DATE-SRC;
 B RETURN;

SET-OBJECT-INFO:
 CPYBLA CYYMMDDHHMMSS, PARM-DATE-OBJ;
 CALLI DATE-TO-TIMESTAMP, *, .DATE-TO-TIMESTAMP;
 CPYBLA MBR-CHANGE-TIMESTAMP, BIN-TIMESTAMP;
 B RETURN;

SET-MEMBER-TYPE:
 CPYBLA MHDR-TYPE, PARM-TYPE;
 B RETURN;

SET-DESCRIPTIVE-TEXT:
 CPYBLA MHDR-TEXT, PARM-TEXT;
 B RETURN;

OPERATION-ERROR:
 CPYBLA PARM-FEEDBACK, "O";
RETURN:
 RTX *;

ERROR-DETECTED:
 CPYBLA PARM-FEEDBACK, "E";
 RTX *;

 44

Internal Sorting, Combsort

Sorting Internal Data
In this chapter we shall use MI to develop a very fast sorting program for internal data held in an array (a
table) and show how to get the CPU time the processor spends sorting tables of different sizes. In doing
this we’ll have occasion to use floating point variables computing logarithms. We start with a description of
the simple, well-known Bubble sort algorithm and show the algorithm first in COBOL.

Bubble Sort
As the name suggests, bubble sort moves items up a table like bubbles in a tube. The algorithm can be
explained as follows: pass over the data, comparing and exchanging items so that the largest item ends up
at the end of the table. Repeat for the remaining items until the table is sorted, that is, no exchanges were
made during the latest pass.

The following COBOL code performs a bubble sort:

 01 TABLE-TO-SORT.
 02 TABLE-SIZE PIC S9(5) COMP.
 02 TABLE-MAX PIC S9(5) COMP VALUE +1000.
 02 TABLE-ITEM OCCURS 1000 TIMES.
 03 TABLE-KEY PIC X(9).
 03 TABLE-DATA PIC X(11).

 01 VARIOUS-INDICES.
 02 ITEM-NBR PIC S9(5) COMP.
 02 SWAP-NBR PIC S9(5) COMP.
 02 JUMP-SIZE PIC S9(5) COMP.
 02 UPPER-LIMIT PIC S9(5) COMP.

 01 VARIOUS-VALUES.
 02 SWAP-ITEM PIC X(20).
 02 SWAP-INDICATOR PIC X(1).
 88 NO-MORE-SWAPS VALUE IS SPACE.

 BUBBLE-SORT-THE-ARRAY.
 MOVE nnnn TO TABLE-SIZE
 MOVE "SWAP" TO SWAP-INDICATOR
 MOVE 1 TO JUMP-SIZE
 PERFORM BUBBLE-SORT
 UNTIL NO-MORE-SWAPS
 .

 BUBBLE-SORT.
 MOVE SPACE TO SWAP-INDICATOR
 COMPUTE UPPER-LIMIT = TABLE-SIZE - JUMP-SIZE

 PERFORM COMPARE-AND-SWAP-KEYS
 VARYING ITEM-NBR FROM 1 BY 1
 UNTIL ITEM-NBR > UPPER-LIMIT
 .

 COMPARE-AND-SWAP-KEYS.
 COMPUTE SWAP-NBR = ITEM-NBR + JUMP-SIZE
 IF TABLE-KEY (ITEM-NBR) > TABLE-KEY (SWAP-NBR)
 MOVE TABLE-ITEM (ITEM-NBR) TO SWAP-ITEM
 MOVE TABLE-ITEM (SWAP-NBR) TO TABLE-ITEM (ITEM-NBR)
 MOVE SWAP-ITEM TO TABLE-ITEM (SWAP-NBR)
 MOVE "SWAP" TO SWAP-INDICATOR
 .

The code sorts a table of a given size assuming that is have already been initialized with values. Even if
COBOL is not your favorite language, the code should be easy enough to follow. Study the above code so
you understand how it works. It has long been known that bubble sort is the worst sorting algorithm and
that one should never use it for anything more that about 20 values. The best general-purpose sorting
algorithm was known to be quicksort. Bubble sort’s only redeeming feature is its simplicity. Sorting is a
problem that was solved years ago.

 45

Combsort
Just as we thought that the last word had been said about sorting, a breakthrough comes along and spoils
everything. In the April 1991 issue of BYTE magazine, Stephen Lacey and Richard Box show that a simple
modification to bubble sort makes it a fast and efficient sort method on par with heapsort and quicksort.

In a bubble sort, each item is compared to the next; if the two are out of order, they are swapped. This
method is slow because it is susceptible to the appearance of what Box and Lacey call turtles. A turtle is a
relatively low value located near the end of the table. During a bubble sort, this element moves only one
position for each pass, so a single turtle can cause maximal slowing. Almost every long table of items
contains a turtle.

Their simple modification of bubble sort, which they call ‘combsort’, eliminates turtles quickly by allowing
the distance between compared items to be greater than one. This distance - the JUMP-SIZE - is initially set
to the TABLE-SIZE. Before each pass, the JUMP-SIZE is divided by 1.3 (the shrink factor). If this causes it to
become less than 1, it is simply set to 1, collapsing combsort into bubble sort. An exchange of items moves
items by JUMP-SIZE positions rather than only one position, causing turtles to jump rather than crawl. As
with any sort method where the displacement of an element can be larger than one position, combsort is not
stable - like elements do not keep their relative positions. This is rarely a problem in practice and could, if
necessary, be fixed by adding a sequence number to the key.

Successively shrinking the JUMP-SIZE is analogous to combing long, tangled hair - stroking first with your
fingers alone, then with a pick comb that has widely spaced teeth, followed by finer combs with
progressively closer teeth - hence the name combsort. Lacey and Box came up with a shrink factor of 1.3
empirically by testing combsort on over 200,000 random tables. There is at present no theoretical
justification for this particular value; it just works...

Here is then the magic code. It is clearly correct, as it (unless the table is empty) ends with JUMP-SIZE = 1
(ensured by the `+3') and therefore degenerates into bubble sort:

 COMBSORT-THE-ARRAY.
 MOVE TABLE-SIZE TO JUMP-SIZE
 PERFORM COMBSORT
 UNTIL NO-MORE-SWAPS
 AND JUMP-SIZE NOT > 1
 .

 COMBSORT.
 COMPUTE JUMP-SIZE = (10 * JUMP-SIZE + 3) / 13
 COMPUTE UPPER-LIMIT = TABLE-SIZE - JUMP-SIZE
 MOVE SPACE TO SWAP-INDICATOR
 PERFORM COMPARE-AND-SWAP-KEYS
 VARYING ITEM-NBR FROM 1 BY 1
 UNTIL ITEM-NBR > UPPER-LIMIT
 .

The careful termination test (JUMP-SIZE NOT > 1) also caters for the case where the table is empty.

MI-Version of Combsort
We’ll make the MI-version of Combsort, MICMBSRT, a separate program that we can call from our test
program. This nicely separates the sorting algorithm from the test scaffolding. For simplicity, we make the
key the same as the table element value. Then we generalize a bit and make the code able to handle both
ascending keys and descending keys. The first parameter is a template, that gives the number of elements to
be sorted and the sort direction:

DCL SPCPTR .PARM1 PARM;
DCL DD PARM1 CHAR(5) BAS(.PARM1);
 DCL DD PARM-NBR-ELEMENTS PKD(7,0) DEF(PARM1) POS(1);
 DCL DD PARM-DIRECTION CHAR(1) DEF(PARM1) POS(5); /* A or D */

DCL SPCPTR .PARM2 PARM;
DCL DD ELEMENT(1) CHAR(10) BAS(.PARM2);
DCL DD KEY (1) CHAR(10) BAS(.PARM2); /* overlays ELEMENT */

DCL OL PARMS(.PARM1, .PARM2) EXT PARM MIN(2);

 46

We do not want to know how large the table is, so it is declared here to contain only one element. We’ll tell
the compiler to omit subscript checking. This is done with the “Override Program Attributes”-instruction
(OVRPGATR), which really is executed at compile-time and is in effect until overridden by another
OVRPGATR.

Override Program Attribute
The format is: OVRPGATR Attribute ID, Attribute modifier

Attribute ID Description Modifier
 1 Array constrainment 1 = Constrain array references
 2 = Do not constrain array references
 3 = Fully unconstrain array references
 4 = Resume attribute given in template
 2 String constrainment 1 = Constrain string references
 2 = Do not constrain string references
 3 = Resume attribute given in template
 3 Suppress binary size error 1 = Suppress binary size exceptions
 2 = Do not suppress binary size exceptions
 3 = Resume attribute given in template
 4 Suppress decimal data error 1 = Suppress decimal data exceptions
 2 = Do not suppress decimal data exceptions
 3 = Resume attribute given in template
 5 CPYBWP alignment 1 = Require like alignment
 2 = Do not require like alignment
 6 CMPSPAD null pointer 1 = Signal pointer does not exist exception
 2 = Do not signal pointer does not exist exception
ENTRY * (PARMS) EXT;
 OVRPGATR 1, 2; /* Don't Constrain Array Refs */

The effect of the OVRPGATR in this case allows us to access the array as an unbounded array, this allows us
to declare the variable as only having one element, ELEMENT(1), but in our code we can use any positive
value as the index to access any element with in the array. This is a very useful facility, however as the
compiler is not now checking whether the index is within the bounds of the array, it can be quite easy to
supply an index whose value is so large, that we try to access data outside the storage space for the array.
Don’t worry though, OS/400 has a polite way of telling you, with a MCH error.

The Sort Double Loop
Declare the various local variables:

DCL DD SWAP-FLAG CHAR(1);
DCL DD JUMP-SIZE BIN(4);
DCL DD SWEEP-END BIN(4);
DCL DD ITEM-NBR BIN(4);
DCL DD COMP-NBR BIN(4);

Start the loops:

 CPYNV JUMP-SIZE, PARM-NBR-ELEMENTS;
SORT-JUMP: <-----------------------.
 CMPNV(B) JUMP-SIZE, 1 /HI(SORT-SWEEP); |
 CMPBLA(B) SWAP-FLAG, "S"/NEQ(RETURN); |
SORT-SWEEP: |
 MULT(S) JUMP-SIZE, 10; |
 ADDN(S) JUMP-SIZE, 3; |
 DIV(S) JUMP-SIZE, 13; /* JUMP-SIZE = (10 * JUMP-SIZE + 3)/13 */ |
 SUBN SWEEP-END, PARM-NBR-ELEMENTS, JUMP-SIZE; |
 CPYBLA SWAP-FLAG, " "; |
 CPYNV(B) ITEM-NBR, 0/ZER(SORT-COMPARE); |
 |
SORT-SWAP: <-------------. |
 EXCHBY ELEMENT(ITEM-NBR), ELEMENT(COMP-NBR); | |
 CPYBLA SWAP-FLAG, "S"; | |
SORT-COMPARE: <-------------| |
 ADDN(S) ITEM-NBR, 1; | |
 CMPNV(B) ITEM-NBR, SWEEP-END/HI(SORT-JUMP); ----------------------’
 ADDN COMP-NBR, ITEM-NBR, JUMP-SIZE; |
 CMPBLA(B) PARM-DIRECTION, "D"/EQ(DESCENDING-SORT-COMPARE); |
 |
ASCENDING-SORT-COMPARE: |

 47

 CMPBLA(B) KEY(ITEM-NBR), KEY(COMP-NBR)/ |
 HI(SORT-SWAP), NHI(SORT-COMPARE); --------------’

DESCENDING-SORT-COMPARE:
 CMPBLA(B) KEY(ITEM-NBR), KEY(COMP-NBR)/
 LO(SORT-SWAP), NLO(SORT-COMPARE);
RETURN:
 RTX *;

Note the handy swap instruction: EXCHBY (Exchange Bytes). Note also the use of more than one branch
extender:

 CMPBLA(B) KEY(ITEM-NBR), KEY(COMP-NBR)/ /* if condition is ‘HI’ goto SORT-SWAP
*/
 HI(SORT-SWAP), NHI(SORT-COMPARE); /* else goto SORT-COMPARE
*/

Since the second condition is the negation of the first, a branch is always taken.

Complete Combsort Code
DCL SPCPTR .PARM1 PARM;
DCL DD PARM1 CHAR(5) BAS(.PARM1);
 DCL DD PARM-NBR-ELEMENTS PKD(7,0) DEF(PARM1) POS(1);
 DCL DD PARM-DIRECTION CHAR(1) DEF(PARM1) POS(5); /* A OR D */

DCL SPCPTR .PARM2 PARM;
DCL DD ELEMENT(1) CHAR(10) BAS(.PARM2);
DCL DD KEY (1) CHAR(10) BAS(.PARM2);

DCL OL PARMS(.PARM1, .PARM2) EXT PARM MIN(2);

DCL DD SWAP-FLAG CHAR(1);
DCL DD JUMP-SIZE BIN(4);
DCL DD SWEEP-END BIN(4);
DCL DD ITEM-NBR BIN(4);
DCL DD COMP-NBR BIN(4);

ENTRY * (PARMS) EXT;
 OVRPGATR 1, 2; /* DON'T CONSTRAIN ARRAY REFS */
 CPYNV JUMP-SIZE, PARM-NBR-ELEMENTS;
SORT-JUMP:
 CMPNV(B) JUMP-SIZE, 1 /HI(SORT-SWEEP);
 CMPBLA(B) SWAP-FLAG, "S"/NEQ(RETURN);
SORT-SWEEP:
 MULT(S) JUMP-SIZE, 10;
 ADDN(S) JUMP-SIZE, 3;
 DIV(S) JUMP-SIZE, 13;
 SUBN SWEEP-END, PARM-NBR-ELEMENTS, JUMP-SIZE;
 CPYBLA SWAP-FLAG, " ";
 CPYNV(B) ITEM-NBR, 0/ZER(SORT-COMPARE);

SORT-SWAP:
 EXCHBY ELEMENT(ITEM-NBR), ELEMENT(COMP-NBR);
 CPYBLA SWAP-FLAG, "S";
SORT-COMPARE:
 ADDN(S) ITEM-NBR, 1;
 CMPNV(B) ITEM-NBR, SWEEP-END/HI(SORT-JUMP);
 ADDN COMP-NBR, ITEM-NBR, JUMP-SIZE;
 CMPBLA(B) PARM-DIRECTION, "D"/EQ(DESCENDING-SORT-COMPARE);

ASCENDING-SORT-COMPARE:
 CMPBLA(B) KEY(ITEM-NBR), KEY(COMP-NBR)/
 HI(SORT-SWAP), NHI(SORT-COMPARE);
DESCENDING-SORT-COMPARE:
 CMPBLA(B) KEY(ITEM-NBR), KEY(COMP-NBR)/
 LO(SORT-SWAP), NLO(SORT-COMPARE);

RETURN:
 RTX *;

Using Instruction Pointers
The test of the sort direction in the inner loop can be avoided using an instruction pointer with the “Set
Instruction Pointer”-instruction, SETIP pointer, label:

DCL INSPTR KEY-COMPARE;

 48

ENTRY * (PARMS) EXT;
 OVRPGATR 1, 2; /* DON'T CONSTRAIN ARRAY REFS */

 SETIP KEY-COMPARE, ASCENDING-SORT-COMPARE;
 CMPBLA(B) PARM-DIRECTION, "D"/NEQ(=+2);
 SETIP KEY-COMPARE, DESCENDING-SORT-COMPARE;:

…
SORT-COMPARE:
 ADDN(S) ITEM-NBR, 1;
 CMPNV(B) ITEM-NBR, SWEEP-END/HI(SORT-JUMP);
 ADDN(B) COMP-NBR, ITEM-NBR, JUMP-SIZE/POS(KEY-COMPARE);

ASCENDING-SORT-COMPARE:
 CMPBLA(B) KEY(ITEM-NBR), KEY(COMP-NBR)/
 HI(SORT-SWAP), NHI(SORT-COMPARE);
DESCENDING-SORT-COMPARE:
 CMPBLA(B) KEY(ITEM-NBR), KEY(COMP-NBR)/
 LO(SORT-SWAP), NLO(SORT-COMPARE);

Testing Combsort
The test program (MITSTCBM) shall run through a range of table sizes, say from 50,000 items to 1,000,000
items. For each choice of table size, N, we initialize the table with random numbers (giving us a chance of
showing how to do that too), then get the processor time spent before and after calling the Combsort
program, MICMBSRT. Finally, we calculate the time difference and compare it to the theoretical optimal
value k N log2 N, where k is a constant (the time to decide if a given item is in place and move it if not).

First the interface to Combsort:

DCL SPCPTR .CONTROL INIT(CONTROL);
DCL DD CONTROL CHAR(5);
 DCL DD CTRL-NBR-ELEMENTS PKD(7,0) DEF(CONTROL) POS(1);
 DCL DD CTRL-DIRECTION CHAR(1) DEF(CONTROL) POS(5);

DCL SPCPTR .TABLE INIT(TABLE);
DCL DD TABLE(1000000) ZND(10,0); /* MAX 16MB */

DCL SYSPTR .COMBSORT INIT("MICMBSRT", TYPE(PGM));
DCL OL COMBSORT(.CONTROL, .TABLE) ARG;

Generating Random Numbers
We use the linear congruential method to generate pseudo-random numbers. The following formula
generates evenly distributed integers between 0 and 2,099,862 and suits us fine (seed Random with a
suitable number first):

 Random = (1005973 * Random + 443771) mod 2099863

DCL DD RND-RESULT PKD(7,0); /* Also SEED Value */
DCL DD RND-PRODUCT PKD(15,0);
DCL DD RND-MODULUS PKD(7,0) INIT(P'+2099863');
DCL DD RND-MULTIPLIER PKD(7,0) INIT(P'+1005973');
DCL DD RND-INCREMENT PKD(7,0) INIT(P'+443771');

DCL DD NBR BIN(4);
DCL DD N BIN(4); /* Number of elements in the table */

 CPYNV RND-RESULT, 314159; /* SEED Value */
 CPYNV NBR, 0;
NEXT-ELEMENT:
 MULT RND-PRODUCT, RND-MULTIPLIER, RND-RESULT;
 ADDN(S) RND-PRODUCT, RND-INCREMENT;
 REM RND-RESULT , RND-PRODUCT, RND-MODULUS; /* REMainder */

 ADDN(S) NBR, 1;
 CPYNV TABLE(NBR), RND-RESULT;
 CMPNV(B) NBR, N/LO(NEXT-ELEMENT);

 49

Measuring Processor Time Spent
The “Materialize Process Attributes”-instruction (MATPRATR) can return all kinds of data about a running
process. If called with a null 2nd operand it returns information about the current process (the one your
program is running in): The 3rd operand selects what information to materialize; x‘21’ selects the processor
time spent:

DCL SPCPTR .MAT-PROC-ATTRS INIT(MAT-PROC-ATTRS);
DCL DD MAT-PROC-ATTRS CHAR(22);
 DCL DD MAT-BYTES-PROVIDED BIN(4) DEF(MAT-PROC-ATTRS) POS(1);
 DCL DD MAT-BYTES-AVAILABLE BIN(4) DEF(MAT-PROC-ATTRS) POS(5);
 DCL DD MAT-TOTAL-BYTES-USED BIN(4) DEF(MAT-PROC-ATTRS) POS(9);
 DCL DD MAT-CPU-TIME-USED CHAR(8) DEF(MAT-PROC-ATTRS) POS(13);
 DCL DD MAT-NBR-OF-LOCKS BIN(2) DEF(MAT-PROC-ATTRS) POS(21);

 CPYNV MAT-BYTES-PROVIDED, 20; /* don’t care about the LOCKS */
 MATPRATR .MAT-PROC-ATTRS, *, X'21'; /* get CPU-time used */

Store the 8-character timestamp-format CPU-TIME-USED in BEFORE and AFTER variables:

DCL DD CPU-TIMES CHAR(24) BDRY(8);
 DCL DD CPU-BEFORE CHAR(8) DEF(CPU-TIMES) POS(1);
 DCL DD CPU-AFTER CHAR(8) DEF(CPU-TIMES) POS(9);
 DCL DD CPU-DIFFERENCE CHAR(8) DEF(CPU-TIMES) POS(17);

 CPYBLA CPU-BEFORE, MAT-CPU-TIME-USED;

Calling Combsort

SORT:
 CPYNV CTRL-NBR-ELEMENTS, N;
 CPYBLA CTRL-DIRECTION, "ASCENDING"; /* only stores the ‘A’ */
 BRK "1";

 CPYNV MAT-BYTES-PROVIDED, 20;
 MATPRATR .MAT-PROC-ATTRS, *, X'21';
 CPYBLA CPU-BEFORE, MAT-CPU-TIME-USED;

 CALLX .COMBSORT, COMBSORT, *;

 MATPRATR .MAT-PROC-ATTRS, *, X'21';
 CPYBLA CPU-AFTER , MAT-CPU-TIME-USED;
 BRK "2";

The two break points are placed such that you can observe the table before and after sorting it. We should
also test if the table is actually sorted by comparing each item with the previous one:

DCL DD PREV BIN(4);

TEST-IF-SORTED:
 CPYNV NBR, N;
COMPARE-WITH-PREVIOUS:
 SUBN(B) PREV, NBR, 1/NPOS(=+3);
 CMPBLA(B) TABLE(NBR), TABLE(PREV)/LO(NOT-SORTED); /* Notify if bad */
 SUBN(SB) NBR, 1/POS(COMPARE-WITH-PREVIOUS);:

Computing N log2 N
The machine has a built-in function to calculate the natural logarithm (to base e) of a number. The
logarithm to base 2 is readily found from: ln (x) = ln (2log

2
 x) = log2(x) ln (2), i.e.: log2(x) = ln(x) / ln(2). All

these calculations must be done in floating-point:

DCL DD LN-N FLT(8);
DCL DD LOG2-N FLT(8);
DCL DD LN-2 FLT(8);
DCL DD FLT-N FLT(8);
DCL DD N*LOG2-N FLT(8);
DCL DD RESULT ZND(10,0);

COMPUTE-N*LOG2-N:
 CPYNV RESULT, N;
 CPYBLAP MSG-TEXT, RESULT, " "; /* MSG-TEXT = N */

 50

 CPYNV FLT-N, N;
 CMF1 LN-N, X'0011', FLT-N;
 CMF1 LN-2, X'0011', E'2';
 DIV LOG2-N, LN-N, LN-2;
 MULT N*LOG2-N, N, LOG2-N;
 CPYNV(R) RESULT, N*LOG2-N;
 CPYBLA MSG-TEXT(13:10), RESULT; /* MSG-TEXT append N*log2 N */

Compute Mathematical Function with 1 Argument
The CMF1-instruction has this format:

 CMF1 Result, 2-Character Function Code, Input Argument

The Result and the Argument must both be floating-point numbers. This is a (sad) departure from the
polymorphic nature of the other instructions that work on numeric operands. So, we need to convert N
ourselves:

 CPYNV FLT-N, N; /* converting to floating point */
 CMF1 LN-N, X'0011', FLT-N;

Function x‘0011’ is the Natural Logarithm. Other functions are:

 x‘0001’ Sine -1 ≤ sin(x) ≤ +1
 x‘0002’ Arc sine -π/2 ≤ arcsin(x) ≤ +π/2
 x‘0003’ Cosine -1 ≤ cos(x) ≤ +1
 x‘0004’ Arc cosine 0 ≤ arccos(x) ≤ π
 x‘0005’ Tangent -∞ ≤ tan(x) ≤ +∞
 x‘0006’ Arc tangent -π/2 ≤ arctan(x) ≤ +π/2
 x‘0007’ Cotangent -∞ ≤ cot(x) ≤ +∞
 x‘0010’ Exponential function 0 ≤ exp(x) ≤ +∞
 x‘0011’ Natural logarithm -∞ ≤ ln(x) ≤ +∞
 x‘0012’ Sine hyperbolic -∞ ≤ sinh(x) ≤ +∞
 x‘0013’ Cosine hyperbolic +1 ≤ cosh(x) ≤ +∞
 x‘0014’ Tangent hyperbolic -1 ≤ tanh(x) ≤ +1
 x‘0015’ Arc tangent hyperbolic -∞ ≤ arctanh(x) ≤ +∞
 x‘0020’ Square root 0 ≤ sqrt(x) ≤ +∞

Calculating the natural logarithm of 2, we can use the long floating-point literal E‘2’:

 CMF1 LN-2, X'0011', E'2';

Computing Time Differences
Working with 64-bit long integers is complicated by there not being a BIN(8) variable type. We’ll use the
same technique as in chapter 2 of going through intermediate packed numbers:

DCL DD CPU-TIMES CHAR(24) BDRY(8);
 DCL DD CPU-BEFORE CHAR(8) DEF(CPU-TIMES) POS(1);
 DCL DD CPU-AFTER CHAR(8) DEF(CPU-TIMES) POS(9);
 DCL DD CPU-DIFFERENCE CHAR(8) DEF(CPU-TIMES) POS(17);

DCL DD CPU-DIFF-HI BIN(4) UNSGND DEF(CPU-DIFFERENCE) POS(1);
DCL DD CPU-DIFF-LO BIN(4) UNSGND DEF(CPU-DIFFERENCE) POS(5);

DCL DD TIMESTAMP PKD(21,0); /* Can hold 64-bit unsigned integer */
DCL DD TIMESTAMP-HI PKD(11,0); /* Can hold 32-bit unsigned integer */
DCL DD TIMESTAMP-LO PKD(11,0); /* Can hold 32-bit unsigned integer */
DCL DD TWO**32 PKD(11,0) INIT(P'4294967296'); /* unsigned 232 */

The 8-character time difference can be computed with the “Subtract Logical Character”-instruction
(SUBLC):

COMPUTE-TIME-USED:
 SUBLC CPU-DIFFERENCE, CPU-AFTER, CPU-BEFORE; /* diff = after - before */
 CPYNV TIMESTAMP-HI, CPU-DIFF-HI; /* copy UNSIGNED values */
 CPYNV TIMESTAMP-LO, CPU-DIFF-LO;
 MULT TIMESTAMP, TIMESTAMP-HI, TWO**32;
 ADDN(S) TIMESTAMP, TIMESTAMP-LO; /* complete 64-bit timestamp as PKD */

To convert the timestamp to microseconds, we divide by 4096:

 51

 DIV RESULT, TIMESTAMP, 4096; /* MICROSECONDS */
 CPYBLA MSG-TEXT(25:10), RESULT; /* Append to message */

If the relationship is linear the time taken to sort N items divided by N log2 N should be the constant (k)
slope of the line we get by plotting the two quantities against each other. We compute the slope to four
decimal places:

DCL DD SLOPE ZND(10,4);

COMPUTE-SLOPE:
 DIV SLOPE, RESULT, N*LOG2-N;
 CPYBLA MSG-TEXT(37:10), SLOPE; /* Append to message */

Simple Numeric Editing
The message that we have built so far displays each number as a raw 10-digit zoned value complete with
leading zeroes, such as: “0000050000 0000780482 0005101264 0000065360”. In order to make the
result a little more pleasing to the eye, let’s remove the leading zeroes. We set up an 11-character substring
into the message, identified by the index value START. We then let START run through the values 37, 25,
13, and 1 (step of 12) and count the leading zeroes, before replacing them with blanks. No rocket science
here. How do we count leading zeroes? The “Verify”-instruction (VERIFY) comes in handy:

 VERIFY Where, Source, Class

Each character of the source operand is checked to verify that it is among the characters in the class
operand. If a match exists, the next character is checked. When a mismatch is found its character position in
the source operand is returned in the where operand. So, if the instruction VERIFY WHERE, “00001234”,
“01” would return with WHERE = 6. If no mismatch is found, the where operand is set to zero. VERIFY
WHERE, “00001234”, “0” would return WHERE = 5. The number of leading zeroes is then one less. The code
below does the trick. There are some careful additional tests to cater for various end-conditions (no leading
zeroes, all zeroes…):

DCL DD WHERE BIN(4);
DCL DD START BIN(4);

 CPYNV START, 37;
EDIT-RESULT:
 VERIFY WHERE, MSG-TEXT(START:11), "0";
 SUBN(SB) WHERE, 1/NPOS(=+2);
 CPYBLAP MSG-TEXT(START:WHERE), " ", " ";:
 SUBN(SB) START, 12/POS(EDIT-RESULT);

I would have preferred CPYBREP MSG-TEXT(START:WHERE), “ ” for replacing the leading zeroes, but
unfortunately CPYBREP does not support substrings .

Finally, show the result and continue the loop until N is not lower than the 1,000,000 we had selected as
our maximum table size:

SHOW-RESULT:
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 CMPNV(B) N, 1000000/LO(NEXT-SIZE);
 RTX *;

NOT-SORTED:
 CPYBLAP MSG-TEXT, "Not Sorted!", " ";
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 RTX *;

%INCLUDE SHOWMSG

The Complete MITSTCMB Test Program
Here is the complete MITSTCMB test program:

DCL SPCPTR .CONTROL INIT(CONTROL);
DCL DD CONTROL CHAR(5);
 DCL DD CTRL-NBR-ELEMENTS PKD(7,0) DEF(CONTROL) POS(1);
 DCL DD CTRL-DIRECTION CHAR(1) DEF(CONTROL) POS(5);

 52

DCL SPCPTR .TABLE INIT(TABLE);
DCL DD TABLE(1000000) ZND(10,0); /* MAX 16MB */

DCL SYSPTR .COMBSORT INIT("MICMBSRT", TYPE(PGM));
DCL OL COMBSORT(.CONTROL, .TABLE) ARG;

DCL DD PREV BIN(4);
DCL DD NBR BIN(4);
DCL DD N BIN(4);
DCL DD WHERE BIN(4);
DCL DD START BIN(4);

DCL DD LN-N FLT(8);
DCL DD LOG2-N FLT(8);
DCL DD LN-2 FLT(8);
DCL DD FLT-N FLT(8);
DCL DD N*LOG2-N FLT(8);
DCL DD RESULT ZND(10,0);
DCL DD SLOPE ZND(10,4);

DCL DD RND-RESULT PKD(7,0); /* ALSO SEED VALUE */
DCL DD RND-PRODUCT PKD(15,0);
DCL DD RND-MODULUS PKD(7,0) INIT(P'+2099863');
DCL DD RND-MULTIPLIER PKD(7,0) INIT(P'+1005973');
DCL DD RND-INCREMENT PKD(7,0) INIT(P'+443771');

DCL DD CPU-TIMES CHAR(24) BDRY(8);
 DCL DD CPU-BEFORE CHAR(8) DEF(CPU-TIMES) POS(1);
 DCL DD CPU-AFTER CHAR(8) DEF(CPU-TIMES) POS(9);
 DCL DD CPU-DIFFERENCE CHAR(8) DEF(CPU-TIMES) POS(17);

DCL DD CPU-DIFF-HI BIN(4) UNSGND DEF(CPU-DIFFERENCE) POS(1);
DCL DD CPU-DIFF-LO BIN(4) UNSGND DEF(CPU-DIFFERENCE) POS(5);

DCL DD TIMESTAMP PKD(21,0);
DCL DD TIMESTAMP-HI PKD(11,0);
DCL DD TIMESTAMP-LO PKD(11,0);
DCL DD TWO**32 PKD(11,0) INIT(P'4294967296');

DCL SPCPTR .MAT-PROC-ATTRS INIT(MAT-PROC-ATTRS);
DCL DD MAT-PROC-ATTRS CHAR(22);
 DCL DD MAT-BYTES-PROVIDED BIN(4) DEF(MAT-PROC-ATTRS) POS(1);
 DCL DD MAT-BYTES-AVAILABLE BIN(4) DEF(MAT-PROC-ATTRS) POS(5);
 DCL DD MAT-TOTAL-BYTES-USED BIN(4) DEF(MAT-PROC-ATTRS) POS(9);
 DCL DD MAT-CPU-TIME-USED CHAR(8) DEF(MAT-PROC-ATTRS) POS(13);
 DCL DD MAT-NBR-OF-LOCKS BIN(2) DEF(MAT-PROC-ATTRS) POS(21);

ENTRY * EXT;
 CPYNV N, 0;
NEXT-SIZE:
 ADDN(S) N, 50000;
 CPYNV RND-RESULT, 314159;
 CPYNV NBR, 0;
NEXT-ELEMENT:
 MULT RND-PRODUCT, RND-MULTIPLIER, RND-RESULT;
 ADDN(S) RND-PRODUCT, RND-INCREMENT;
 REM RND-RESULT , RND-PRODUCT, RND-MODULUS;

 ADDN(S) NBR, 1;
 CPYNV TABLE(NBR), RND-RESULT;
 CMPNV(B) NBR, N/LO(NEXT-ELEMENT);

SORT:
 CPYNV CTRL-NBR-ELEMENTS, N;
 CPYBLA CTRL-DIRECTION, "ASCENDING";
 BRK "1";

 CPYNV MAT-BYTES-PROVIDED, 20;
 MATPRATR .MAT-PROC-ATTRS, *, X'21';
 CPYBLA CPU-BEFORE, MAT-CPU-TIME-USED;

 CALLX .COMBSORT, COMBSORT, *;

 MATPRATR .MAT-PROC-ATTRS, *, X'21';
 CPYBLA CPU-AFTER , MAT-CPU-TIME-USED;
 BRK "2";

TEST-IF-SORTED:
 CPYNV NBR, N;
COMPARE-WITH-PREVIOUS:

 53

 SUBN(B) PREV, NBR, 1/NPOS(=+3);
 CMPBLA(B) TABLE(NBR), TABLE(PREV)/LO(NOT-SORTED);
 SUBN(SB) NBR, 1/POS(COMPARE-WITH-PREVIOUS);:

COMPUTE-N*LOG2-N:
 CPYNV RESULT, N;
 CPYBLAP MSG-TEXT, RESULT, " ";

 CPYNV FLT-N, N;
 CMF1 LN-N, X'0011', FLT-N;
 CMF1 LN-2, X'0011', E'2';
 DIV LOG2-N, LN-N, LN-2;
 MULT N*LOG2-N, N, LOG2-N;
 CPYNV(R) RESULT, N*LOG2-N;
 CPYBLA MSG-TEXT(13:10), RESULT;

COMPUTE-TIME-USED:
 SUBLC CPU-DIFFERENCE, CPU-AFTER, CPU-BEFORE;
 CPYNV TIMESTAMP-HI, CPU-DIFF-HI;
 CPYNV TIMESTAMP-LO, CPU-DIFF-LO;
 MULT TIMESTAMP, TIMESTAMP-HI, TWO**32;
 ADDN(S) TIMESTAMP, TIMESTAMP-LO;

 DIV RESULT, TIMESTAMP, 4096; /* MICROSECONDS */
 CPYBLA MSG-TEXT(25:10), RESULT;

COMPUTE-SLOPE:
 DIV SLOPE, RESULT, N*LOG2-N;
 CPYBLA MSG-TEXT(37:10), SLOPE;

 CPYNV START, 37;
EDIT-RESULT:
 VERIFY WHERE, MSG-TEXT(START:11), "0";
 SUBN(SB) WHERE, 1/NPOS(=+2);
 CPYBLAP MSG-TEXT(START:WHERE), " ", " ";:
 SUBN(SB) START, 12/POS(EDIT-RESULT);

SHOW-RESULT:
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 CMPNV(B) N, 1000000/LO(NEXT-SIZE);
 RTX *;

NOT-SORTED:
 CPYBLAP MSG-TEXT, "Not Sorted!", " ";
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 RTX *;

%INCLUDE SHOWMSG

Performance Results
Below are the results of running our test program. Amazingly, Combsort seems to be a true ‘kN log2 N’
sorting algorithm, with the constant k being 6.725 microseconds on the average (for the 170 box I was
running on):

 N N log2 N Time (µs) Ratio

 50000 780482 5101264 6.5360
 100000 1660964 10797200 6.5006
 150000 2579190 17325928 6.7176
 200000 3521928 23176840 6.5807
 250000 4482892 30809992 6.8728
 300000 5458381 37077600 6.7928
 350000 6445948 42506240 6.5943
 400000 7443856 49615200 6.6653
 450000 8450804 56946104 6.7385
 500000 9465784 63365320 6.6941
 550000 10487990 72378584 6.9011
 600000 11516762 77620296 6.7398
 650000 12551552 85657896 6.8245
 700000 13591897 92395368 6.7978
 750000 14637398 98955256 6.7604
 800000 15687712 103698432 6.6102
 850000 16742538 114234688 6.8230
 900000 17801609 121012736 6.7979
 950000 18864690 127639992 6.7661
 1000000 19931569 134387000 6.7424

 54

 Time = 6.725 * N * log2 N µsec

The “optimization” using an instruction pointer in the inner loop is actually slightly slower for an ascending
sort because a branch to the instruction pointer is always taken while the original code with compare and
branch only actually branched when the test failed. Since a branch is an expensive operation on a pipelined
RISC machine with pre-fetching of instructions, if you can avoid the branch you gain some speed. For a
descending sort where the branch must be taken, both versions run at the same speed.

 55

Input/Output in MI Using the SEPT

A File Compressor/Decompressor
In this chapter we’ll solve the problem of compressing a large database file for transfer to a different
system. Once there, we’ll need to decompress (i.e. expand) the file to the same format it had before the
compression. We’ll use MI to read and write the database file. There are also convenient MI-instructions to
do the actual compression/decompression. These instructions work on areas in memory rather than files so
we have to read/write to/from these areas as needed.

The User File Control Block
Strictly speaking a file is not an MI concept. At the MI-level, data is stored in spaces, not files. Files are
opened, read/written, then closed. At the MI-level there is no concept of opening/closing of files. Files are
defined at the OS/400 level (CPF) above the MI. A program (even an MI-program) accesses a file through
a User File Control Block (the UFCB). The UFCB defines the filename, library name, possibly a member
name, buffer areas and all necessary other control information needed to manage the file. It also provides
pointers to the various feedback areas and access to various control structures, such as the Open Data Path
(the ODP). The main purpose of the UFCB is to provide device independence for I/O. You use a UFCB for
database files, display files, spool files, save files, tape files, etc. The fact, that these files often have very
different internal structure (the actual objects making up the files) is transparent to the programmer.

The UFCB consists of a 208-character fixed part, followed by a variable number of parameter items. Here
is the structure of a typical UFCB (including one parameter item):

DCL SPCPTR .UFCB INIT(UFCB);
DCL DD UFCB CHAR(214) BDRY(16); /* must be 16-byte aligned */
 DCL SPCPTR .UFCB-ODP DEF(UFCB) POS(1);
 DCL SPCPTR .UFCB-INBUF DEF(UFCB) POS(17);
 DCL SPCPTR .UFCB-OUTBUF DEF(UFCB) POS(33);
 DCL SPCPTR .UFCB-OPEN-FEEDBACK DEF(UFCB) POS(49);
 DCL SPCPTR .UFCB-IO-FEEDBACK DEF(UFCB) POS(65);
 DCL SPCPTR .UFCB-NEXT-UFCB DEF(UFCB) POS(81);

 DCL DD * CHAR(32) DEF(UFCB) POS(97);
 DCL DD UFCB-FILE CHAR(10) DEF(UFCB) POS(129);
 DCL DD UFCB-LIB-ID BIN(2) DEF(UFCB) POS(139);
 DCL DD UFCB-LIBRARY CHAR(10) DEF(UFCB) POS(141);
 DCL DD UFCB-MBR-ID BIN(2) DEF(UFCB) POS(151);
 DCL DD UFCB-MEMBER CHAR(10) DEF(UFCB) POS(153);

 DCL DD UFCB-DEVICE-NAME CHAR(10) DEF(UFCB) POS(163);
 DCL DD UFCB-DEVICE-INDEX BIN(2) DEF(UFCB) POS(173);

 DCL DD UFCB-FLAGS-1 CHAR(1) DEF(UFCB) POS(175);
 DCL DD UFCB-FLAGS-2 CHAR(1) DEF(UFCB) POS(176);

 DCL DD UFCB-REL-VERSION CHAR(4) DEF(UFCB) POS(177);
 DCL DD UFCB-INV-MK-COUNT BIN (4) DEF(UFCB) POS(181);
 DCL DD UFCB-MORE-FLAGS CHAR(1) DEF(UFCB) POS(185);
 DCL DD TAPE-END-OPTION CHAR(1) DEF(UFCB) POS(186);
 DCL DD * CHAR(22) DEF(UFCB) POS(187);

Each item of the variable part is headed by a 2-byte binary number identifying the type of the parameter
item. The record-length parameter has an identifier of 1:

 DCL DD UFCB-LENGTH-ID BIN (2) DEF(UFCB) POS(209) INIT(1);
 DCL DD UFCB-RECORD-LENGTH BIN (2) DEF(UFCB) POS(211) INIT(132);

The end of the parameter list is signaled by an identifier with the value 32767 or X‘7FFF’:

 DCL DD UFCB-NO-MORE-PARMS BIN (2) DEF(UFCB) POS(213) INIT(32767);

 56

How Do We Know This Stuff?
A good source of information is the generated MI-code produced by the various compilers. Here is an
example. Write the following RPG-program (incomplete, but so what?):

 FMYFILE IP F 132 DISK

Compile it with the *LIST generation option (use the RPGIII compiler, as this facility is no longer provided
with the ILE/RPG compiler):

===> CRTRPGPGM PGM(RPGMIN) GENLVL(50) GENOPT(*LIST)

In the spooled listing you’ll find all kinds of interesting things, e.g. (edited for presentation):

 /* UFCB DSECT */

 DCL SPC .UFCB BAS(.UFCBPTR)
 DCL SPCPTR .UCBODPB DIR /* OPEN DATA PATH */
 DCL SPCPTR .UCBBUFI DIR /* INPUT BUFFER */
 DCL SPCPTR .UCBBUFO DIR /* OUTPUT BUFFER */
 DCL SYSPTR .UCBOFBK DIR /* OPEN FEEDBACK AREA*/
 DCL SPCPTR .UCBIFBK DIR /* I/O FEEDBACK AREA */
 DCL SPCPTR .UCBNXTU DIR /* NEXT */
 DCL SPCPTR .UCBSIA DIR /* SEP IND AREA */

 /*FIXED DATA AREA*/

 DCL DD * CHAR(16) DIR /* UNUSED */
 DCL DD .UCBFNAM CHAR(10) DIR /* FILENAME */
 DCL DD .UCBLBLN BIN(2) DIR /* ID FOR LIBRARY NAME */
 DCL DD .UCBLIBN CHAR(10) DIR /* LIBRARY NAME */
 DCL DD .UCBMBID BIN(2) DIR /* ID FOR MEMBER */
 DCL DD .UCBMBER CHAR(10) DIR /* MEMBER NAME */
 DCL DD .UCBLSTD CHAR(10) DIR /* LAST DEVICE USED */
 DCL DD .UCBINDX BIN(2) DIR /* LINKAGE TABLE INDEX */
 DCL DD .UCBFLG1 CHAR(2) DIR /* FLAGS */

 /*BIT 0-2 CLOSE OPTIONS */
 /*BIT 3-4 SHARE ODP OPTIONS */
 /*BIT 5-6 SECURE OPTIONS */
 /*BIT 7-9 UFCB STATE */
 /*BIT 10-13 INPUT, OUTPUT, UPDATE, DELETE */
 /*BIT 14-15 UNUSED */

 DCL DD * CHAR(4) DIR /* VER REL */
 DCL DD .UCBIMRK BIN(4) DIR /* INVOC MARK CNT */
 DCL DD .UCBFLG2 CHAR(1) DIR /* FLAGS */

 /*BIT 0 COUNT INVOC MARKS */
 /*BIT 1 TAPE CLOSE PARMS */
 /*BIT 2 MULTRCD SPECIFIED */
 /*BIT 3-7 UNSED (sic) */

 DCL DD * CHAR(1) DIR /* TAPE CLOSE OPTION */
 DCL DD * CHAR(22) DIR /* UNUSED */

 /* END OF COMMON PART OF UFCB */

Setting Library/File/Member
The name (including type/subtype) of an MI-object is 32 characters long. The name of an MI-object is
often the concatenation of several CPF-level names. At the CPF level most names are 10 characters long. A
typical CPF-style file name would consist of the filename proper, the library in which the file resides, and a
member name, such as FILE(MYFILE) LIB(*LIBL) MBR(*FIRST). The library and member names could
be special names such as *LIBL and *FIRST, or they could refer to a specific library and member. This
complexity is dealt with as follows. First, First, let’s recap on the part within the UFCB that contains the
filename information:

 DCL DD UFCB-FILE CHAR(10) DEF(UFCB) POS(129);
 DCL DD UFCB-LIB-ID BIN(2) DEF(UFCB) POS(139);
 DCL DD UFCB-LIBRARY CHAR(10) DEF(UFCB) POS(141);
 DCL DD UFCB-MBR-ID BIN(2) DEF(UFCB) POS(151);
 DCL DD UFCB-MEMBER CHAR(10) DEF(UFCB) POS(153);

 57

Note the 10-character file, library, and member names. The library and member names are preceded by an
introducer value. If the library name refers to a specific library, the LIB-ID introducer has the value 72. If
the name is a special name, the LIB-ID introducer is negative, -72. The corresponding values for the MBR-
ID introducer are 73 and -73.

Some AS/400-S/38 History
The introducer values given above are actually the ones used on the AS/400’s predecessor, the S/38. The
early AS/400 was just a S/38 in a differently shaped and colored box. IBM was very proud of the (obvious
and vacuous) capability of AS/400 to run S/38-programs, but wanted to prevent AS/400 programs to run on
the older box. The devious device IBM used to ensure this was that the compilers on the AS/400 produced
code that used introducer values that were different from the S/38 values, namely 75 and 71 instead of 72
and 73. The old values still worked (and still do!). To salute the S/38 (the S/38 lives!) I sometimes still use
the original introducer values.

It is handy to define some constants for the introducer values. Note the use of the CON keyword rather than
of the DD keyword:

DCL CON *LIBL BIN(2) INIT(-75); /* S/38: -72 */
DCL CON *FIRST BIN(2) INIT(-71); /* S/38: -73 */
DCL CON LIB-ID BIN(2) INIT(72); /* AS/400 75 */
DCL CON MBR-ID BIN(2) INIT(73); /* AS/400 71 */

You can then initialize the name section in the UFCB like this

 CPYBLA UFCB-FILE, FILE;
 CPYNV UFCB-LIB-ID, THE-LIB;
 CPYBLA UFCB-LIBRARY, LIB;
 CPYNV UFCB-MBR-ID, THE-MBR;
 CPYBLA UFCB-MEMBER, MBR;

Or like this

 CPYBLA UFCB-FILE, FILE;
 CPYNV UFCB-LIB-ID, *LIBL;
 CPYBLAP UFCB-LIBRARY, “*LIBL” , “ “;
 CPYNV UFCB-MBR-ID, *FIRST;
 CPYBLAP UFCB-MEMBER, “*FIRST”, “ “;

Control Flags
A set of sixteen flags controls the operation of the UFCB:

 DCL DD UFCB-FLAGS-1 CHAR(1) DEF(UFCB) POS(175);
 DCL DD UFCB-FLAGS-2 CHAR(1) DEF(UFCB) POS(176);

The flags are grouped into several option fields:

 /* BIT 0-2 CLOSE OPTIONS */
 /* BIT 3-4 SHARE OPTIONS, shared = B‘11’ */
 /* BIT 5-6 SECURE OPTIONS, secure = B‘11’ */
 /* BIT 7-9 UFCB STATE */
 /* BIT 10-13 INPUT, OUTPUT, UPDATE, DELETE */
 /* BIT 14-15 USER BUFFER OPTIONS, used = B‘11’ */

The top bit of the close options determines if the file is a temporary file (0) or a permanent file (1). Bits 10-
13 control the operation you want to perform:

 • Bit 10 1 = Input
 • Bit 11 1 = Output
 • Bit 12 1 = Update
 • Bit 13 1 = Delete

For normal operation just leave all the other flag bits off. We need two UFCBs. One for input (IFCB) and
one for output (OFCB). The flag settings should then be:

 DCL DD IFCB-FLAGS-1 CHAR(1) DEF(IFCB) POS(175) INIT(X'80'); /* permanent file */
 DCL DD IFCB-FLAGS-2 CHAR(1) DEF(IFCB) POS(176) INIT(X'20'); /* input */

 DCL DD OFCB-FLAGS-1 CHAR(1) DEF(OFCB) POS(175) INIT(X'80'); /* permanent file */
 DCL DD OFCB-FLAGS-2 CHAR(1) DEF(OFCB) POS(176) INIT(X'10'); /* output */

 58

More Control Flags
There is yet another control flag field, UFCB-MORE-FLAGS, with the following bit settings:

Bit 0 If set, user must set the invocation mark, otherwise QDMOPEN sets the invocation mark.
Bit 1 If set indicates that QDMCLOSE is to merge the close parameter into the ODP.
Bit 2 If set, blocked records will be transferred to the users buffer on each IO.
Bit 3 If set, IO routines will assume that the indicators are in a separate indicator area.
Bit 4 If set, all program devices defined to the file are to be acquired when the file is opened.
Bit 5 If set and the file is open for input and output, a single buffer is used for both input and output.
Bit 6-7 Unused

This flag is a “grab-bag” of various options. Setting it to all zeroes will ordinarily suffice. Setting bit 2, that
controls blocking, can sometimes improve I/O performance dramatically.

The FCMPRS (File Compress) Command
We need a simple user interface to specify the files, something like this:

 Compress/Decompress File (FCMPRS)

 Type choices, press Enter.

 (C)ompress/(D)ecompress FCT C
 In File INFILE .
 In Library INLIB .
 Out File OUTFILE .
 Out Library OUTLIB .

Or from the command line:

 ===> FCMPRS FCT(C) INFILE(MINE) INLIB(MYLIB) OUTFILE(YOURS) OUTLIB(YOURLIB)

We envision five parameters, the first being an operation code: “C” for compress or “D” for decompress.
This book is not about how to write commands or CL-programs, so we take a simplistic approach in order
to concentrate on the machine-level coding. Here is the simple command source (FCMPRS/QCMDSRC):

 CMD PROMPT('Compress/Decompress File')
 PARM KWD(FCT) TYPE(*CHAR) LEN(1) PROMPT('(C)ompress/(D)ecompress')
 PARM KWD(INFILE) TYPE(*CHAR) LEN(10) PROMPT('In File')
 PARM KWD(INLIB) TYPE(*CHAR) LEN(10) PROMPT('In Library')
 PARM KWD(OUTFILE) TYPE(*CHAR) LEN(10) PROMPT('Out File')
 PARM KWD(OUTLIB) TYPE(*CHAR) LEN(10) PROMPT('Out Library')

Command-Processing Program
Compile the command specifying the following CL-Program (CLFCMPRS/CLSRC) as command-processing
program:

 PGM PARM(&FCT &INFILE &INLIB &OUTFILE &OUTLIB)
 DCL VAR(&FCT) TYPE(*CHAR) LEN(1)
 DCL VAR(&INFILE) TYPE(*CHAR) LEN(10)
 DCL VAR(&INLIB) TYPE(*CHAR) LEN(10)
 DCL VAR(&OUTFILE) TYPE(*CHAR) LEN(10)
 DCL VAR(&OUTLIB) TYPE(*CHAR) LEN(10)
 DLTF FILE(&OUTLIB/&OUTFILE)
 MONMSG MSGID(CPF2105) /* FILE NOT FOUND */
 CRTPF FILE(&OUTLIB/&OUTFILE) RCDLEN(132) +
 SIZE(*NOMAX) LVLCHK(*NO)
 CALL PGM(MIFCMPRS) PARM(&FCT &INFILE &INLIB &OUTFILE &OUTLIB)
 ENDPGM

Parameter Block
The MI-program, MIFCMPRS, is where the real work is done. As you can see, it has five parameters:

DCL SPCPTR .PARM1 PARM;
 DCL DD PARM-OPERATION CHAR(1) BAS(.PARM1); /* better name would be FCT, why? */

 59

DCL SPCPTR .PARM2 PARM;
 DCL DD PARM-IN-FILE CHAR(10) BAS(.PARM2);

DCL SPCPTR .PARM3 PARM;
 DCL DD PARM-IN-LIB CHAR(10) BAS(.PARM3);

DCL SPCPTR .PARM4 PARM;
 DCL DD PARM-OUT-FILE CHAR(10) BAS(.PARM4);

DCL SPCPTR .PARM5 PARM;
 DCL DD PARM-OUT-LIB CHAR(10) BAS(.PARM5);

DCL OL PARMS(.PARM1, .PARM2, .PARM3, .PARM4, .PARM5) EXT PARM MIN(5);

We shall assume that the libraries are specified explicitly and that the physical files have only one member
with the same name as the file. It is straightforward to extend this example to deal with the library list
and/or a different member, so we’ll leave that as an exercise for the reader. We’ll also omit checking for
parameter validity and the like; these things are easy, but tedious, and add ‘clutter’ to the example program
which will detract from the purpose of this chapter.

The System Entry Point Table (SEPT)
CPF and API calls are done by using the CALLX instruction referencing a system pointer that is obtained
from the System Entry Point Table. No call by name should be used because of library list considerations.
The SEPT is a table of pre-resolved system pointers. The table is a special space object (QINSEPT/QSYS
type X‘19C3’) that you can dump using the DUMPSYSOBJ command:

 ===> DMPSYSOBJ OBJ(QINSEPT) CONTEXT(QSYS)

DMPSYSOBJ PARAMETERS
OBJ- QINSEPT CONTEXT- QSYS
TYPE- *ALL SUBTYPE-*ALL
OBJECT TYPE- SPACE *SEPT
NAME- QINSEPT TYPE- 19 SUBTYPE- C3
LIBRARY- QSYS TYPE- 04 SUBTYPE- 01
CREATION- 01/29/98 06:34:12 SIZE- 000001B000
OWNER- QSYS TYPE- 08 SUBTYPE- 01
ATTRIBUTES- 0800 ADDRESS- 2816099C68 000000

When you do that and select the QPSRVDMP spool file with WRKSPLF you see something like the following;
find the POINTERS section:
 Display Spooled File
 File : QPSRVDMP Page/Line 54/47
 Control Columns 1 - 78
 Find POINTERS

 1 000000 SYP 02 01 QT3REQIO 04 01 QSYS 3F10 0000 *PGM
 2 000010 SYP 02 01 QWSCLOSE 04 01 QSYS 3F10 0000 *PGM
 3 000020 SYP 02 01 QSFGET 04 01 QSYS 3F10 0000 *PGM
 4 000030 SYP 02 01 QWSOPEN 04 01 QSYS 3F10 0000 *PGM
 5 000040 SYP 02 01 QWSPBDVR 04 01 QSYS 3F10 0000 *PGM
 6 000050 SYP 02 01 QWSRST 04 01 QSYS 3F10 0000 *PGM
 7 000060 SYP 02 01 QWSRTSFL 04 01 QSYS 3F10 0000 *PGM
 8 000070 SYP 02 01 QSFCRT 04 01 QSYS 3F10 0000 *PGM
 9 000080 SYP 02 01 QWSSPEND 04 01 QSYS 3F10 0000 *PGM
 10 000090 SYP 02 01 QDCVRX 04 01 QSYS 3F10 0000 *PGM
 11 0000A0 SYP 02 01 QDMCLOSE 04 01 QSYS 3F10 8000 *PGM
 12 0000B0 SYP 02 01 QDMCOPEN 04 01 QSYS 3F10 8000 *PGM
 13 0000C0 SYP 02 01 QDBCLOSE 04 01 QSYS 3F10 0000 *PGM
 14 0000D0 SYP 02 01 QDBGETDR 04 01 QSYS 3F10 8000 *PGM
 15 0000E0 SYP 02 01 QDBGETKY 04 01 QSYS 3F10 8000 *PGM
 16 0000F0 SYP 02 01 QDBGETSQ 04 01 QSYS 3F10 8000 *PGM
 17 000100 SYP 02 01 QDBOPEN 04 01 QSYS 3F10 0000 *PGM
 18 000110 SYP 02 01 QDBPUT 04 01 QSYS 3F10 8000 *PGM
 19 000120 SYP 02 01 QDBUDR 04 01 QSYS 3F10 8000 *PGM
 20 000130 SYP 02 01 QSPBPPRT 04 01 QSYS 3F10 0000 *PGM
 21 000140 SYP 02 01 QOESETEX 04 01 QSYS 3F10 0000 *PGM
 22 000150 SYP 02 01 QWSPUT 04 01 QSYS 3F10 8000 *PGM
 23 000160 SYP 02 01 QWSMEEH 04 01 QSYS 3F10 0000 *PGM
 24 000170 SYP 02 01 QWSMSG 04 01 QSYS 3F10 0000 *PGM
 25 000180 SYP 02 01 QWSPTMSG 04 01 QSYS 3F10 0000 *PGM
 26 000190 SYP 02 01 QLPCTLIN 04 01 QSYS 3F10 0000 *PGM
 27 0001A0 SYP 02 01 QLPTRANS 04 01 QSYS 3F10 0000 *PGM
 28 0001B0 SYP 02 01 QWCITUNR 04 01 QSYS 3F10 0000 *PGM
…etc

 60

Highlighted entries are programs in the user domain that can be called from user-state programs. The
others are system-domain programs that are internal to OS/400. Entry numbers 11 (QDMCLOSE) and 12
(QDMCOPEN) are the entry points to the Data Management Close/Open functions.

The Process Communication Object (PCO) contains at it very beginning a pointer to SEPT:

DCL DD PCO CHAR(80) BASPCO; /* recall the BASPCO, ch. 9 */
 DCL SPCPTR ..SEPT DEF(PCO) POS(1); /* pointer to space with SEPT */

The SEPT itself contains thousands of system pointers. At last count about 6440 were found, and this
number keeps going up from release to release:

DCL SYSPTR .SEPT(6440) BAS(..SEPT);

Only Entries in the user domain have fixed positions within the SEPT. System domain entry positions may
(and occasionally do) change from release to release.

Opening a File
The operand list for QDMCOPEN contains as its sole argument a space pointer to the file control block (xFCB)
to identify the file to open:

DCL SPCPTR .IFCB INIT(IFCB); /* input FCB */
DCL SPCPTR .OFCB INIT(OFCB); /* output FCB */

DCL OL OPEN-I(.IFCB) ARG; /* for the input file */
DCL OL OPEN-O(.OFCB) ARG; /* for the output file */

We can now open the files:

DCL CON OPEN-ENTRY BIN(2) INIT(12); /* entry number for OPEN function */

OPEN-INPUT-FILE:
 CPYBLA IFCB-FILE, PARM-IN-FILE;
 CPYNV IFCB-LIB-ID, THE-LIB;
 CPYBLA IFCB-LIBRARY, PARM-IN-LIB;
 CPYNV IFCB-MBR-ID, THE-MBR;
 CPYBLA IFCB-MEMBER, PARM-IN-FILE;
 CALLX .SEPT(OPEN-ENTRY), OPEN-I, *;

OPEN-OUTPUT-FILE:
 CPYBLA OFCB-FILE, PARM-OUT-FILE;
 CPYNV OFCB-LIB-ID, THE-LIB;
 CPYBLA OFCB-LIBRARY, PARM-OUT-LIB;
 CPYNV OFCB-MBR-ID, THE-MBR;
 CPYBLA OFCB-MEMBER, PARM-OUT-FILE;
 CALLX .SEPT(OPEN-ENTRY), OPEN-O, *;

If you place breakpoints before and after the open-call:

 BRK “1”;
 CALLX .SEPT(OPEN-ENTRY), OPEN-I, *;
 BRK “2”;

you can see the effects of the open (filling in of pointers to buffers, etc):

 Display Breakpoint
 Variable : IFCB
 Type : CHARACTER
 Length : 214
 * . . . + 1 + . *...+....1....+.
 00000000000000000000000000000000 ' '
 00000000000000000000000000000000 ' '
 00000000000000000000000000000000 ' '
 00000000000000000000000000000000 ' '
 00000000000000000000000000000000 ' '
 00000000000000000000000000000000 ' '
 00000000000000000000000000000000 ' '
 00000000000000000000000000000000 ' '
 E3D6D7C34040404040400048D3E2E5C1 'TOPC çLSVA'
 D3C7C1C1D9C40049E3D6D7C340404040 'LGAARD ñTOPC '
 40400000000000000000000000008020 ' Ø '
 00000000000000000000000000000000 ' '
 00000000000000000000000000000000 ' '
 000100847FFF ' d" '

 61

 Variable : IFCB
 Type : CHARACTER
 Length : 214
 * . . . + 1 + . *...+....1....+.
 8000000000000000D333631263000650 'Ø L Ä Ä &' open data path
 8000000000000000D333631263000E60 'Ø L Ä Ä -' input buffer
 00000000000000000000000000000000 ' '
 8000000000000000D333631263000700 'Ø L Ä Ä ' open feedback area
 8000000000000000D333631263000816 'Ø L Ä Ä ' i/o feedback area
 00000000000000000000000000000000 ' '
 00000000000000000000000000000000 ' '
 00000000000000000000000000000000 ' '
 E3D6D7C34040404040400048D3E2E5C1 'TOPC çLSVA'
 D3C7C1C1D9C40049E3D6D7C340404040 'LGAARD ñTOPC '
 404040404040404040404040000188811120 ' a ' device name, flags (state)
 0000000000000D970000000000000000 ' p ' invocation mark count
 00000000000000000000000000000000 ''
 000100847FFF ' d" '

Note that the state field in the control flags is now set to “111” indicating an open in progress.
Although we could use the pointer to the buffer provided in the FCB we prefer to use a copy of it (gives us
more flexibility - e.g. if we want to re-use the FCB), so:

DCL SPCPTR .INBUF;
DCL DD INBUF CHAR(132) BAS(.INBUF); /* base the input buffer */

DCL SPCPTR .OUTBUF;
DCL DD OUTBUF CHAR(132) BAS(.OUTBUF); /* base the output buffer */

 CPYBWP .INBUF, .IFCB-INBUF; /* make copy of pointer to input */
 CPYBWP .OUTBUF, .OFCB-OUTBUF; /* make copy of pointer to output */

We now have open files with buffers defined. The SEPT contains pointers to the routines that read and
write records, but these routines are different for different devices, so how do we know which ones to use?
Finding the correct pointer is done through the Data Management Entry Point Table (DMEPT) in the Open
Data Path (the ODP). After a file has been opened, this table has the correct indices into the SEPT for each
I/O routine as fitting for the device in question. This allows the Data Management component of OS/400 to
direct the I/O to the correct device/file consistent with user requests including overrides (e.g., to a different
device or file type). Only this method for calling I/O routines allows Data Management to handle overrides
and error conditions correctly.

The Open Data Path
There is an interesting trend on IBM’s website for AS/400 documentation. For release V3R2, I count 41
books with a reference to the ODP, in V4R5 I only see 28. In either case the information is scant. Apart
from a passing reference here and there, the following is the only substantial (?) information available:

“Open file operations result in the creation of a temporary resource called an open data path (ODP).
The open function can be started by using HLL open verbs, the Open Query File (OPNQRYF)
command, or the Open Data Base File (OPNDBF) command. The ODP is scoped to the activation
group of the program that opened the file. For OPM or ILE programs that run in the default
activation group, the ODP is scoped to the call-level number. To change the scoping of HLL open
verbs, an override may be used. You can specify scoping by using the open scope (OPNSCOPE)
parameter on all override commands, the OPNDBF command, and the OPNQRYF command. For more
information about open file operations, see the Data Management book.”

This is even more surprising because the ODP control block is the central control block of an opened
device file or database member. The first part of the ODP (often called the ODP root) has a fixed format
The information contained in the root section includes:

 • Status information
 • Various size information about the space in which the ODP control block resides
 • Offset to the Device File/Database MCB (Member Control Block)
 • Offsets to various sections within the ODP
 • Information (such as names and “open” options) common to several components

 62

Internally there are two types of ODPs, a permanent ODP (sometimes called the prototype ODP) and an
active ODP. When a device file/database member is created, an associated ODP is also created. When the
device/member is opened, a temporary duplicate of the associated is created. This duplicate is the active
ODP. The duplicate is destroyed when the file is closed or the job ends.

For database members, the permanent ODP at the MI-level is a cursor object (type/subtype X‘0D50’). It is
simply the database member object. Its name is the concatenation of filename and member name. The
associated ODP is also a cursor (type/subtype X‘0DEF’) called the operational cursor. Its name is the
concatenation of filename, library name, and member name. Refer to chapter 8 for more information about
member cursors. Here is a dump of an operational cursor for database member TOPC of file TOPC in library
LSVALGAARD:

 Address D911A9DBA5 000000
 000000 00010008 00810001 D911A9DB A5000000 ·····a··R·zûv···
 000010 00010000 00000000 D911A9DB A5000650 ········R·zûv··&
 000020 10000DEF E3D6D7C3 40404040 4040D3E2 ···ÕTOPC LS
 000030 E5C1D3C7 C1C1D9C4 E3D6D7C3 40404040 VALGAARDTOPC
 000040 40408000 000009B0 00000008 FF1C4100 Ø····^········
 000050 81509637 A5D48000 00000000 00000000 a&o·vMØ·········
 000060 DB27F422 1A000000 00000000 00000000 û·4·············
 000070 D911A9DB A5000000 00020000 01000000 R·zûv···········
 000080 81509637 A5D48000 00000000 00000000 a&o·vMØ·········
 000090 00000000 00000000 00000000 00000000 ················
 0000A0 00000000 00000073 00000000 00000000 ·······Ë········
 0000B0 00000000 00000000 00000000 00000000 ················
 0000C0 00000000 00000000 E0000000 00000000 ········\·······
 0000D0 00000000 00000000 00000000 00000000 ················
 0000E0 00000000 00000000 00000000 00000000 ················
 0000F0 00730000 00000000 00000000 00000000 ·Ë··············
 000100 00000000 00000000 3ECAFBBD C2000000 ·········­Û¨B··· <= address of member
 000110 52040000 0000EB80 00010000 00060000 ê·····ÔØ········
 000120 D911A9DB A5000400 00000039 40000000 R·zûv······· ···

 Address 3ECAFBBDC2 000000
 000000 00010008 00898000 3ECAFBBD C2000000 ·····iØ··­Û¨B···
 000010 40010000 00000000 3ECAFBBD C2000830 ········­Û¨B···
 000020 80000D50 E3D6D7C3 40404040 4040E3D6 Ø··&TOPC TO
 000030 D7C34040 40404040 40404040 40404040 PC
 000040 40408000 000007D0 00000008 3F104100 Ø····}········
 000050 808C50FA E3AF8000 0E6792A4 C7000000 Øð&³T®Ø··ÅkuG···
 000060 00000000 00000000 173A0D5C 03000000 ···········*····
 000070 3ECAFBBD C2000000 00020000 03000000 ·­Û¨B···········
 000080 814EEC7F 47228000 00000000 00000000 a·Ö"å·Ø·········
 000090 00000000 00000000 00000000 00000000 ················

The ODP is strictly speaking located in the associated space of the cursor objects. We prefer to have our
own copy of the pointer to the ODP (we’ll use the same pointer in turn for both the ODP of the input file
and for the ODP of the output file), so

 CPYBWP .ODP, .IFCB-ODP; /* copy pointer to input ODP */

Here is the layout of the fixed part of the ODP (note the use of a SPC). :

DCL SPCPTR .ODP;
DCL SPC ODP BAS(.ODP);
 DCL DD ODP-STATUS CHAR(4) DIR;
 DCL DD ODP-DEV-LENGTH BIN(4) DIR;
 DCL DD ODP-OPEN-SIZE BIN(4) DIR;
 DCL DD ODP.OPEN-FEEDBCK BIN(4) DIR;
 DCL DD ODP.DEV-CTRLBLK BIN(4) DIR; <=== discussed below
 DCL DD ODP.IO-FEEDBACK BIN(4) DIR;
 DCL DD ODP.LOCK-LIST BIN(4) DIR;
 DCL DD ODP.SPOOL-OUTPUT BIN(4) DIR;

 DCL DD ODP.MBR-DESCR BIN(4) DIR;
 DCL DD ODP.CUR-IN-REC BIN(4) DIR;
 DCL DD ODP.CUR-OUT-REC BIN(4) DIR;
 DCL DD ODP.OPEN-DMCQ BIN(4) DIR;
 DCL DD ODP.OUTSTANDINGS BIN(4) DIR;
 DCL DD * CHAR(12) DIR;

 DCL SYSPTR .ODP-CURSOR DIR;
 DCL DD * CHAR(16) DIR;
 DCL SPCPTR .ODP-CDM-ERROR DIR;

 63

 DCL SPCPTR .ODP-INPUT-BUFFER DIR;
 DCL SPCPTR .ODP-OUTPUT-BUFFER DIR;

 DCL DD ODP.CDM-CLOSING BIN(2) DIR;
 DCL DD ODP-DEV-NAME-IDX BIN(2) DIR;
 DCL DD ODP-NBR-OF-DEVS BIN(2) DIR;

 DCL DD ODP-SEQUENCE-NBR BIN(4) DIR;
 DCL DD ODP-REC-LENGTH BIN(2) DIR;
 DCL DD ODP-REC-LENGTH2 BIN(2) DIR;
 DCL DD ODP-NBR-OF-*RDS BIN(2) DIR;
 DCL DD ODP-RELEASE-NBR BIN(2) DIR;
 DCL DD ODP-OPEN-POSN CHAR(1) DIR;
 DCL DD ODP-OVR-REC-LEN BIN(2) DIR;
 DCL DD ODP-COM-DEV-CNT BIN(2) DIR;

 DCL DD ODP.INPUT-BPCA BIN(4) DIR;
 DCL DD ODP.OUTPUT-BPCA BIN(4) DIR;
 … stuff omitted

Looking at the ODP with the Debugger shows:

 Variable : ODP
 Type : CHARACTER
 Length : 32767
 * . . . + 1 + . *...+....1....+.
 81000000000008A0000009B0000000B0 'a µ ^ ^'
 00000140000001C60000028000000000 ' F Ø ' <== offset to namelist
 000002C00000000000000000000002E0 ' { \'
 00000000000000000000000000000000 ' '
 0000800000000000CFE48EE96E000DFF ' Ø õUþZ> ' <== temporary copy of active ODP
 00000510000000020000049000000000 ' ° '
 8000000000000000EA12C952D364DC10 'Ø ² IêLÀü '
 8000000000000000CFE48EE96E000E60 'Ø õUþZ> -' <== input buffer
 00000000000000000000000000000000 ' '
 01900000000000000000008400000000 ' ° d '
 2C000000000000000007F00000000000 ' 0 '
 C4C2E3D6D7C3404040404040D3E2E5C1 'DBTOPC LSVA'
 D3C7C1C1D9C400000000000000000000 'LGAARD '
 00000000000000000000000000840000 ' d '
 E3D6D7C34040404040400000008F0000 'TOPC ± '
 0000001500000000000000000004B7C1 ' ¼A'
 D900D580000000000000000000000000 'R NØ '
 00000000000000000000010000008F00 ' ± '
 00043000000000000000000000000001 ' '
 0000000100004C0000FFFF0000000000 ' < '

 00010001C4C1E3C1C2C1E2C540400000 ' DATABASE ' Device control block:
 00000000000000000010000E00450045 ' á á'
 0045004500450045006F004500450045 ' á á á á ? á á á'
 00450BFD00450045000D001100000001 ' á Ù á á '
 00000000000000000000000000000000 ' '
 00000000000000000000000000000000 ' '

Data Management Entry Point Table
Here is not the place for a discussion of all the fields of the ODP. What we are interesting in at this point is
the Data Management Entry Point table. The ODP.DEV-CTRLBLK is an offset to what we need. To get a
pointer to this area we add the offset to the pointer to the ODP:

 ADDSPP .DEV-CONTROL-BLOCK, .ODP, ODP.DEV-CTRLBLK;

Below is the format of the Device Control Block (values from the above dump are shown as /* comments
*/). The DMEPT starts 24 bytes into the DCB:

DCL SPCPTR .DEV-CONTROL-BLOCK;
DCL SPC DEV-CONTROL-BLOCK BAS(.DEV-CONTROL-BLOCK);
 DCL DD DCB-MAX-NBR-OF-DEVICES BIN(2) DIR; /* 0001 */
 DCL DD DCB-DEVICES-IN-THE-ODP BIN(2) DIR; /* 0001 */
 DCL DD DCB-DEVICE-NAME CHAR(10) DIR; /* DATABASE */
 DCL DD DCB-OFFSET-TO-FM-WORK BIN(4) DIR; /* 00000000 */
 DCL DD DCB-LENGTH-OF-FM-WORK BIN(4) DIR; /* 00000000 */
 DCL DD DCB-INDEX-FOR-LUD-PTR BIN(2) DIR; /* 0000 */
 /* DMEPT starts here */
 DCL DD DCB-GET BIN(2) DIR; /* 0010 = 16 QDBGETSQ */
 DCL DD DCB-GET-BY-RRN BIN(2) DIR; /* 000E = 14 QDBGETDR */
 DCL DD DCB-GET-BY-KEY BIN(2) DIR; /* 0045 = 69 QDMIFERR */

 64

 DCL DD * BIN(2) DIR; /* 0045 = 69 QDMIFERR */
 DCL DD DCB-PUT BIN(2) DIR; /* 0045 = 69 QDMIFERR */
 DCL DD DCB-PUT-GET BIN(2) DIR; /* 0045 = 69 QDMIFERR */
 DCL DD DCB-UPDATE BIN(2) DIR; /* 0045 = 69 QDMIFERR */
 DCL DD DCB-DELETE BIN(2) DIR; /* 0045 = 69 QDMIFERR */
 DCL DD DCB-FORCE-EOD BIN(2) DIR; /* 006F = 111 QDBFEOD */
 DCL DD DCB-FORCE-EOV BIN(2) DIR; /* 0045 = 69 QDMIFERR */
 DCL DD DCB-COMMIT BIN(2) DIR; /* 0045 = 69 QDMIFERR */
 DCL DD DCB-ROLLBACK BIN(2) DIR; /* 0045 = 69 QDMIFERR */
 DCL DD DCB-FREE-REC-LOCK BIN(2) DIR; /* 0045 = 69 QDMIFERR */
 DCL DD * BIN(2) DIR; /* 0BFD = 3069 QDBCHEOD */
 DCL DD * BIN(2) DIR; /* 0045 = 69 QDMIFERR */
 DCL DD * BIN(2) DIR; /* 0045 = 69 QDMIFERR */
 DCL DD DCB-CLOSE BIN(2) DIR; /* 000D = 13 QDBCLOSE */
 DCL DD DCB-OPEN BIN(2) DIR; /* 0011 = 17 QDBOPEN */
 DCL DD * BIN(2) DIR; /* 0000 */
 DCL DD * BIN(2) DIR; /* 0001 */

Each entry in the DMEPT is set to an index or subscript into the SEPT at open time. If an entry does not
apply to a particular device/file type, these entry points within the SEPT will be to a program that will
signal an appropriate exception saying that the requested operation is not supported or applicable for that
device. As you can see, all the output operations for this open input file lead to the same error routine -
SEPT entry number 69, QDMIFERR. We are interested in the read-routine, which is SEPT entry number 16 -
QDBGETSQ. We save that SEPT entry number for later use:

 CPYNV GET-ENTRY, DCB-GET;

Similar considerations apply for the output file, so opening the two files now proceeds like this:

DCL DD GET-ENTRY BIN(2);
DCL DD PUT-ENTRY BIN(2);

OPEN-INPUT-FILE:
 …
 CPYBWP .INBUF, .IFCB-INBUF;
 CPYBWP .ODP-ROOT, .IFCB-ODP;
 ADDSPP .DEV-CONTROL-BLOCK, .ODP-ROOT, ODP.DEV-NAMELIST;
 CPYNV GET-ENTRY, DCB-GET;

OPEN-OUTPUT-FILE:
 …
 CPYBWP .OUTBUF, .OFCB-OUTBUF;
 CPYBWP .ODP-ROOT, .OFCB-ODP;
 ADDSPP .DEV-CONTROL-BLOCK, .ODP-ROOT, ODP.DEV-NAMELIST;
 CPYNV PUT-ENTRY, DCB-PUT;

I/O Routines
All OS/400 CPF-level I/O routines accept three arguments: an open UFCB, an option list, and a control list.
An argument may be left out or coded as a NULL pointer, if it is not applicable. Let’s set up the operand
lists for GET and PUT operations.

It would be convenient if we could initialize a null pointer or pass a null pointer as a parameter like this:

DCL SPCPTR .NULL INIT(*); /* invalid initialization */
DCL OL GET-OPERATION(.IFCB, .GET-PARM, *); /* invalid operand */

but we can’t because the MI-compiler complains, so we have to resort to the following method:

DCL SPCPTR .NULL;
DCL OL GET-OPERATION(.IFCB, .GET-OPTION, .NULL);
 CPYBWP .NULL, *; /* Make NULL ptr at runtime */

The Data Management Option List
The data management option list is passed to the I/O programs as a space pointer that points to a four-byte
option list, which in turn is a fixed structure that has four one-byte substructures.

Operation option byte (byte 0):

 X‘00’ Release All
 X‘01’ Release First

 65

 X‘01’ Get First
 X‘02’ Get Last
 X‘03’ Get Next, Wait
 X‘04’ Get Previous
 X‘05’ GetK Next, Unique
 X‘06’ GetK Previous, Unique
 X‘07’ GetD RelCur
 X‘08’ GetD Ordinal RelStr, wait

 X‘13’ Get Next, No Wait
 X‘23’ Get Next, Wait via Acc Input
 X‘83’ Get Next, Wait via Event Handler
 X‘0C’ Get Cancel
 X‘0E’ Get Same

 X‘18’ GetD Ordinal RelStr, No Wait
 X‘0A’ GetD Next Mod, Wait
 X‘1A’ GetD Next Mod, No Wait
 X‘0B’ GetD Unblocked, Wait
 X‘1B’ GetD Unblocked, No Wait
 X‘0C’ GetD Cancel

 X‘0B’ GetK Key Equal
 X‘0A’ GetK Key Before or Equal
 X‘09’ GetK Key Before
 X‘0C’ GetK Key After or Equal
 X‘0D’ GetK Key After

 X‘00’ Put, Wait
 X‘10’ Put, No Wait
 X‘03’ PutGet Next, Wait
 X‘13’ PutGet Next, No Wait
 X‘0C’ PutGet Cancel
 X‘0F’ Put Send Error Message

Share option byte (byte 1):

 X‘00’ Get for Read Only, Normal
 X‘03’ Get for Update, Normal
 X‘10’ Get for Read Only, No Position
 X‘13’ Get for Update, No Position

Data option byte (byte 2):

 X‘00’ Data Access Record
 X‘01’ No Data Access Record
 X‘02’ Data Access All Record
 X‘03’ No Data Access All Record

 X‘10’ Get Prior, Data Access Record
 X‘11’ Get Prior, No Data Access Record
 X‘12’ Get Prior, Data Access All Record
 X‘13’ Get Prior, No Data Access All Record

Device Support byte (byte 3):

 X‘01’ Indicating a Get Request
 X‘02’ Indicating a GetD Request
 X‘05’ Indicating a Put Request
 X‘06’ Indicating a PutGet Request
 X‘07’ Indicating an Update Request
 X‘08’ Indicating a Delete Request
 X‘0B’ Indicating a Release Request

So, based on all that, we set up the option lists as follows:

 66

DCL DD GET-OPTION BIN(4) INIT(H'03000001'); /* Get Next, Wait. Get Request */
DCL SPCPTR .GET-OPTION INIT(GET-OPTION);

DCL DD PUT-OPTION BIN(4) INIT(H'10000005'); /* Put, No Wait. Put Request */
DCL SPCPTR .PUT-OPTION INIT(PUT-OPTION);

The Data Management Control List
The control list is used to pass additional information to the I/O programs as needed. The control list is a
variable length structure made up of elements with the following format:

Entry ID, CHAR(1) Entry Value Length, BIN(2) Entry Value, CHAR(nn)

The last entry must have a single type byte of X‘FF’ to indicate the end of the list. For the simple
operations we are performing here on the files, no control list is needed, so we code that argument as a
NULL pointer:

DCL OL GET-OPERATION(.IFCB, .GET-PARM, .NULL);

Filling the Input Area
Because the data compression works best on largish amounts of data we’ll define an input area capable of
holding 5000 132-character records:

DCL SPCPTR .INPUT-SPACE INIT(INPUT-SPACE);
DCL DD INPUT-SPACE (5000) CHAR(132) BDRY(16);

We’ll keep reading records until either the area is full or we get and end-of-file exception:

DCL EXCM * EXCID(H'5001') BP(EOF-DETECTED) CV("CPF") IMD; -----------------.
 |
 CPYNV INPUT-RECS, 0; /* counting input records */ |
 CPYBLA INPUT-EOF, " "; /* End-of-file indicator off */ |
 |
READ-UNCOMPRESSED-RECORD: <-------------------------------------. |
 CMPNV(B) INPUT-RECS, 5000/EQ(COMPRESS-CHUNK); ----. | |
 CALLX .SEPT(GET-ENTRY), GET-OPERATION, *; | | |
 ADDN(S) INPUT-RECS, 1; | | |
 CPYBLA INPUT-SPACE(INPUT-RECS), INBUF; | | |
 B READ-UNCOMPRESSED-RECORD; -----------------------’ |
 | |
EOF-DETECTED: <-----------------------|---------------’
 CPYBLA INPUT-EOF, "Y"; |
 |
COMPRESS-CHUNK: <-------------------’

Compressing the Input
The “Compress Data”-instruction, CPRDATA, compresses data of a specified length. The operand template
identifies the data to be compressed and the result to receive the compressed data. The template has this
format:

DCL SPCPTR .COMPRESS INIT(COMPRESS);
DCL DD COMPRESS CHAR(64) BDRY(16); /* must be 16-byte aligned */
 DCL DD CMPR-INPUT-LENGTH BIN(4) DEF(COMPRESS) POS(1);
 DCL DD CMPR-OUTPUT-LENGTH BIN(4) DEF(COMPRESS) POS(5); /* max length of result */
 DCL DD CMPR-ACTUAL-LENGTH BIN(4) DEF(COMPRESS) POS(9); /* length of compressed */
 DCL DD CMPR-ALGORITHM BIN(2) DEF(COMPRESS) POS(13);
 DCL DD * CHAR(18) DEF(COMPRESS) POS(15);
 DCL SPCPTR .CMPR-INPUT DEF(COMPRESS) POS(33); /* pointer to input */
 DCL SPCPTR .CMPR-OUTPUT DEF(COMPRESS) POS(49); /* pointer to result */

We have two choices for the compression algorithm:

 1 Simple TERSE algorithm (whatever that is)
 2 IBM version of LZ1 dictionary based algorithm

COMPRESS-CHUNK:
 MULT CMPR-INPUT-LENGTH, INPUT-RECS, 132; /* calculate length */
 CPYNV INPUT-RECS, 0; /* reset record counter */
 CPYNV CMPR-OUTPUT-LENGTH, 660000; /* max = 132 * 5000 */
 CPYNV CMPR-ALGORITHM, 2; /* use LZ1 algorithm */
 CPYBWP .CMPR-INPUT, .INPUT-SPACE; /* set input area */

 67

 CPYBWP .CMPR-OUTPUT, .OUTPUT-SPACE; /* set output area */
 CPRDATA .COMPRESS; /* compress the data */

We have chosen the popular LZ1 algorithm (also called LZ77 after Lempel ands Ziv’s 1977 landmark
paper). The LZ77 algorithm is used in many popular compression packages, such as PKZip, WinZip, PNG,
and ARJ. In the LZ77 approach, the dictionary is simply a portion of the previously encoded sequence. The
encoder examines the input sequence through a sliding window. The window consists of two parts, a
search buffer that contains a portion of the recently encoded sequence, and a look-ahead buffer that
contains the next portion of the sequence to be encoded.

To encode the sequence in the look-ahead buffer, the encoder moves a search pointer back through the
search buffer until it encounters a match to the first symbol in the look-ahead buffer. The distance of the
pointer from the look-ahead buffer is called the offset. The encoder then examines the symbols at the
pointer location to see if they match consecutive symbols in the look-ahead buffer. The number of
consecutive symbols in the search buffer that match consecutive symbols in the look-ahead buffer, starting
with the first symbol, is called the length of the match. Once the longest match has been found, the encoder
encodes it with a triple {offset, length, code} where the code is the codeword corresponding to the symbol
in the look-ahead buffer.

Write the Compressed Records
When outputting the compressed data, we’ll precede each compressed chunk by a header record, that
contains information about the file and of the size of the current chunk:

DCL SPCPTR .OUTBUF;
DCL DD OUTBUF CHAR(132) BAS(.OUTBUF);
 DCL DD OUTBUF-SYSTEM CHAR(10) DEF(OUTBUF) POS(1);
 DCL DD OUTBUF-LIB CHAR(10) DEF(OUTBUF) POS(12);
 DCL DD OUTBUF-FILE CHAR(10) DEF(OUTBUF) POS(23);
 DCL DD OUTBUF-BYTES ZND(10,0) DEF(OUTBUF) POS(34);
 DCL DD OUTBUF-RECS ZND(10,0) DEF(OUTBUF) POS(45);

WRITE-HEADER-RECORD:
 CPYBREP OUTBUF, " ";
 CPYBLA OUTBUF-SYSTEM, NWA-SYSNAME; /* the name of the AS/400 system */
 CPYBLA OUTBUF-LIB, IFCB-LIBRARY; /* name of library for input file */
 CPYBLA OUTBUF-FILE, IFCB-FILE; /* name of file being compressed */

 CPYNV OUTBUF-BYTES, CMPR-ACTUAL-LENGTH; /* number of bytes in chunk */
 ADDN OUTPUT-BYTES, CMPR-ACTUAL-LENGTH, 131; /* prepare to round up */
 DIV OUTPUT-RECS, OUTPUT-BYTES, 132; /* compute number of records */

 CPYNV OUTBUF-RECS, OUTPUT-RECS;
 CALLX .SEPT(PUT-ENTRY), PUT-OPERATION, *; /* write header record */
 CPYNV CURRENT-REC, 0; /* reset record counter */

WRITE-COMPRESSED-RECORD: <-----------------------.
 ADDN(S) CURRENT-REC, 1; |
 CPYBLA OUTBUF, OUTPUT-SPACE(CURRENT-REC); |
 CALLX .SEPT(PUT-ENTRY), PUT-OPERATION, *; |
 SUBN(SB) OUTPUT-RECS, 1/NZER(WRITE-COMPRESSED-RECORD); ---------’

If we are not yet at End-Of-File we go back and read the next batch of records to compress: ↑
 |
 CMPBLA(B) INPUT-EOF, "Y"/NEQ(READ-UNCOMPRESSED-RECORD); -----------------’

Otherwise go close the files and exit the program:

 B CLOSE-ALL-FILES;
…

CLOSE-ALL-FILES:
 CALLX .SEPT(CLOSE-ENTRY), CLOSE-I, *;
 CALLX .SEPT(CLOSE-ENTRY), CLOSE-O, *;
 RTX *;

 68

Getting the System Name
There is a handy API, QWCRNETA, that we can use to retrieve the name of the local system in which you are
running. It is entry number 4938 in the SEPT. We call it like this (after having defined the operand list as
shown below):

 CALLX .SEPT(4938), QWCRNETA, *;

First the Network Attribute Template:

DCL SPCPTR .NETWORK-ATTR INIT(NETWORK-ATTR);
DCL DD NETWORK-ATTR CHAR(32);
 DCL DD NETWORK-ATTR-NBR BIN(4) DEF(NETWORK-ATTR) POS(1);
 DCL DD NETWORK-ATTR-OFFSET BIN(4) DEF(NETWORK-ATTR) POS(5);
 DCL DD NWA-ATTR-NAME CHAR(10) DEF(NETWORK-ATTR) POS(9);
 DCL DD NWA-ATTR-TYPE CHAR(1) DEF(NETWORK-ATTR) POS(19);
 DCL DD NWA-ATTR-STS CHAR(1) DEF(NETWORK-ATTR) POS(20);
 DCL DD NWA-ATTR-SIZE BIN(4) DEF(NETWORK-ATTR) POS(21);
 DCL DD NWA-SYSNAME CHAR(8) DEF(NETWORK-ATTR) POS(25);

DCL SPCPTR .LENGTH-NETWORK-ATTR INIT(LENGTH-NETWORK-ATTR);
DCL DD LENGTH-NETWORK-ATTR BIN(4) INIT(32);

DCL SPCPTR .NBR-OF-NETWORK-ATTR INIT(NBR-OF-NETWORK-ATTR);
DCL DD NBR-OF-NETWORK-ATTR BIN(4) INIT(1);

DCL SPCPTR .NAME-NETWORK-ATTR INIT(NAME-NETWORK-ATTR);
DCL DD NAME-NETWORK-ATTR CHAR(10) INIT("SYSNAME");

DCL SPCPTR .ERROR-CODE INIT(ERROR-CODE);
DCL DD ERROR-CODE BIN(4) INIT(0); /* if 0, don’t handle errors */

DCL OL QWCRNETA(.NETWORK-ATTR,
 .LENGTH-NETWORK-ATTR,
 .NBR-OF-NETWORK-ATTR,
 .NAME-NETWORK-ATTR,
 .ERROR-CODE);

Decompressing the Data
Decompression consists of reading the compressed chunks and decompressing each one, writing the
decompressed data back out. We first read a header record, then as many records as it says in the header,
decompress the data with the “Decompress Data”-instruction, DCPDATA, write out the result, then read the
next header record, etc, until all the data has been processed. The code is straightforward:

DECOMPRESS-FILE:
READ-COMPRESSED-HEADER:
 CALLX .SEPT(GET-ENTRY), GET-OPERATION, *;
 CPYNV(B) NBR-OF-RECS, INBUF-RECS/EQ(CLOSE-ALL-FILES);
 CPYNV NBR-OF-BYTES, INBUF-BYTES;
 CPYNV INPUT-RECS, 0;

READ-COMPRESSED-RECORD:
 CMPNV(B) INPUT-RECS, NBR-OF-RECS/EQ(DECOMPRESS-CHUNK);
 CALLX .SEPT(GET-ENTRY), GET-OPERATION, *;
 ADDN(S) INPUT-RECS, 1;
 CPYBLA INPUT-SPACE(INPUT-RECS), INBUF;
 B READ-COMPRESSED-RECORD;

DECOMPRESS-CHUNK:
 CPYNV CMPR-INPUT-LENGTH, 0;
 CPYNV CMPR-OUTPUT-LENGTH, 660000;
 CPYNV CMPR-ALGORITHM, 0;
 CPYBWP .CMPR-INPUT, .INPUT-SPACE;
 CPYBWP .CMPR-OUTPUT, .OUTPUT-SPACE;
 DCPDATA .COMPRESS; /* uses same template as CPRDATA */

 DIV OUTPUT-RECS, CMPR-ACTUAL-LENGTH, 132;
 CPYNV CURRENT-REC, 0;

WRITE-UNCOMPRESSED-RECORD: <--------------------------.
 ADDN(S) CURRENT-REC, 1; |
 CPYBLA OUTBUF, OUTPUT-SPACE(CURRENT-REC); |
 CALLX .SEPT(PUT-ENTRY), PUT-OPERATION, *; |
 SUBN(SB) OUTPUT-RECS, 1/NZER(WRITE-UNCOMPRESSED-RECORD); ------’
 B READ-COMPRESSED-HEADER;

 69

Compression Ratio
A typical listing file had 1207 records totaling 172,032 bytes; the compressed file had 233 records totaling
40960 bytes. The compression ratio was thus 172032/40960 = 4.2, which is typical for listing text.

The Complete Program
Here is then the complete MIFCMPS program:

DCL SPCPTR .PARM1 PARM;
 DCL DD PARM-OPERATION CHAR(1) BAS(.PARM1);

DCL SPCPTR .PARM2 PARM;
 DCL DD PARM-IN-FILE CHAR(10) BAS(.PARM2);

DCL SPCPTR .PARM3 PARM;
 DCL DD PARM-IN-LIB CHAR(10) BAS(.PARM3);

DCL SPCPTR .PARM4 PARM;
 DCL DD PARM-OUT-FILE CHAR(10) BAS(.PARM4);

DCL SPCPTR .PARM5 PARM;
 DCL DD PARM-OUT-LIB CHAR(10) BAS(.PARM5);

DCL OL PARMS(.PARM1, .PARM2, .PARM3, .PARM4, .PARM5) EXT PARM MIN(5);

DCL SPCPTR .INPUT-SPACE INIT(INPUT-SPACE);
DCL DD INPUT-SPACE (5000) CHAR(132) BDRY(16);

DCL SPCPTR .OUTPUT-SPACE INIT(OUTPUT-SPACE);
DCL DD OUTPUT-SPACE (5000) CHAR(132) BDRY(16);

DCL SPCPTR .COMPRESS INIT(COMPRESS);
DCL DD COMPRESS CHAR(64) BDRY(16);
 DCL DD CMPR-INPUT-LENGTH BIN(4) DEF(COMPRESS) POS(1);
 DCL DD CMPR-OUTPUT-LENGTH BIN(4) DEF(COMPRESS) POS(5);
 DCL DD CMPR-ACTUAL-LENGTH BIN(4) DEF(COMPRESS) POS(9);
 DCL DD CMPR-ALGORITHM BIN(2) DEF(COMPRESS) POS(13);
 DCL DD * CHAR(18) DEF(COMPRESS) POS(15);
 DCL SPCPTR .CMPR-INPUT DEF(COMPRESS) POS(33);
 DCL SPCPTR .CMPR-OUTPUT DEF(COMPRESS) POS(49);

DCL SPCPTR .ODP;
DCL SPC ODP BAS(.ODP);
 DCL DD ODP-STATUS CHAR(4) DIR;
 DCL DD ODP-DEV-LENGTH BIN(4) DIR;
 DCL DD ODP-OPEN-SIZE BIN(4) DIR;
 DCL DD ODP.OPEN-FEEDBCK BIN(4) DIR;
 DCL DD ODP.DEV-CTRLBLK BIN(4) DIR;
 DCL DD ODP.IO-FEEDBACK BIN(4) DIR;
 DCL DD ODP.LOCK-LIST BIN(4) DIR;
 DCL DD ODP.SPOOL-OUTPUT BIN(4) DIR;

 DCL DD ODP.MBR-DESCR BIN(4) DIR;
 DCL DD ODP.CUR-IN-REC BIN(4) DIR;
 DCL DD ODP.CUR-OUT-REC BIN(4) DIR;
 DCL DD ODP.OPEN-DMCQ BIN(4) DIR;
 DCL DD ODP.OUTSTANDINGS BIN(4) DIR;
 DCL DD * CHAR(12) DIR;

 DCL SYSPTR .ODP-CURSOR DIR;
 DCL SPCPTR * DIR;
 DCL SPCPTR .ODP-CDM-ERROR DIR;
 DCL SPCPTR .ODP-INPUT-BUFFER DIR;
 DCL SPCPTR .ODP-OUTPUT-BUFFER DIR;

 DCL DD ODP.CDM-CLOSING BIN(2) DIR;
 DCL DD ODP-DEV-NAME-IDX BIN(2) DIR;
 DCL DD ODP-NBR-OF-DEVS BIN(2) DIR;

 DCL DD ODP-SEQUENCE-NBR BIN(4) DIR;
 DCL DD ODP-REC-LENGTH BIN(2) DIR;
 DCL DD ODP-REC-LENGTH2 BIN(2) DIR;
 DCL DD ODP-NBR-OF-*RDS BIN(2) DIR;
 DCL DD ODP-RELEASE-NBR BIN(2) DIR;
 DCL DD ODP-OPEN-POSN CHAR(1) DIR;
 DCL DD ODP-OVR-REC-LEN BIN(2) DIR;
 DCL DD ODP-COM-DEV-CNT BIN(2) DIR;

 70

 DCL DD ODP.INPUT-BPCA BIN(4) DIR;
 DCL DD ODP.OUTPUT-BPCA BIN(4) DIR;
 DCL DD ODP............ CHAR(1) DIR;

DCL SPCPTR .DEV-CONTROL-BLOCK;
DCL SPC DEV-CONTROL-BLOCK BAS(.DEV-CONTROL-BLOCK);
 DCL DD DCB-MAX-NBR-OF-DEVICES BIN(2) DIR;
 DCL DD DCB-DEVICES-IN-THE-ODP BIN(2) DIR;
 DCL DD DCB-DEVICE-NAME CHAR(10) DIR;
 DCL DD DCB-OFFSET-TO-FM-WORK BIN(4) DIR;
 DCL DD DCB-LENGTH-OF-FM-WORK BIN(4) DIR;
 DCL DD DCB-INDEX-FOR-LUD-PTR BIN(2) DIR;
 DCL DD DCB-GET BIN(2) DIR;
 DCL DD DCB-GET-BY-RRN BIN(2) DIR;
 DCL DD DCB-GET-BY-KEY BIN(2) DIR;
 DCL DD * BIN(2) DIR;
 DCL DD DCB-PUT BIN(2) DIR;
 DCL DD DCB-PUT-GET BIN(2) DIR;
 DCL DD DCB-UPDATE BIN(2) DIR;
 DCL DD DCB-DELETE BIN(2) DIR;
 DCL DD DCB-FORCE-EOD BIN(2) DIR;
 DCL DD DCB-FORCE-EOV BIN(2) DIR;
 DCL DD DCB-COMMIT BIN(2) DIR;
 DCL DD DCB-ROLLBACK BIN(2) DIR;
 DCL DD DCB-FREE-REC-LOCK BIN(2) DIR;
 DCL DD * BIN(2) DIR;
 DCL DD * BIN(2) DIR;
 DCL DD * BIN(2) DIR;
 DCL DD DCB-CLOSE BIN(2) DIR;
 DCL DD DCB-OPEN BIN(2) DIR;
 DCL DD * BIN(2) DIR;
 DCL DD * BIN(2) DIR;

/* THE I/O IS DONE BY USING THE CALLX INSTRUCTION REFERENCING */
/* A SYSTEM POINTER THAT IS OBTAINED FROM THE ENTRY POINT */
/* TABLE. THE ENTRY POINT TABLE CONTAINS PRE-RESOLVED SYSTEM */
/* POINTERS (THOUSANDS...). THE SYSTEM ENTRY POINT TABLE */
/* IS ADDRESSED BY THE POINTER BASED ON THE PROCESS COMMUNI- */
/* CATION OBJECT (PCO): */
/* PCO POINTER --> POINTER TO SEPT --> PTR TO OS FUNCTION 1 */
/* PTR TO OS FUNCTION 2 */
/* ... */

DCL SYSPTR .SEPT(6440) BAS(@SEPT);
DCL DD PCO CHAR(80) BASPCO;
 DCL SPCPTR @SEPT DEF(PCO) POS(1);

/* THE USER FILE CONTROL BLOCK (UFCB) DEFINES THE FILE NAME, */
/* BUFFER SPACES AND ALL NECESSARY CONTROL INFORMATION NEEDED */
/* TO MANAGE THE FILE. IT ALSO PROVIDES THE FEEDBACKS NEEDED */
/* TO ACCESS VARIOUS STRUCTURES, SUCH AS THE ODP (THE OPEN */
/* DATA PATH). */

DCL DD IFCB CHAR(214) BDRY(16);
 DCL SPCPTR .IFCB-ODP DEF(IFCB) POS(1);
 DCL SPCPTR .IFCB-INBUF DEF(IFCB) POS(17);
 DCL SPCPTR .IFCB-OUTBUF DEF(IFCB) POS(33);
 DCL SPCPTR .IFCB-OPEN-FEEDBACK DEF(IFCB) POS(49);
 DCL SPCPTR .IFCB-IO-FEEDBACK DEF(IFCB) POS(65);
 DCL SPCPTR .IFCB-NEXT-UFCB DEF(IFCB) POS(81);

 DCL DD * CHAR(32) DEF(IFCB) POS(97);
 DCL DD IFCB-FILE CHAR(10) DEF(IFCB) POS(129);
 DCL DD IFCB-LIB-ID BIN(2) DEF(IFCB) POS(139);
 DCL DD IFCB-LIBRARY CHAR(10) DEF(IFCB) POS(141);
 DCL DD IFCB-MBR-ID BIN(2) DEF(IFCB) POS(151);
 DCL DD IFCB-MEMBER CHAR(10) DEF(IFCB) POS(153);

 DCL DD IFCB-DEVICE-NAME CHAR(10) DEF(IFCB) POS(163);
 DCL DD IFCB-DEVICE-INDEX BIN(2) DEF(IFCB) POS(173);

 DCL DD IFCB-FLAGS-1 CHAR(1) DEF(IFCB) POS(175) INIT(X'80');
 DCL DD IFCB-FLAGS-2 CHAR(1) DEF(IFCB) POS(176) INIT(X'20');

 DCL DD IFCB-REL-VERSION CHAR(4) DEF(IFCB) POS(177);
 DCL DD IFCB-INV-MK-COUNT BIN (4) DEF(IFCB) POS(181);
 DCL DD IFCB-MORE-FLAGS CHAR(1) DEF(IFCB) POS(185);
 DCL DD * CHAR(23) DEF(IFCB) POS(186);

 DCL DD IFCB-LENGTH-ID BIN (2) DEF(IFCB) POS(209) INIT(1);

 71

 DCL DD IFCB-RECORD-LENGTH BIN (2) DEF(IFCB) POS(211) INIT(132);
 DCL DD IFCB-NO-MORE-PARMS BIN (2) DEF(IFCB) POS(213) INIT(32767);

DCL SPCPTR .IFCB INIT(IFCB);
DCL OL OPEN-I(.IFCB);
DCL OL CLOSE-I(.IFCB);

DCL DD OFCB CHAR(214) BDRY(16);
 DCL SPCPTR .OFCB-ODP DEF(OFCB) POS(1);
 DCL SPCPTR .OFCB-INBUF DEF(OFCB) POS(17);
 DCL SPCPTR .OFCB-OUTBUF DEF(OFCB) POS(33);
 DCL SPCPTR .OFCB-OPEN-FEEDBACK DEF(OFCB) POS(49);
 DCL SPCPTR .OFCB-IO-FEEDBACK DEF(OFCB) POS(65);
 DCL SPCPTR .OFCB-NEXT-UFCB DEF(OFCB) POS(81);

 DCL DD * CHAR(32) DEF(OFCB) POS(97);
 DCL DD OFCB-FILE CHAR(10) DEF(OFCB) POS(129);
 DCL DD OFCB-LIB-ID BIN(2) DEF(OFCB) POS(139);
 DCL DD OFCB-LIBRARY CHAR(10) DEF(OFCB) POS(141);
 DCL DD OFCB-MBR-ID BIN(2) DEF(OFCB) POS(151);
 DCL DD OFCB-MEMBER CHAR(10) DEF(OFCB) POS(153);

 DCL DD OFCB-DEVICE-NAME CHAR(10) DEF(OFCB) POS(163);
 DCL DD OFCB-DEVICE-INDEX BIN(2) DEF(OFCB) POS(173);

 DCL DD OFCB-FLAGS-1 CHAR(1) DEF(OFCB) POS(175) INIT(X'80');
 DCL DD OFCB-FLAGS-2 CHAR(1) DEF(OFCB) POS(176) INIT(X'10');

 DCL DD OFCB-REL-VERSION CHAR(4) DEF(OFCB) POS(177);
 DCL DD OFCB-INV-MK-COUNT BIN (4) DEF(OFCB) POS(181);
 DCL DD OFCB-MORE-FLAGS CHAR(1) DEF(OFCB) POS(185);
 DCL DD * CHAR(23) DEF(OFCB) POS(186);

 DCL DD OFCB-LENGTH-ID BIN (2) DEF(OFCB) POS(209) INIT(1);
 DCL DD OFCB-RECORD-LENGTH BIN (2) DEF(OFCB) POS(211) INIT(132);
 DCL DD OFCB-NO-MORE-PARMS BIN (2) DEF(OFCB) POS(213) INIT(32767);

DCL SPCPTR .OFCB INIT(OFCB);
DCL OL OPEN-O(.OFCB) ARG;
DCL OL CLOSE-O(.OFCB) ARG;

DCL DD GET-ENTRY BIN(2);
DCL DD PUT-ENTRY BIN(2);

DCL CON CLOSE-ENTRY BIN(2) INIT(11);
DCL CON OPEN-ENTRY BIN(2) INIT(12);
DCL CON *LIBL BIN(2) INIT(-75); /* S/38: -72 */
DCL CON *FIRST BIN(2) INIT(-71); /* S/38: -73 */
DCL CON THE-LIB BIN(2) INIT(72);
DCL CON THE-MBR BIN(2) INIT(73);

DCL EXCM * EXCID(H'5001') BP(EOF-DETECTED) CV("CPF") IMD;

DCL SPCPTR .INBUF;
DCL DD INBUF CHAR(132) BAS(.INBUF);
 DCL DD INBUF-SYSTEM CHAR(10) DEF(INBUF) POS(1);
 DCL DD INBUF-LIB CHAR(10) DEF(INBUF) POS(12);
 DCL DD INBUF-FILE CHAR(10) DEF(INBUF) POS(23);
 DCL DD INBUF-BYTES ZND(10,0) DEF(INBUF) POS(34);
 DCL DD INBUF-RECS ZND(10,0) DEF(INBUF) POS(45);

DCL SPCPTR .OUTBUF;
DCL DD OUTBUF CHAR(132) BAS(.OUTBUF);
 DCL DD OUTBUF-SYSTEM CHAR(10) DEF(OUTBUF) POS(1);
 DCL DD OUTBUF-LIB CHAR(10) DEF(OUTBUF) POS(12);
 DCL DD OUTBUF-FILE CHAR(10) DEF(OUTBUF) POS(23);
 DCL DD OUTBUF-BYTES ZND(10,0) DEF(OUTBUF) POS(34);
 DCL DD OUTBUF-RECS ZND(10,0) DEF(OUTBUF) POS(45);

DCL SPCPTR .NULL;

DCL DD GET-OPTION BIN(4) INIT(H'03000001');
DCL SPCPTR .GET-OPTION INIT(GET-OPTION);
DCL OL GET-OPERATION(.IFCB, .GET-OPTION, .NULL);

DCL DD PUT-OPTION BIN(4) INIT(H'10000005');
DCL SPCPTR .PUT-OPTION INIT(PUT-OPTION);
DCL OL PUT-OPERATION(.OFCB, .PUT-OPTION, .NULL);

DCL DD INPUT-EOF CHAR(1);
DCL DD INPUT-RECS BIN(4);

 72

DCL DD CURRENT-REC BIN(4);
DCL DD OUTPUT-RECS BIN(4);
DCL DD OUTPUT-BYTES BIN(4);
DCL DD NBR-OF-RECS BIN(4);
DCL DD NBR-OF-BYTES BIN(4);

DCL SPCPTR .NETWORK-ATTR INIT(NETWORK-ATTR);
DCL DD NETWORK-ATTR CHAR(32);
 DCL DD NETWORK-ATTR-NBR BIN(4) DEF(NETWORK-ATTR) POS(1);
 DCL DD NETWORK-ATTR-OFFSET BIN(4) DEF(NETWORK-ATTR) POS(5);
 DCL DD NWA-ATTR-NAME CHAR(10) DEF(NETWORK-ATTR) POS(9);
 DCL DD NWA-ATTR-TYPE CHAR(1) DEF(NETWORK-ATTR) POS(19);
 DCL DD NWA-ATTR-STS CHAR(1) DEF(NETWORK-ATTR) POS(20);
 DCL DD NWA-ATTR-SIZE BIN(4) DEF(NETWORK-ATTR) POS(21);
 DCL DD NWA-SYSNAME CHAR(8) DEF(NETWORK-ATTR) POS(25);

DCL SPCPTR .LENGTH-NETWORK-ATTR INIT(LENGTH-NETWORK-ATTR);
DCL DD LENGTH-NETWORK-ATTR BIN(4) INIT(32);

DCL SPCPTR .NBR-OF-NETWORK-ATTR INIT(NBR-OF-NETWORK-ATTR);
DCL DD NBR-OF-NETWORK-ATTR BIN(4) INIT(1);

DCL SPCPTR .NAME-NETWORK-ATTR INIT(NAME-NETWORK-ATTR);
DCL DD NAME-NETWORK-ATTR CHAR(10) INIT("SYSNAME");

DCL SPCPTR .ERROR-CODE INIT(ERROR-CODE);
DCL DD ERROR-CODE BIN(4) INIT(0);

DCL OL QWCRNETA(.NETWORK-ATTR,
 .LENGTH-NETWORK-ATTR,
 .NBR-OF-NETWORK-ATTR,
 .NAME-NETWORK-ATTR,
 .ERROR-CODE);

/**/

ENTRY * (PARMS) EXT;
 CALLX .SEPT(4938), QWCRNETA, *;
 CPYBWP .NULL, *; /* MAKE NULL PTR */

OPEN-INPUT-FILE:
 CPYBLA IFCB-FILE, PARM-IN-FILE;
 CPYNV IFCB-LIB-ID, THE-LIB;
 CPYBLA IFCB-LIBRARY, PARM-IN-LIB;
 CPYNV IFCB-MBR-ID, THE-MBR;
 CPYBLA IFCB-MEMBER, PARM-IN-FILE;
 CALLX .SEPT(OPEN-ENTRY), OPEN-I, *;

 CPYBWP .INBUF, .IFCB-INBUF;
 CPYBWP .ODP, .IFCB-ODP;
 ADDSPP .DEV-CONTROL-BLOCK, .ODP, ODP.DEV-CTRLBLK;
 CPYNV GET-ENTRY, DCB-GET;
 CPYNV INPUT-RECS, 0;
 CPYBLA INPUT-EOF, " ";

OPEN-OUTPUT-FILE:
 CPYBLA OFCB-FILE, PARM-OUT-FILE;
 CPYNV OFCB-LIB-ID, THE-LIB;
 CPYBLA OFCB-LIBRARY, PARM-OUT-LIB;
 CPYNV OFCB-MBR-ID, THE-MBR;
 CPYBLA OFCB-MEMBER, PARM-OUT-FILE;
 CALLX .SEPT(OPEN-ENTRY), OPEN-O, *;

 CPYBWP .OUTBUF, .OFCB-OUTBUF;
 CPYBWP .ODP, .OFCB-ODP;
 ADDSPP .DEV-CONTROL-BLOCK, .ODP, ODP.DEV-CTRLBLK;
 CPYNV PUT-ENTRY, DCB-PUT;

 CMPBLA(B) PARM-OPERATION, "D"/EQ(DECOMPRESS-FILE);

COMPRESS-FILE:
READ-UNCOMPRESSED-RECORD:
 CMPNV(B) INPUT-RECS, 5000/EQ(COMPRESS-CHUNK);
 CALLX .SEPT(GET-ENTRY), GET-OPERATION, *;
 ADDN(S) INPUT-RECS, 1;
 CPYBLA INPUT-SPACE(INPUT-RECS), INBUF;
 B READ-UNCOMPRESSED-RECORD;

EOF-DETECTED:
 CPYBLA INPUT-EOF, "Y";
 CMPBLA(B) PARM-OPERATION, "D"/EQ(CLOSE-ALL-FILES);

 73

COMPRESS-CHUNK:
 MULT CMPR-INPUT-LENGTH, INPUT-RECS, 132;
 CPYNV INPUT-RECS, 0;
 CPYNV CMPR-OUTPUT-LENGTH, 660000;
 CPYNV CMPR-ALGORITHM, 2;
 CPYBWP .CMPR-INPUT, .INPUT-SPACE;
 CPYBWP .CMPR-OUTPUT, .OUTPUT-SPACE;
 CPRDATA .COMPRESS;

WRITE-HEADER-RECORD:
 CPYBREP OUTBUF, " ";
 CPYBLA OUTBUF-SYSTEM, NWA-SYSNAME;
 CPYBLA OUTBUF-LIB, IFCB-LIBRARY;
 CPYBLA OUTBUF-FILE, IFCB-FILE;
 CPYNV OUTBUF-BYTES, CMPR-ACTUAL-LENGTH;

 ADDN OUTPUT-BYTES, CMPR-ACTUAL-LENGTH, 131;
 DIV OUTPUT-RECS, OUTPUT-BYTES, 132;
 CPYNV OUTBUF-RECS, OUTPUT-RECS;
 CALLX .SEPT(PUT-ENTRY), PUT-OPERATION, *;
 CPYNV CURRENT-REC, 0;

WRITE-COMPRESSED-RECORD:
 ADDN(S) CURRENT-REC, 1;
 CPYBLA OUTBUF, OUTPUT-SPACE(CURRENT-REC);
 CALLX .SEPT(PUT-ENTRY), PUT-OPERATION, *;
 SUBN(SB) OUTPUT-RECS, 1/NZER(WRITE-COMPRESSED-RECORD);
 CMPBLA(B) INPUT-EOF, "Y"/NEQ(READ-UNCOMPRESSED-RECORD);

CLOSE-ALL-FILES:
 CALLX .SEPT(CLOSE-ENTRY), CLOSE-I, *;
 CALLX .SEPT(CLOSE-ENTRY), CLOSE-O, *;
 RTX *;

DECOMPRESS-FILE:
READ-COMPRESSED-HEADER:
 CALLX .SEPT(GET-ENTRY), GET-OPERATION, *;
 CPYNV(B) NBR-OF-RECS, INBUF-RECS/EQ(CLOSE-ALL-FILES);
 CPYNV NBR-OF-BYTES, INBUF-BYTES;
 CPYNV INPUT-RECS, 0;
READ-COMPRESSED-RECORD:
 CMPNV(B) INPUT-RECS, NBR-OF-RECS/EQ(DECOMPRESS-CHUNK);
 CALLX .SEPT(GET-ENTRY), GET-OPERATION, *;
 ADDN(S) INPUT-RECS, 1;
 CPYBLA INPUT-SPACE(INPUT-RECS), INBUF;
 B READ-COMPRESSED-RECORD;

DECOMPRESS-CHUNK:
 CPYNV CMPR-INPUT-LENGTH, 0;
 CPYNV CMPR-OUTPUT-LENGTH, 660000;
 CPYNV CMPR-ALGORITHM, 0;
 CPYBWP .CMPR-INPUT, .INPUT-SPACE;
 CPYBWP .CMPR-OUTPUT, .OUTPUT-SPACE;
 DCPDATA .COMPRESS;

 DIV OUTPUT-RECS, CMPR-ACTUAL-LENGTH, 132;
 CPYNV CURRENT-REC, 0;
WRITE-UNCOMPRESSED-RECORD:
 ADDN(S) CURRENT-REC, 1;
 CPYBLA OUTBUF, OUTPUT-SPACE(CURRENT-REC);
 CALLX .SEPT(PUT-ENTRY), PUT-OPERATION, *;
 SUBN(SB) OUTPUT-RECS, 1/NZER(WRITE-UNCOMPRESSED-RECORD);
 B READ-COMPRESSED-HEADER;

 74

Calculating Archimedes’ Constant, π

An Amazing Formula for π
People have been calculating the value of the ratio of a circle’s perimeter to its diameter for millennia. In
the 3rd century B.C., Archimedes (287 B.C. - 212 B.C.) considered inscribed and circumscribed regular
polygons of 96 sides and deduced that 3

10/71 < π < 3
1/7. Today hundreds of billions of digits of π are known.

Yet, people keep on calculating π. No book about computing is complete without rehashing this subject.
Even my old S/38 MI-assembler manual exhibits a program to calculate π. In keeping with that proud
tradition we’ll include one here as well. Tremendous progress has occurred in the 25 years since the S/38
appeared. The speed of our hardware has increased by a factor of many thousands. What is often less
appreciated is that many algorithms have been improved by an even greater factor. The best algorithm for
calculating π being no exception. The current record-holder is the following quartically (the number of
correct digits quadruples with each iteration) convergent algorithm, which is related to Ramanujan's work
on elliptic integrals:

α0 = 6 - 4 · 2½, z0 = 2½ - 1
zn+1 = (1 - (1 - zn

4)¼)/(1 + (1 - zn
4)¼)

αn+1 = (1 + zn+1)4 αn - 22n+3 zn+1 [1 + zn+1 + zn+1
2]

1 /αn => π as n => ∞

This algorithm is the basis for Kanada's record-breaking evaluation of π to over 200 billion digits. More
information about this and other related algorithms can be found at
http://www.mathsoft.com/asolve/constant/pi/pi.html. The first 10,000 digits of π can be found at
http://www.lacim.uqam.ca/piDATA/pi.html. Here are the first thirty-five digits: 3.14159 26535 89793
23846 26433 83279 50288…

We’ll present two implementations, one using packed decimal numbers and one using double-precision
floating-point numbers. As a final touch, we’ll show the code from the old S/38 MI-assembler manual.

Computing the Square Root
The algorithm contains several places where a square root must be computed. Firstly in the initial values
where 2½ is needed, but more importantly in the calculation of zn+1 where the fourth root (the square root of
the square root) is called for. The square root must be computed correctly. Any error here propagates into
the remainder of the calculation and is not reduced during the iteration.

The square root of N is calculated using Newton’s iterative method with six iterations:
 s0 = 1 (initial guess)
 sn+1 = (sn + N/sn)/2

We use packed numbers with maximal precision (31 digits):

DCL DD N PKD(31,30);
DCL DD SQRT PKD(31,30); /* SQRT = square root of N */

DCL DD K BIN(2);
DCL DD WRK PKD(31,30);
DCL INSPTR .GET-SQUARE-ROOT;
ENTRY GET-SQUARE-ROOT INT;
 CPYNV SQRT, 1; /* initial guess */
 CPYNV K, 6; /* six iterations */
NEWTON-SQRT-ITERATION:
 DIV WRK, N, SQRT; /* NO ROUNDING */
 ADDN(S) SQRT, WRK;
 DIV(SR) SQRT, 2; /* ROUNDING MATTERS */
 SUBN(SB) K, 1/HI(NEWTON-SQRT-ITERATION);
 B .GET-SQUARE-ROOT;

 75

It is important for maximum accuracy that the division by 2 is performed with rounding.

The MIPIPKD Program
We’ll iterate through the algorithm thrice, although, as we shall see, two iterations already give us the best
approximation that we are going to obtain with the accuracy chosen:

DCL DD P PKD(31, 0); /* power of 2 */
DCL DD Y PKD(31,30);
DCL DD A PKD(31,30);
DCL DD B PKD(31,30);
DCL DD C PKD(31,30);

 CPYNV P, 4;
 CPYNV N, 2;
 CALLI GET-SQUARE-ROOT, *, .GET-SQUARE-ROOT;

 SUBN Y, SQRT, 1;
 MULT B, SQRT, 4;
 SUBN A, 6, B;

 CPYNV M, 3; /* iterate 3 times */
: CALLI ITERATE-PI, *, .ITERATE-PI;
 SUBN(SB) M, 1/HI(=-1);
 RTX *;

DCL DD M BIN(2);
DCL DD PI ZND(31,30);
DCL INSPTR .ITERATE-PI;
ENTRY ITERATE-PI INT;
 MULT B, Y, Y;
 MULT(S) B, B;
 SUBN N, 1, B;
 CALLI GET-SQUARE-ROOT, *, .GET-SQUARE-ROOT;
 CPYNV N, SQRT;
 CALLI GET-SQUARE-ROOT, *, .GET-SQUARE-ROOT;
 CPYNV B, SQRT;

 SUBN Y, 1, B;
 ADDN C, 1, B;
 DIV(SR) Y, C; /* ROUNDING IS IMPORTANT */

 ADDN B, 1, Y;
 MULT C, Y, Y;
 ADDN(S) C, B;
 MULT(S) C, Y;
 MULT(S) C, P;

 MULT(S) P, 4;
 MULT(S) B, B;
 MULT(S) B, B;
 MULT(S) A, B;

 SUBN(S) A, C;
 SUBN(S) A, C;

 DIV(R) PI, 1, A;
 CPYBLAP MSG-TEXT, PI, " ";
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 B .ITERATE-PI;

%INCLUDE SHOWMSG

The results after each of the three iterations are:

 3.14159 26462 13542 28214 93444 32024 ; 7 correct decimals
 3.14159 26535 89793 23846 26433 83260 ; 28 correct decimals
 3.14159 26535 89793 23846 26433 83260 ; no change

If our machine could have handled it (or if we had programmed our own arithmetical operations on very
long numbers), the third iteration would have given us 112 correct decimals, the next iteration 448, … This
is a truly remarkable performance.

 76

The MIPIFLT Program
And now for the floating-point version. We can use the square root function directly supported by the
CMF1-instruction:

DCL DD N FLT(8);
DCL DD SQRT FLT(8);

DCL DD P FLT(8);
DCL DD Y FLT(8);
DCL DD A FLT(8);
DCL DD B FLT(8);
DCL DD C FLT(8);

 CPYNV P, 4;
 CPYNV N, 2;
 CMF1 SQRT, X'0020', N;

 SUBN Y, SQRT, 1;
 MULT B, SQRT, 4;
 SUBN A, 6, B;

 CPYNV M, 3;
: CALLI ITERATE-PI, *, .ITERATE-PI;
 SUBN(SB) M, 1/HI(=-1);

 RTX *;

DCL DD M BIN(2);
DCL DD PI FLT(8);
DCL INSPTR .ITERATE-PI;
ENTRY ITERATE-PI INT;
 MULT B, Y, Y;
 MULT(S) B, B;
 SUBN N, 1, B;
 CMF1 SQRT, X'0020', N;
 CMF1 B, X'0020', SQRT;

 SUBN Y, 1, B;
 ADDN C, 1, B;
 DIV(S) Y, C;

 ADDN B, 1, Y;
 MULT C, Y, Y;
 ADDN(S) C, B;
 MULT(S) C, Y;
 MULT(S) C, P;

 MULT(S) P, 4;
 MULT(S) B, B;
 MULT(S) B, B;
 MULT(S) A, B;

 SUBN(S) A, C;
 SUBN(S) A, C;

 DIV PI, 1, A;
 CPYNV QQ, PI;
 CPYBLAP MSG-TEXT, QQ, " ";
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 B .ITERATE-PI;

DCL DD QQ ZND(31,30);
%INCLUDE SHOWMSG

Apart from simply changing the data type from PKD to FLT, the only real difference is that we cannot use
the rounding options with floating-point instructions. Here is the result:

 3.14159 26462 13546 83555 40979 24614 ; 7 correct
 3.14159 26535 89809 54729 87279 20861 ; only 12 correct
 3.14159 26535 89809 54729 87279 20861 ; no change

Even though the algorithm is quartic (so we should get four times as many correct digits in each iteration)
we only get 12 correct decimals in the second iteration because the accuracy of floating-point numbers is
only about 13-14 decimal digits.

 77

The Original S/38 Program, MIPIS38
The MI-assembler program from page 62 of my old S/38 notes (manual is too big a word) used the
following formula:

π/4 = arctan(1/7) + 2 arctan(1/3)

where arctan(x) is calculated from the series expansion:

 arctan(x) = x - x3/3 + x5/5 - x7/7 + x9/9…

Here is the program with its original orthography intact:

 DCL DD X FLT(8) AUTO INIT(E'+1.0E00') ;
 DCL DD Y FLT(8) AUTO INIT(E'7') ;
 DCL DD XS FLT(8) AUTO ;
 DCL DD A FLT(8) AUTO INIT(E'1') ;
 DCL DD DENOM FLT(8) AUTO INIT(E'1.0') ;
 DCL DD SUM FLT(8) AUTO ;

 DCL DD TEMP FLT(8) ;
 DCL DD FOUR FLT(8) INIT(E'4.0E0') ;
 DCL DD PI FLT(8) ;

 DIV(S) X,3; /* X = 1/3 */
 DIV Y,1,Y; /* Y = 1/7 */
 MULT XS,X,X; /* XS = X**2 */
 NEG(S) XS;
 ADDN A,X,0;

LOOP1:
 MULT(S) X,XS ;
 ADDN(S) DENOM,2 ;
 DIV TEMP,X,DENOM;
 ADDN(S) A , TEMP;
 CMPNV(B) DENOM,25 /LO(LOOP1),EQ(LOOP1) ;

 MULT XS,Y,Y ;
 NEG(S) XS;
 ADDN SUM,Y,0;
 ADDN DENOM,0,1;
LOOP2: /* LOOP TO CALCULATE ATN(1/7) */
 MULT(S) Y,XS ;
 ADDN(S) DENOM,2 ;
 DIV TEMP,Y,DENOM ;
 ADDN(S) SUM,TEMP ;
 CMPNV(B) DENOM,25 /LO(LOOP2),EQ(LOOP2) ;
 ADDN PI,A,A;
 ADDN(S) PI,SUM;
 MULT(S) PI,FOUR;

 CPYNV ZZ, PI;
 CPYBLAP MSG-TEXT, ZZ, " ";
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 RTX *;

 DCL DD ZZ ZND(31,30);
%INCLUDE SHOWMSG

with the result

 3.14159 26535 89789 56328 42846 68043

correct to 13 decimals. If we have learnt nothing else in the intervening 17 years it would be to appreciate
the usefulness (indeed, necessity) of a neat program layout:

“Ugly programs are like ugly suspension bridges: they're much more liable to collapse than pretty ones,
because the way humans perceive beauty is intimately related to our ability to process and understand
complexity.”
- Eric S. Raymond

 78

Exception Handling

Exceptions and Events
At the hardware level, the processor deals with exceptions by issuing interrupts. An exception at this level
is a condition (note how we keep hiding the real world behind yet another concept) that calls for changing
the normal flow of instruction execution. At the MI-level, there is no concept of interrupts. MI
distinguishes between exceptions and events. An exception at the MI is not the same as an exception at the
hardware level (although the latter may cause the former), but is rather a ‘formally architected process
message’ (F. Soltis).

An MI-exception is defined as either a machine-defined error detected during the execution of an
instruction, or as a user-defined condition detected by a user-program. An event, on the other hand, is
defined as an activity that occurs during machine operation that may be of interest to machine users.
Exceptions are synchronous, meaning that they are caused by the execution of an instruction, while events
are asynchronous, meaning that they are caused by actions outside the currently executing instruction. An
example of a synchronous exception is an attempt to divide by zero. An example of an asynchronous event
is the completion of an I/O operation.

Just as there are two types of exceptions (errors and user-defined conditions), there are also two types of
events: object-related events and machine-related events. An MI-process can monitor the occurrence of a
set of events and take appropriate action on some or all of them. Exceptions can also be monitored.
Multiple monitors can be enabled at the same time. Each monitor has a priority controlling exception
searching and handling when more than one monitor is active. Associated with each monitor is an
exception handling routine; exceptions are formatted as messages and sent to the appropriate queue space.

In this chapter we shall only consider exceptions. Events are dealt with in later chapters. Superficially
however, there are many similarities between exceptions and events.

Declaring an Exception Monitor
An exception monitor is installed by declaring an Exception Description. The syntax is as follows:

DCL EXCM exception-name EXCID(exception-number) ──> ┌ INT ┐ ──────────────────────>
 ↑ │ │ BP │ │ │
 └────── , ───────┘ └ EXT ┘ └─ (handler-name) ─┘

 ──────────────────────────────────────> ;
 │ IMD │ │ │
 │ IGN │ └── CV(string) ──┘
 │ SKP │
 │ RSG │
 └ DFR ┘

where

Element Range Description
exception-name MI-name or * Name of exception description
exception-number Unsigned integer from 0 to 65535 Exception identifier
handler-name MI-name Name of exception handler
string 1 to 32 bytes Compare value

Handler type Description
INT Name refers to an internal entry point
BP Name is label for branch point
EXT Name refers to system pointer for external program or entry point

The exception action determines what the system does when the exception is encountered:

 79

Handler action Description
IMD Control passes immediately to the specified exception handler (default)
IGN Ignore the exception and continue processing
SKP Skip the current description, continue search for another description
RSG Re-signal the exception and continue to search for a description
DFR Postpone (defer) handling, saving exception data for later

The Exception Identifier
Two bytes combined into an unsigned integer serve to identify an exception. The first byte is a group
number, while the second byte is a subtype within the group. As further qualification the exception may
have a compare value. Although compare values may contain up to 32 characters, OS/400 only uses three
letter combinations, such as “CPF” or “MCH”. As exceptions are ‘architected’ as messages, they are
assigned a textual message identifier consisting of the three-letter compare value followed by a four-digit
hexadecimal (see below, though) representation of the exception identifier, such as “CPF3CF1” or
“MCH1202”. Exceptions signaled by the machine have an internal compare value consisting of four null
characters; although these are translated into the three-letter (more readable) value “MCH”. By historical
accident (bummer…), machine exception IDs are converted byte for byte into decimal value message IDs.
This silly convention has caused much grief and gnashing of teeth. For example, the dreaded “decimal data
error” message we all hate and know as MCH1202 is really MCH0C02, so declaring an exception
description to monitor for “decimal data error” (MCH1202), “zero divide” (MCH1210) and “size too small
for result” (MCH1211) would look like this:

 DCL EXCM DATA-ERROR EXCID(H‘0C02’, H‘0C0A’, H‘0C0B’) INT(ERROR) IMD CV(“MCH”);

An exception description may monitor for an exception with a generic ID as follows:

 H‘0000’ - Any exception ID results in a match.
 H‘gg00’ - Any exception ID in group gg results in a match.
 H‘ggnn’ - The exception ID must match exactly ggnn in order for a match to occur.

Searching for Exception Descriptions
When an exception occurs, the exception descriptions of the current invocation are searched in the
sequence in which they were declared. If an exception ID in an exception description corresponds to the
occurring exception, the corresponding compare values are checked. If the compare value length in the
exception description is less than the compare value length of the exception occurring, the length of the
compare value in the exception description is used for matching purposes. If it is greater, an automatic
mismatch results. As machine exception compare values have a length of four bytes, the three-character
compare values used by OS/400 just squeak by.

Materialize an Exception Description
You can materialize a named exception description by using the MATEXCPD instruction. The format is:

 MATEXCPD .Receiver, Exception-description, Materialization-option;

The .Receiver operand is a space pointer to the materialization template. The materialization option is a
one-character data item with the value x‘00’ meaning full materialization and higher values meaning partial
materialization to various degrees. Here is the layout of the full template:

DCL SPCPTR .EXCP-DESCR INIT(EXCP-DESCR);
DCL DD EXCP-DESCR CHAR(96) BDRY(16);
 DCL DD EXCP-DESCR-PROV BIN(4) DEF(EXCP-DESCR) POS(1) INIT(96);
 DCL DD EXCP-DESCR-AVAIL BIN(4) DEF(EXCP-DESCR) POS(5);
 DCL DD EXCP-MAT CHAR(88) DEF(EXCP-DESCR) POS(9);
 DCL DD EXCP-MAT-CONTROL CHAR(2) DEF(EXCP-MAT) POS(1);
 DCL DD EXCP-MAT-INSTR-NBR BIN(2) DEF(EXCP-MAT) POS(3);
 DCL DD EXCP-MAT-CMPVAL-SIZE BIN(2) DEF(EXCP-MAT) POS(5);
 DCL DD EXCP-MAT-CMPVAL CHAR(32) DEF(EXCP-MAT) POS(7);
 DCL DD EXCP-MAT-NBR-OF-IDS BIN(2) DEF(EXCP-MAT) POS(39);
 DCL SYSPTR .EXCP-MAT-HND-PGM DEF(EXCP-MAT) POS(41);
 DCL DD EXCP-MAT-ID(16) CHAR(2) DEF(EXCP-MAT) POS(57);

 80

The last data item, EXCP-MAT-ID, is an array of exception IDs. It is here configured for 16 entries, but can
have many more (albeit a rare occurrence). As is customary with templates, it starts with two binary
numbers showing how many bytes are provided in the template and how many were actually materialized.

The control flags, EXCP-MAT-CONTROL, determine the further treatment of the exception as follows
:

Bits Value Meaning
000 Exception Handler Action: Ignore
001 Exception Handler Action: Skip
010 Exception Handler Action: Resignal
100 Exception Handler Action: Defer

0-2

101 Exception Handler Action: Pass control immediately
0 Return exception data 3 1 Do not return exception data

4 0 Reserved, must be zero
0 User data not present 5 1 User data present

6-7 00 Reserved, must be zeroes
00 External entry point handler
01 Internal entry point handler

8-9

10 Branch point handler
10-15 000000 Reserved, must be zeroes

The instruction number, EXCP-MAT-INSTR-NBR, is the MI-instruction number to be given control when
this exception occurs. If the exception handler is external, EXCP-MAT-INSTR-NBR will be set to zero (as it
is not to be used). The size and contents of the compare value, EXCP-MAT-CMPVAL-SIZE and EXCP-MAT-
CMPVAL, have their obvious meanings.

Modifying an Exception Description
You can modify an exception description to alter the action to be taken. The simple form of the “Modify
Exception Description” (MODEXCPD) instruction takes this format:

 MODEXCPD Exception-description, New-Control-Flags, X‘01’;

allowing you to specify a new set of control flags. You can also use a space pointer to an altered
materialization template as operand 2 to change the exception description. You often modify an exception
description after determining that the error causing the exception is indeed fatal and that no further repair of
the situation makes sense or is even possible. In this case you should disable the exception monitor and
retry the instruction (see below how to) causing the exception to occur again, but this time, due to your
exception monitor having been disabled, it will cause the exception to be sent to the caller of your program.
Here is how to disable the exception monitor:

 MODEXCPD Exception-description, X‘2000’, X‘01’;

Monitoring Exceptions: The MIDECEXC Program
To illustrate some of the features of exception handling, we’ll write a program to repair various decimal
data errors. Whether such errors should be ignored, repaired, reported, or cause the program to fail is
completely application dependent. We are, of course, not advocating that errors be repaired in all cases.
What our particular example program will do is:

 ● In case of invalid decimal data (MCH1202), set the data to zeroes
 ● In case of divide by zero (MCH1210), set the data to the highest value possible (“infinity”)
 ● In case of result too large (MCH1211), set the data to the highest value possible (“infinity”)

For illustration, the program starts by materializing an exception description. Debug the program with a
break point set at “1” to see the result (EXCP-DESCR). The program then continues to force the various
errors, accumulating the result of each operation in a message that is issued at the end of the program. You

 81

can set a break point at “2” and look at (EXCP-INFO) to see the exception data returned for each exception
as it occurs.

DCL SPCPTR .EXCP-DESCR INIT(EXCP-DESCR);
DCL DD EXCP-DESCR CHAR(96) BDRY(16);
 DCL DD EXCP-DESCR-PROV BIN(4) DEF(EXCP-DESCR) POS(1) INIT(96);
 DCL DD EXCP-DESCR-AVAIL BIN(4) DEF(EXCP-DESCR) POS(5);
 DCL DD EXCP-MAT CHAR(88) DEF(EXCP-DESCR) POS(9);
 DCL DD EXCP-MAT-CONTROL CHAR(2) DEF(EXCP-MAT) POS(1);
 DCL DD EXCP-MAT-INSTR-NBR BIN(2) DEF(EXCP-MAT) POS(3);
 DCL DD EXCP-MAT-CMPVAL-SIZE BIN(2) DEF(EXCP-MAT) POS(5);
 DCL DD EXCP-MAT-CMPVAL CHAR(32) DEF(EXCP-MAT) POS(7);
 DCL DD EXCP-MAT-NBR-OF-IDS BIN(2) DEF(EXCP-MAT) POS(39);
 DCL SYSPTR .EXCP-MAT-HND-PGM DEF(EXCP-MAT) POS(41);
 DCL DD EXCP-MAT-ID(16) CHAR(2) DEF(EXCP-MAT) POS(57);

DCL EXCM DEC-ERROR EXCID(H'0C02', H'0C0A', H'0C0B')
 INT(ERROR) IMD CV("MCH");
DCL DD DATA CHAR(3);
 DCL DD NUMBER PKD(5,0) DEF(DATA) POS(1);

 MATEXCPD .EXCP-DESCR, DEC-ERROR, X'00';
 BRK "1"; /* TO SHOW DESCRIPTION */

 CPYBREP DATA, " "; /* MAKE INVALID PACKED NUMBER */
 CALLI SHOW-DATA, *, .SHOW-DATA;

 ADDN(S) NUMBER, 1; /* FORCE 'DECIMAL DATA ERROR' */
 CALLI SHOW-DATA, *, .SHOW-DATA;

 DIV(S) NUMBER, 0; /* FORCE 'ZERO DIVIDE ERROR' */
 CALLI SHOW-DATA, *, .SHOW-DATA;

 ADDN(S) NUMBER, 1; /* FORCE 'NUMERIC SIZE ERROR' */
 CALLI SHOW-DATA, *, .SHOW-DATA;

 SUBN(S) NUMBER, 1; /* NO ERRORS, RESULT = 99998 */
 CALLI SHOW-DATA, *, .SHOW-DATA;
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

 RTX *;

Exception General and Specific Data
When an exception occurs, general exception information about the location and nature of the exception
can be retrieved. In addition, many exceptions also have specific data associated with them giving further
details about the error or condition that has occurred. The MI Functional Reference Manual chapter 27
provides a lot of details about this specific data. The exceptions we are monitoring for in our test program
happen not to return any specific data, but we’ll structure the code to be prepared for specific data in order
to make it easier to adapt the code for other exceptions. The “Retrieve Exception Data” (RETEXCPD)
instruction with this format

 RETEXCPD .Exception-info, Exception-handler-type;

retrieves the data related to the occurrence of the exception into the materialization area given by the space
pointer .Exception-info. Here is the format of the information area:

DCL SPCPTR .EXCP-INFO INIT(EXCP-INFO);
DCL DD EXCP-INFO CHAR(304) BDRY(16);
 DCL DD EXCP-INFO-PROV BIN(4) DEF(EXCP-INFO) POS(1) INIT(304);
 DCL DD EXCP-INFO-AVAIL BIN(4) DEF(EXCP-INFO) POS(5);
 DCL DD EXCP-INFO-ID CHAR(2) DEF(EXCP-INFO) POS(9);
 DCL DD EXCP-INFO-CMP-SIZE BIN(2) DEF(EXCP-INFO) POS(11);
 DCL DD EXCP-INFO-CMPVAL CHAR(32) DEF(EXCP-INFO) POS(13);
 DCL DD EXCP-INFO-REFKEY BIN(4) DEF(EXCP-INFO) POS(45);
 DCL DD EXCP-DATA CHAR(256) DEF(EXCP-INFO) POS(49);

The exception data, EXCP-DATA, contains both variable-size exception specific data and a 46-byte fixed-
size data part related to the invocation and location of where the exception occurred. Unfortunately, the
variable-size data comes first. To access the fixed-part, it is thus convenient to declare a based structure:

DCL DD INVOCATION-PART BIN(2);
DCL SPCPTR .EXCP-INVOC;
DCL DD EXCP-INVOC CHAR(46) BAS(.EXCP-INVOC);

 82

 DCL PTR .EXCP-SOURCE-INVOC DEF(EXCP-INVOC) POS(1);
 DCL PTR .EXCP-TARGET-INVOC DEF(EXCP-INVOC) POS(17);
 DCL DD EXCP-SOURCE-INSTR BIN(2) DEF(EXCP-INVOC) POS(33);
 DCL DD EXCP-TARGET-INSTR BIN(2) DEF(EXCP-INVOC) POS(35);
 DCL DD EXCP-MACHINE-DATA CHAR(10) DEF(EXCP-INVOC) POS(37);

We have made room for 256 bytes of exception data. Compute the offset to the fixed part from the number
of bytes available and add it to the space pointer to the exception information to get the basing space
pointer to the invocation information:

 SUBN INVOCATION-PART, EXCP-INFO-AVAIL, 46;
 ADDSPP .EXCP-INVOC, .EXCP-INFO, INVOCATION-PART;

The source invocation, .EXCP-SOURCE-INVOC, identifies the invocation that caused the exception. The
target invocation, .EXCP-TARGET-INVOC, identifies the invocation that is the target of the exception, i.e.
the last invocation that was given the chance to handle the exception. For machine exceptions, this is the
invocation incurring the exception. For user-signaled exceptions you may specify a different target. You
also retrieve the number of the MI-instruction that caused the exception in the source invocation and the
number of the MI-instruction that is currently being executed in the target invocation.
.
The second operand, Exception-handler-type, specifies the exception handler type as follows:

 X‘00’ retrieve for a branch point exception handler
 X‘01’ retrieve for an internal entry point exception handler
 X‘02’ retrieve for an external entry point exception handler

You normally begin exception handler processing with retrieving the exception data:

ENTRY ERROR INT;
 RETEXCPD .EXCP-INFO, X'01'; /* RETRIEVE FOR INTERNAL ENTRY */
 BRK "2"; /* TO SHOW INFORMATION */

Now we implement the rules for handling the exceptions depending on the exception ID:

 CMPBLA(B) EXCP-INFO-ID, X'0C02'/NEQ(=+2);
 CPYNV(B) NUMBER, 00000/ZER(=+2);: /* DECIMAL ERROR */
 CPYNV NUMBER, 99999;: /* OTHER ERRORS */

 SUBN INVOCATION-PART, EXCP-INFO-AVAIL, 46;
 ADDSPP .EXCP-INVOC, .EXCP-INFO, INVOCATION-PART;

Finally we want to return to the invocation with our “repaired” NUMBER:

 CPYBWP .EXCP-RTN-INVOC, .EXCP-SOURCE-INVOC;
 RTNEXCP .EXCP-RETURN;

Return from Exception
When an external exception handler invocation or an internal exception handler subinvocation gets control
and then has done what it needs to do to process the exception, you need to terminate the handler with the
“Return from Exception” (RTNEXCP) instruction:

 RTNEXCP .Exception-return-template;

where the operand specifies a space pointer to a template that in turn will specify the instruction to return
to, within a specified invocation. The RTNEXPD instruction cannot be executed (and is not needed) in a
branch point internal exception handler (you just branch to where you want to go). The template specifies
the return address as the invocation pointer .EXCP-RTN-INVOC:

DCL SPCPTR .EXCP-RETURN INIT(EXCP-RETURN);
DCL DD EXCP-RETURN CHAR(19) BDRY(16);
 DCL PTR .EXCP-RTN-INVOC DEF(EXCP-RETURN) POS(1);
 DCL DD EXCP-MBZERO CHAR(1) DEF(EXCP-RETURN) POS(17) INIT(X'00');
 DCL DD EXCP-ACTION CHAR(2) DEF(EXCP-RETURN) POS(18) INIT(X'0100');

The reserved variable EXCP-MBZERO must be binary zero. The action code, EXCP-ACTION, determines
what happens next:

Code Action

 83

X‘0200’ Resume execution with the instruction that follows the RTNEXCP instruction
(terminating the internal exception handler subinvocation).

X‘0100’ Resume execution with the instruction following the instruction causing the exception
X‘0000’ Re-execute the instruction that caused the exception

In our example program we want to resume execution of the instruction that follows the instruction causing
the exception, so we set the action code to x‘0100’.

The following little routine just inserts the current value of our NUMBER into a message to show at the end
of the program. A small thing to note is the AUTO attribute of the position variable, N. The default storage
attribute is STATIC, meaning that the variable is only allocated storage once and that it keeps its value from
invocation to invocation. With the AUTO attribute, the variable is re-allocated and re-initialized every time
the program is called. In our example, that ensures that we start from the beginning of the message area
every time:

DCL DD N AUTO BIN(2) INIT(1); /* reset every time PGM is run */
DCL INSPTR .SHOW-DATA;
ENTRY SHOW-DATA INT;
 CMPNV(B) N, 1/HI(=+2);
 CPYBREP MSG-TEXT, " ";: /* clear to blanks if N = 1 */
 CVTHC MSG-TEXT(N:6), DATA; /* contains NUMBER */
 ADDN(S) N, 10;
 B .SHOW-DATA;

%INCLUDE SHOWMSG

Running the program we get:

Type reply (if required), press Enter.
 From . . . : LSVALGAARD 12/06/00 13:28:24
 404040 00000F 99999F 99999F 99998F

NUMBER starts out as the invalid packed decimal value x‘404040’ (blanks), then is repaired to zeroes, then
set to the maximum value after the zero divide and after the attempt to add 1 more to it, and finally ends up
being the valid value 9998.

Signaling Exceptions: The MISIGEXC Program
In addition to monitoring for exceptions, you can also signal exceptions to occur. You can either re-signal
the exception from inside an exception handler (in which case the invocation is known) or you can signal a
new exception (we could use the word condition for such new exceptions). When you want to signal a
condition, the first problem you have is to get an invocation pointer as the target for the exception. You use
the “Materialize Invocation Attributes” (MATINVAT) instruction to get the invocation pointer.

Materialize Invocation Attributes
The MATINVAT instruction causes either one specific attribute or a list of attributes of the designated
invocation to be materialized. We’ll only consider the first option here (as it gets rather complicated
otherwise). The syntax is:

 MATINVAT .Receiver, Invocation, .Selection-template;

Operand 1, .Receiver, specifies a space pointer to the area to receive the attribute. Operand 2, Invocation,
identifies the source invocation whose attribute is to be retrieved. If this operand is the null operand, “*”,
the invocation issuing the instruction is identified. Operand 3, .Selection-template, is a space pointer to a
template that selects the attribute to be materialized. Most of the fields in the template have to do with how
to store a list of attributes and can be set to zeroes if only one attribute is to be materialized:

DCL SPCPTR .MAT-RECEIVER INIT(MAT-RECEIVER);
DCL DD MAT-RECEIVER CHAR(16) BDRY(16);
 DCL PTR .MAT-INVOC DEF(MAT-RECEIVER) POS(1);

DCL SPCPTR .MAT-SELECT INIT(MAT-SELECT);
DCL DD MAT-SELECT CHAR(32);
 DCL DD MAT-NBR-ATTRS BIN(4) DEF(MAT-SELECT) POS(1) INIT(1);
 DCL DD MAT-ATTR-FLAGS BIN(4) DEF(MAT-SELECT) POS(5) INIT(0);
 DCL DD MAT-ATTR-OFFSET BIN(4) DEF(MAT-SELECT) POS(9) INIT(0);

 84

 DCL DD MAT-ATTR-STORED BIN(4) DEF(MAT-SELECT) POS(13) INIT(0);

 DCL DD MAT-ATTR-ID BIN(4) DEF(MAT-SELECT) POS(17) INIT(1);
 DCL DD MAT-RECV-FLAGS BIN(4) DEF(MAT-SELECT) POS(21) INIT(0);
 DCL DD MAT-RECV-OFFSET BIN(4) DEF(MAT-SELECT) POS(25) INIT(0);
 DCL DD MAT-RECV-LENGTH BIN(4) DEF(MAT-SELECT) POS(29) INIT(16);

The important fields are the number of attributes to materialize (NBR-ATTRs = 1), the attribute identifier
(ATTR-ID = 1, for the invocation pointer), and the length of the receiver area (RECV-LENGTH = 16 bytes,
because we’re materializing a pointer, and that’s how large and plump pointers are).

The program now starts by materializing the invocation pointer to its own invocation:

GET-OWN-INVOCATION:
 MATINVAT .MAT-RECEIVER, *, .MAT-SELECT;

Signaling an Exception
The “Signal Exception” (SIGEXCP) instruction signals (“sends”) a new exception or re-signals an existing
exception to the target invocation. The syntax is:

 SIGEXCP .Signal-info, .Exception-info;

The first operand is a space pointer to a template holding the target invocation pointer, .EXCP-TO-INVOC.
Bits 0 of the EXCP-OPTION determines if we have a new exception (bit 0 = 0) or if we are re-signaling an
existing exception (bit 0 = 1). Setting bit 2 to a 1 gives you control over which exception description to
search first. We are happy with the default, which is simply the first:

DCL SPCPTR .EXCP-SIGNAL INIT(EXCP-SIGNAL);
DCL DD EXCP-SIGNAL CHAR(20) BDRY(16);
 DCL PTR .EXCP-TO-INVOC DEF(EXCP-SIGNAL) POS(1);
 DCL DD EXCP-OPTION CHAR(1) DEF(EXCP-SIGNAL) POS(17) INIT(X'00');
 DCL DD * CHAR(1) DEF(EXCP-SIGNAL) POS(18) INIT(X'00');
 DCL DD EXCP-1ST-DESCR BIN(2) DEF(EXCP-SIGNAL) POS(19) INIT(1);

The second operand (which is ignored for a re-signal operation, as the data is already known) has the same
basic format as the template used by the RTNEXCPD instruction:

DCL SPCPTR .EXCP-INFO INIT(EXCP-INFO);
DCL DD EXCP-INFO CHAR(64) BDRY(16);
 DCL DD EXCP-BYTES-PROV BIN(4) DEF(EXCP-INFO) POS(1) INIT(64);
 DCL DD EXCP-BYTES-AVAIL BIN(4) DEF(EXCP-INFO) POS(5);
 DCL DD EXCP-ID BIN(2) DEF(EXCP-INFO) POS(9);
 DCL DD EXCP-CMP-SIZE BIN(2) DEF(EXCP-INFO) POS(11);
 DCL DD EXCP-CMP-VAL CHAR(32) DEF(EXCP-INFO) POS(13);
 DCL DD * BIN(4) DEF(EXCP-INFO) POS(45);
 DCL DD EXCP-DATA CHAR(16) DEF(EXCP-INFO) POS(49);

Since we are not interested in the invocation data, we set the length provided for the information area,
EXCP-BYTES-PROV, to only include the 16 bytes of exception specific data that our sample code will use.

The plan is now to signal two exceptions. The first one to be caught by our own exception monitor (or
condition handler if you prefer), and the second one without a monitor so that the exception will be
intercepted by the default exception handler that every process has. First the monitor for our very own
condition “LSV7777” (I just made this up):

DCL EXCM MY-CONDITION EXCID(H'7777') BP(GOT-CONDITION) IMD CV("LSV");

We now signal the condition:

SIGNAL-CONDITION:
 CPYBWP .EXCP-TO-INVOC, .MAT-INVOC;
 CPYBLA EXCP-ID, X'7777';
 CPYNV EXCP-CMP-SIZE, 3;
 CPYBLA EXCP-CMP-VAL, "LSV";
 CPYBLAP EXCP-DATA, “Exception Data”, " ";
 SIGEXCP .EXCP-SIGNAL, .EXCP-DATA;

The condition handler is shown a little further on. After handling the condition, control returns to here,
where we issue the data value error (MCH1223) exception:

SIGNAL-ERROR:

 85

 CPYBLA EXCP-ID, X'0C17'; /* 1223 = Data value error */
 CPYNV EXCP-CMP-SIZE, 4; /* machine-generated compare length */
 CPYBLA EXCP-CMP-VAL, X'00000000'; /* MCH */
 SIGEXCP .EXCP-SIGNAL, .EXCP-DATA;

Finally we return from the program:

 RTX *;

The condition handler is a branch point handler, so we must retrieve exception data as appropriate for a
branch point:

GOT-CONDITION:
 RETEXCPD .EXCP-INFO, X'00'; /* RETRIEVE FOR BRANCH POINT */
 CPYBLAP MSG-TEXT, EXCP-DATA(1:16), " ";
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;
 B SIGNAL-ERROR;

%INCLUDE SHOWMSG

We simply show the data returned as a message:

Type reply (if required), press Enter.
 From . . . : LSVALGAARD 12/06/00 21:52:15
 Exception Data

When the program finishes, the job log contains:

Data value error.
Processing command failure, refer to job log for details

Preventing Messages in the Joblog
When you run the MIDECEXC program the program catches all three exceptions and does its repair work as
desired. There is, however, an undesirable (in most cases) side effect: For every exception caught, an entry
is made in the job log for your job, e.g.:

3 > call midecexc
 Decimal data error.
 Attempt made to divide by zero for fixed point operation.
 Receiver value too small to hold result.

There could be thousands of such exceptions and although some indications of the occurrence of these
exceptions would be desirable, it is better that the program itself issues a short summary at the end, rather
than the system clogging up the job log with thousands of messages. So, the question is: Can we prevent an
exception from generating a job log entry?

Since the real compare value generated by the machine is x‘00000000’ and not “MCH”, we must monitor
with that compare value, i.e.:

DCL EXCM DEC-ERROR EXCID(H'0C02', H'0C0A', H'0C0B')
 INT(ERROR) IMD CV(X'00000000');

instead of (as we did):

DCL EXCM DEC-ERROR EXCID(H'0C02', H'0C0A', H'0C0B')
 INT(ERROR) IMD CV("MCH");

If we do that, it turns out that no job log entry is generated. If we use CV(“MCH”), the exception is really
caught first by a lower layer monitoring for x‘00000000’. That lower layer issues its joblog message and
resignals a new exception (with compare value “MCH”) for us to catch.

 86

Editing of Numeric Variables

The Importance of Editing
It has been said that 90% of all computer power is spent on sorting (either directly or indirectly through
maintenance of keyed data), and that 90% of the remaining power is spent on editing of numeric data for
presentation. One rationale for the use of “zoned” and “packed” data formats was mainly to cut down on
the computational cost of editing (dividing by 10 several times for each number is expensive - some early
computers did not even have a DIVIDE instruction). Another rationale was simply that many early
computers mainly worked in decimal anyway (even addresses were decimal).

Edit Codes and Edit Words
Traditionally, editing numeric values on the AS/400 was specified through the use of Edit Codes and Edit
Words.

“An edit code is a standard description of how a number should be formatted. There are many
standard edit codes defined by the system. Users can define several edit codes the way they want
with the use of the Create Edit Description (CRTEDTD) command. An edit word is a user-defined
description of how a number should be formatted. An edit word is usually used when one of the
standard edit codes or user-defined edit codes is not sufficient for a particular situation”.

The above quote from one of the RPG manuals already hints that editing using edit codes and edit words is
less than satisfactory. In fact, it often seems that these techniques are part of the problem rather than part of
the solution. Luckily, the machine has a very powerful EDIT MI-instruction that makes the use of the non-
intuitive edit codes and edit words superfluous.

COBOL Pictures
In contrast to RPG, the COBOL language has always had a very simple, visual, and intuitive way of
working with editing specifications: the COBOL Picture. With only a slight simplification one can state
that the EDIT instruction’s purpose is to support the COBOL edited picture specification. A numeric
variable in COBOL can be either in internal numeric or in edited numeric format. Let’s look at a few
examples. The IN-DATA picture is internal numeric, while all the OUT-DATA pictures are edited numeric:

 02 IN-DATA PIC S9(7)V99.
 02 OUT-DATA1 PIC -9,999,999.99.
 02 OUT-DATA2 PIC --,---,--9.99.
 02 OUT-DATA3 PIC 9,999,999.99-.
 02 OUT-DATA4 PIC Z,ZZZ,ZZ9.99-.

 MOVE -1234567.89 TO IN-DATA
 MOVE IN-DATA TO OUT-DATA1, OUT-DATA2, OUT-DATA3, OUT-DATA4

 DISPLAY OUT-DATA1, OUT-DATA2, OUT-DATA3, OUT-DATA4 results in:

 -1,234,567.89 -1,234,567.89 1,234,567.89- 1,234,567.89-

 MOVE -1.23 TO IN-DATA
 MOVE IN-DATA TO OUT-DATA1, OUT-DATA2, OUT-DATA3, OUT-DATA4

 DISPLAY OUT-DATA1, OUT-DATA2, OUT-DATA3, OUT-DATA4 results in:

 -0,000,001.23 -1.23 0,000,001.23- 1.23-

Very little explanation is really needed. The pictures speak for themselves. The only subtlety is that two of
the edited pictures (with all the 9s) specify a fixed format, while the other two specify a floating format. In
the floating format (nothing to do with floating-point format), the leading blanks and the sign “float” to the
right until they meet the first significant digit. Note also the thousand separator commas that are inserted at
either fixed places (for fixed formats) or as needed among significant digits (for floating formats). In the
following section we’ll see how to instruct the EDIT instruction to do its magic.

 87

The EDIT MI-Instruction
The general format of the EDIT instruction is:

 EDIT Character-Receiver, Numeric-Source, Edit-Mask

The Edit-Mask controls the editing of the Numeric-Source into the Character-Receiver. The first step of the
editing process is to automatically translate the source number to a packed decimal format large enough to
hold the numeric value.

The Edit Mask
The COBOL move-statement: MOVE IN-DATA TO OUT-DATA1 generates the following code:

 DCL CON PICTURE1 CHAR(23) INIT(X‘AF40AE60AEAAB36BAEAAAAAAB36BAEAAAAAAB34BAEAAAA’;
 EDIT OUT-DATA1, IN-DATA, PICTURE1;

Although the edit mask (PICTURE1) looks somewhat forbidding it is really just a simple encoding of the
COBOL picture:

 Edit Mask Part Explanation for -9,999,999.99
 AF 40 AE 60 AE Positive: space; Negative: minus sign
 AA 9 digit position (significant or not)
 B3 6B AE , separator comma
 AA AA AA 999 digit positions
 B3 6B AE , separator comma
 AA AA AA 999 digit positions
 B3 4B AE . decimal point
 AA AA 99 decimals

The edit mask contains both control characters and data characters. The character x‘AE’ is used as an “End-
of-String” character (EOS), but only for terminating the various streams of control characters that are
interspersed between the data characters. Any character less than x‘40’ can also be used as the EOS, but it
is simpler to stick to the standard x‘AE’. The x‘AF’ control character specifies which character to use for the
sign (first for positive or zero values and after the EOS for negative values) for fixed format pictures. The
EDIT instruction works from left to right through the source and the edit mask. The x‘AA’ control character
specifies that the corresponding source digit is to be copied to the receiver, even if we are still among the
leading zeroes (i.e. have no numeric “significance” yet). The x‘B3’ control character specifies that the
character that follows is to be inserted at the current position in the receiver.

Here is the next example:

 DCL CON PICTURE2 CHAR(25) INIT(X‘B14040AE60AEB2B2B06BAEB2B2B2B06BAEB2B2AAB34BAEAAAA’);
 EDIT OUT-DATA2, IN-DATA, PICTURE2;

 Edit Mask Part Explanation for --,---,--9.99
 B1 40 40 AE 60 AE Fill: space; Positive: space; Negative: minus sign
 B2 B2 -- either a source digit or the fill character to be used (two of them)
 B0 6B AE , separator comma
 B2 B2 B2 --- source digits (if significant) otherwise fill character
 B0 6B AE ,
 B2 B2 AA --9 last of the three always source digit
 B3 4B AE . decimal point
 AA AA 99 source decimals

The x‘B1’ control character specifies first which character to use as a fill character before the sign for
floating formats; then follow the characters to use for the sign (first for positive or zero values and after the
EOS for negative values). Note that the sign characters could actually be a string, e.g. CR for credit or DB
for debit. The x‘B0’ control character specifies to insert either the character given (if significance has been

 88

reached) or the fill character. The x‘B2’ control character specifies to use either a source digit (if
significance has been reached) or the fill character.

Next example:

 DCL CON PICTURE3 CHAR(23) INIT(X‘AAB36BAEAAAAAAB36BAEAAAAAAB34BAEAAAAAF40AE60AE’);
 EDIT OUT-DATA3, IN-DATA, PICTURE3;

 Edit Mask Part Explanation for 9,999,999.99-
 AA 9 source digit
 B3 6B AE , separator comma
 AA AA AA 999 source digits
 B3 6B AE , separator comma
 AA AA AA 999 source digits
 B3 4B AE . decimal point
 AA AA 99 source decimals
 AF 40 AE 60 AE Positive: space; Negative: minus sign

DCL DD PICTURE4 CHAR(27) INIT(X‘B140AEAEB2B06BAEB2B2B2B06BAEB2B2AAB34BAEAAAAAF40AE60AE’);
EDIT OUT-DATA4, IN-DATA, PICTURE4;

 Edit Mask Part Explanation for Z,ZZZ,ZZ9.99-
 B1 40 AE AE Fill: space; note that there are no sign characters, only EOSs
 B2 Z either a source digit or the fill character to be used
 B0 6B AE , separator comma
 B2 B2 B2 ZZZ source digits (if significant) otherwise fill character
 B0 6B AE ,
 B2 B2 AA ZZ9 last of the three always source digit
 B3 4B AE . decimal point
 AA AA 99 source decimals
 AF 40 AE 60 AE Positive: space; Negative: minus sign

The starting x‘B1’ control sequence does not contain any sign character strings (as the picture specifies a
trailing sign), but we still need two EOSs. Let’s finish with two more examples:

 02 OUT-DATA5 PIC 9B999B999.99+. Result = 1 234 567.89+ 0 000 001.23+

 DCL CON PICTURE5 CHAR(23) INIT(X‘AAB340AEAAAAAAB340AEAAAAAAB34BAEAAAAAF4EAE60AE’);
 EDIT OUT-DATA5, IN-DATA, PICTURE5;

 Edit Mask Part Explanation for 9B999B999.99-
 AA 9 source digit
 B3 40 AE ь separator blank
 AA AA AA 999 source digits
 B3 40 AE ь separator blank
 AA AA AA 999 source digits
 B3 4B AE . decimal point
 AA AA 99 source decimals
 AF 4E AE 60 AE Positive: plus sign; Negative: minus sign

 02 OUT-DATA6 PIC ********9.99-. Result = **1234567.89- ********1.23-

 DCL CON PICTURE6 CHAR(23) INIT(X‘B15CAEAEB2B2B2B2B2B2B2B2AAB34BAEAAAAAF40AE60AE’);
 EDIT OUT-DATA6, IN-DATA, PICTURE6;

 Edit Mask Part Explanation for ********9.99-
 B1 5C AE AE Fill: asterisk; note that there are no sign characters, only EOSs
 B2 B2 B2 B2 … AA ***…9 fill with *, end with one source digit
 AA AA AA 999 source digits

 89

 B3 4B AE . decimal point
 AA AA 99 source decimals
 AF 4E AE 60 AE Positive: plus sign; Negative: minus sign

Parameter Length Conformance
An edit digit count (x‘0C04’) exception is signaled if:

● The end of the source is reached and there are more control characters that correspond to digits in
the edit mask.

● The end of the edit mask is reached and there are more digit positions in the source.

A length conformance (x‘0C08’) exception is signaled if:

● The end of the edit mask is reached and there are more control character positions in the receiver.

● The end of the receiver is reached and more positions remain in the edit mask.

● The number of B2s following a B1 cannot accommodate the longer of the two floating strings.

The moral here is simple: be careful with the lengths. The receiver cannot be too large either. Everything
must just fit.

Left-Justifying the Number
Numbers are usually right-justified in a field and the EDIT instruction is designed to produce right-justified
results, i.e. values that “butt” up against the right-hand side of the field. Occasionally, one has the need to
produce results that are left-justified. The following little MI-program, MIEDTNBR, shows how first to use
the EDIT instruction to edit a numeric value and then how to use the VERIFY instruction to help left-justify
the result:

DCL DD RECEIVER CHAR(13);
DCL DD NUMBER PKD(9,2) INIT(P'-1.23');
DCL DD PICTURE CHAR(25) /* COBOL PICTURE --,---,--9.99 */
 INIT(X‘B14040AE60AEB2B2B06BAEB2B2B2B06BAEB2B2AAB34BAEAAAA’);
 /* - - , - - - , - - 9 . 9 9 */

DCL SPCPTR .PARM1 PARM;
DCL DD PARM-NBR PKD(15,5) BAS(.PARM1);

DCL OL PARMS(.PARM1) PARM EXT MIN(1);

ENTRY * (PARMS) EXT;
 CPYNV NUMBER, PARM-NBR;
 EDIT RECEIVER, NUMBER, PICTURE;

 CPYBLAP MSG-TEXT, "[", " ";
 CPYBLAP MSG-TEXT(2:14), RECEIVER, "]";

DCL DD WHERE BIN(2);
DCL DD LENGTH BIN(2);

 VERIFY(B) WHERE, RECEIVER, " "/ZER(=+3);
 SUBN LENGTH, 14, WHERE; /* 14 = 13 + 1 */
 CPYBOLAP RECEIVER, RECEIVER(WHERE:LENGTH), " ";:

 CPYBLA MSG-TEXT(18:1), "[";
 CPYBLAP MSG-TEXT(19:14), RECEIVER, "]";
 CALLI SHOW-MESSAGE, *, .SHOW-MESSAGE;

 RTX *;

%INCLUDE SHOWMSG

Here is a sample run:

==> CALL MIEDTNBR PARM(-1.23)

From . . . LSVALGAARD 02/12/01 21:54:43
[-1.23] [-1.23]

 90

 91

MI-Instructions Quick Reference

MI-Instruction Quick Reference
The following Quick Reference Guide covers all MI-instructions for which information for the AS/400 is
available. It is not meant as a substitute for the MI Functional Reference, but does provide a useful (and
mercifully short) overview of the various instructions, their possible operands and branch conditions. I use
it all the time in lieu of the MIFR. I hope the format is reasonably self-explanatory.

Computational and Branching Instructions
OPCODE Name Operands and Conditions
ADDLC
 IBS

 4 ext

Add Logical Character Sum CHARVF
Addend 1 CHARF
Addend 2 CHARF
All same length <= 256
ZNTC NTZNTC ZC NTZC

ADDN
 IBSR

 4 ext

Add Numeric Sum NUMV
Addend 1 NUM
Addend 2 NUM
POS NEG ZER NAN

AND
 IBS

 2 ext

And Bytes Result CHARV
Source 1 CHAR
Source 2 CHAR
Longer of 2 Sources, then place in
result, pad X'00' or truncate
ZER NZER

B Branch Target BP, INSPTR, IDL element
CIPHER Cipher Result SPCPTR

Control CHAR(32)V
Source SPCPTR

CIPHERKY Cipher Key Result CHAR(8)V
Control CHAR(64)V
Source CHAR(8)

CLRBTS Clear Bit in String Result CHARV, NUMV
Bit number BIN

CMPBLA
 IB req

 3 ext

Compare Bytes Left-
Adjusted

Compare 1 CHAR, NUM
Compare 2 CHAR, NUM
Shorter of 2 compare operands
Stops on 1st unequal byte
HI LO EQ

CMPBLAP
 IB req

 3 ext

Compare Bytes Left-
Adjusted with Pad

Compare 1 CHAR, NUM
Compare 2 CHAR, NUM
Pad CHAR(1), NUM(1)
Shorter of 2 compare operands
Stops on 1st unequal byte
HI LO EQ

CMPBRA
 IB req

 3 ext

Compare Bytes Right-
Adjusted

Compare 1 CHAR, NUM
Compare 2 CHAR, NUM
Shorter of 2 compare operands
Stops on 1st unequal byte
HI LO EQ

CMPBRAP
 IB req

 3 ext

Compare Bytes Right-
Adjusted with Pad

Compare 1 CHAR, NUM
Compare 2 CHAR, NUM
Pad CHAR(1), NUM(1)
Shorter of 2 compare operands
Stops on 1st unequal byte
HI LO EQ

CMPNV
 IB req
 4 ext

Compare Numeric Values Compare 1 NUM
Compare 2 NUM
HI LO EQ UNOR

 92

OPCODE Name Operands and Conditions
CMPSW
 IB req

 1 ext

Compare and Swap Compare 1 CHAR(1,2,4,8)V
Compare 2 CHAR(1,2,4,8)V
Swap Operand CHAR(1,2,4,8)
EQ

CPRDATA Compress Data Template SPCPTR to CHAR(64)
CAI Compute Array Index Index BIN(2)V

Subscript A BIN(2)
Subscript B BIN(2)
Dimension BIN(2)C, IMM(2)

CMF1
 IB

 4 ext

Compute Mathematical
Function using 1 Input

Result FLTV
Control CHAR(2)
Source FLT
POS NEG ZER NAN

CMF2
 IB

 4 ext

Compute Mathematical
Function using 2 Inputs

Result FLTV
Control CHAR(2)
Source 1 FLT
Source 2 FLT
POS NEG ZER NAN

CAT Concatenate Result CHARV
Source 1 CHAR
Source 2 CHAR
Length of Result, pad X'40' or
truncate

CVTBC
 IB

 3 ext

Convert BSC to Characters Result CHARV
Control CHAR(3)VF
Source CHAR
CR SE TR

CVTCB
 IB

 2 ext

Convert Characters to BSC Result CHARV
Control CHAR(3)VF
Source CHAR
SE RO

CVTCH Convert Characters to HEX Result CHARV
Source CHAR [0-9A-F]
Length of Result, pad X'00'

CVTCM
 IB

 2 ext

Convert Characters to
Multi-leaving Remote Job
Entry Format

Result CHARV
Control CHAR(13)VF
Source CHAR
SE RO

CVTCN Convert Characters to
Numeric

Result NUMV, DTAPTR-NUM
Source CHAR, DTAPTR-CHAR
Attributes CHAR(7), DTAPTR-CHAR(?)

CVTCS
 IB

 2 ext

Convert Characters to SNA
Format

Result CHARV
Control CHAR(15)V
Source CHAR
SE RO

CVTDFFP Convert Decimal Form to
Floating-Point

Result FLOATV
Dec.exponent PKD, ZND
Dec.mantissa PKD, ZND

CVTEFN Convert External Form to
Numeric Value

Result NUMV, DTAPTR-NUM
Source CHAR, DTAPTR-CHAR
Mask CHAR(3),DTAPTR-CHAR(3),*

CVTFPDF
 R

Convert Floating-Point to
Decimal Form

Dec.exponent PKDV, ZNDV
Dec.mantissa PKDV, ZNDV
Source FLOAT

CVTHC Convert HEX to Characters Result CHARV
Source CHAR
Length of Result, pad X'F0'

CVTMC
 IB

 2 ext

Convert Multi-leaving
Remote Job Entry Format
to Characters

Result CHARV
Control CHAR(6)VF
Source CHAR
SE RO

CVTNC Convert Numeric to
Characters

Result CHARV, DTAPTR-CHARV
Source NUM, DTAPTR-NUM
Attributes CHAR(7), DTAPTR-CHAR(7)

CVTSC
 IB

 3 ext

Convert SNA Format to
Characters

Result CHARV
Control CHAR(14)V
Source CHAR
SE RO EC

 93

OPCODE Name Operands and Conditions
CPYBTA Copy Bits Arithmetic Receiver CHARV, NUMV

Source CHAR, NUM
Offset IMM
Length IMM between 1 and 32
Length of Receiver not > than 4 bytes

CPYBTL Copy Bits Logical Receiver CHARV, NUMV
Source CHAR, NUM
Offset IMM
Length IMM between 1 and 32
Length of Receiver not > than 4 bytes

CPYBTLLS Copy Bits with Left
Logical Shift

Receiver CHARV, NUMV
Source CHAR, NUM, IMM(1)
Shift CHAR(2)F, IMM(2)
Length of Receiver, pad B'0'

CPYBTRAS Copy Bits with Right
Arithmetic

Receiver CHARV, NUMV
Source CHAR, NUM, IMM(1)
Shift CHAR(2)F, IMM(2)
Length of Receiver, pad sign

CPYBTRLS Copy Bits with Right
Logical Shift

Receiver CHARV, NUMV
Source CHAR, NUM, IMM(1)
Shift CHAR(2)F, IMM(2)
Length of Receiver, pad B'0'

CPYBLA Copy Bytes Left-Adjusted Receiver CHARV, NUMV,
 DTAPTR-CHARV,-NUMV
Source CHAR, NUM,
 DTAPTR-CHAR,-NUM
Shorter of two operands

CPYBLAP Copy Bytes Left-Adjusted
with Pad

Receiver CHARV, NUMV,
 DTAPTR-CHARV,-NUMV
Source CHAR, NUM,
 DTAPTR-CHAR,-NUM
Pad CHAR(1), NUM(1)
Length of Receiver, pad

CPYBOLA Copy Bytes with Overlap
Left-Adjusted

Receiver CHARV, NUMV,
Source CHAR, NUM,
Shorter of two operands

CPYBOLAP Copy Bytes with Overlap
Left-Adjusted with Pad

Receiver CHARV, NUMV,
Source CHAR, NUM,
Pad CHAR(1), NUM(1)
Length of Receiver, pad

CPYBREP Copy Bytes Repeatedly Receiver CHARVF, NUMV,
Source CHARF, NUM,
Length of Receiver

CPYBRA Copy Bytes Right-
Adjusted

Receiver CHARV, NUMV,
 DTAPTR-CHARV,-NUMV
Source CHAR, NUM,
 DTAPTR-CHAR,-NUM
Shorter of two operands

CPYBRAP Copy Bytes Right-
Adjusted with Pad

Receiver CHARV, NUMV,
 DTAPTR-CHARV,-NUMV
Source CHAR, NUM,
 DTAPTR-CHAR,-NUM
Pad CHAR(1), NUM(1)
Length of Receiver, pad

CPYBBTA Copy Bytes to Bits
Arithmetic

Receiver CHARV, NUMV,
Offset IMM
Length IMM from 1 to 32
Source CHAR, NUM,
Length of Source <= 4 bytes

CPYBBTL Copy Bytes to Bits
Logical

Receiver CHARV, NUMV,
Offset IMM
Length IMM from 1 to 32
Source CHAR, NUM,
Length of Source <= 4 bytes

CPYECLAP Copy Extended Characters
Left-Adjusted with Pad

Receiver DTAPTR-CHARV
Source DTAPTR-CHAR
Pad CHAR(3), *

 94

OPCODE Name Operands and Conditions
CPYHEXNN Copy Hex Digit Numeric to

Numeric
Receiver CHARV, NUMV,
Source CHARF, NUM,

CPYHEXNZ Copy Hex Digit Numeric to
Zone

Receiver CHARVF, NUMV
Source CHARF, NUM

CPYHEXZN Copy Hex Digit Zone to
Numeric

Receiver CHARVF, NUMV
Source CHARF, NUM

CPYHEXZZ Copy Hex Digit Zone to
Zone

Receiver CHARVF, NUMV
Source CHARF, NUM

CPYNV
 IBR
 4 ext

Copy Numeric Value Receiver NUMV, DTAPTR-NUMV
Source NUM, DTAPTR-NUM
POS NEG ZER NAN

DCPDATA Decompress Data Template SPCPTR to CHAR(64)
DIV
 IBSR

 4 ext

Divide Quotient NUMV
Dividend NUM
Divisor NUM
POS NEG ZER NAN

DIVREM
 IBSR

 3 ext

Divide with Remainder Quotient NUMV
Dividend NUM
Divisor NUM
Remainder NUMV
POS NEG ZER

EDIT Edit Result CHARV, DTAPTR-CHARV
Source NUM, DTAPTR-NUM
Mask NUM, DTAPTR-NUM

EXCHBY Exchange Bytes Source 1 NUMV, CHARVF
Source 2 NUMV, CHARVF
Same length

XOR
 IBS

 2 ext

Exclusive Or Bytes Result CHARV
Source 1 CHAR
Source 2 CHAR
Longer of 2 Sources, then place in
result, pad X'00' or truncate
ZER NZER

ECSCAN
 IB req

 3 ext

Extended Character Scan Result BINV, BINA
Base CHAR
Compare CHAR
Mode CHAR(1)
POS ZER EC

EXTREXP
 IB
 4 ext

Extract Exponent Result BINV
Source FLOAT
NOR DEN INF NAN

EXTRMAG
 IB
 3 ext

Extract Magnitude Result NUMV
Source NUM
POS ZER NAN

MULT
 IBSR

 4 ext

Multiply Product NUMV
Multiplicand NUM
Multiplier NUM
POS NEG ZER NAN

NEG
 IBS
 4 ext

Negate Number Result NUMV
Source NUM
POS NEG ZER NAN

NOT
 IBS

 2 ext

Not Bytes Result CHARV
Source CHAR
Length of Result, pad X'00'
ZER NZER

OR
 IBS

 2 ext

Or Bytes Result CHARV
Source 1 CHAR
Source 2 CHAR
Longer of 2 Sources, then place in
result, pad X'00' or truncate
ZER NZER

REM
 IBS

 3 ext

Remainder Remainder NUMV
Dividend NUM
Divisor NUM
POS NEG ZER

 95

OPCODE Name Operands and Conditions
SCALE
 IBS

 4 ext

Scale Result NUMV
Source NUM
Scale Factor BIN(2)
POS NEG ZER NAN

SCAN
 IB

 3 ext

Scan Characters Result BINV, BINA
Base CHAR (<= 32k)
Compare CHAR
POS ZER NCMP

SCANWC
 IB

 4 ext

Scan with Control Base Locator SPCPTR
Control CHAR(8)V
Options CHAR(4)
Escape Addr BP, INSPTR, IDL elem, *
HI LO EQ NF

SEARCH
 IB

 2 ext

Search Result BINV, BINA
Array CHARA, NUMA
Find CHAR, NUM
Location BIN
POS ZER

SETBTS Set Bit in String Result CHARV, NUMV
Offset BIN

SETIP Set Instruction Pointer Result INSPTR
Target BP

SSCA
 IB

Store and Set
Computational Attributes

Old Attrs CHAR(5)V
New Attrs CHAR(5), *
Control CHAR(5), *

SUBLC
 IBS

 3 ext

Subtract Logical
Character

Difference CHARVF
Minuend CHARF
Subtrahend CHARF
All same length <= 256
ZC NTZC NTZNTC

SUBN
 IBSR

 4 ext

Subtract Numeric Difference NUMV
Minuend NUM
Subtrahend NUM
POS NEG ZER NAN

TSTRPLC
 IBS

Test and Replace
Characters

Result CHARV
Replacement CHAR

TSTBTS
 IB
 2 ext

Test Bit in String Source CHARV, NUMV
Offset BIN
ZER ONE

TSTBUM
 IB req

 3 ext

Test Bits Under Mask Source CHAR, NUM
Mask CHAR, NUM
Only 1st byte
ZER ONES MXD

XLATE Translate Result CHARV
Source CHAR
Position CHAR, *
Replacement CHAR

XLATEMB Translate Multiple Bytes Template SPCPTR to CHAR(128)
XLATEWT Translate with Table Result CHARV

Source CHAR
Table CHAR(256)
Shorter of Result and Source

XLATWTDS Translate with Table and
DBCS Skip

Target CHARV
Length BIN(4)
Table CHAR(256)

TRIML Trim Length Length NUMV
Source CHAR
Trim Char CHAR(1)

VERIFY
 IB

 2 ext

Verify Invalid pos. BINV, BINA
Source CHAR
Class CHAR
ZER POS

 96

Pointer/Resolution Instructions
OPCODE Name Operands and Conditions
CMPPTRA
 IB req
 2 ext

Compare Pointers for
Object Addressability

Compare 1 PTR
Compare 2 PTR
EQ NEQ

CMPPSPAD
 IB req

 4 ext

Compare Pointers for
Space Addressability

Compare 1 SPCPTR, DTAPTR
Compare 2 SPCPTR, DTAPTR, NUMV,
 NUMA, CHARV, CHARA
HI LO EQ UNEQ

CMPPTRE
 IB req
 2 ext

Compare Pointers for
Equality

Compare 1 PTR
Compare 2 PTR
EQ NEQ

CMPPTRT
 IB req
 2 ext

Compare Pointer Types Compare PTR
Type CHAR(1), *
EQ NEQ

CPYBWP Copy Bytes with Pointer Receiver CHARV, PTR
Source CHAR, PTR, *
Shorter of Receiver and Source

MATPTR Materialize Pointer Receiver SPCPTR
Pointer PTR

MATPTRIF Materialize Pointer
Information

Receiver SPCPTR
Pointer PTR
Mask CHAR(4)

MATPTRL Materialize Pointer
Locations

Receiver SPCPTR
Source SPCPTR
Length BIN

MATCTX Materialize Context Receiver SPCPTR
Context SYSPTR, *
Options CHARF

RSLVDP Resolve Data Pointer Pointer DTAPTR
Object CHAR(32)F, *
Program SYSPTR, *

RSLVSP Resolve System Pointer Pointer SYSPTR
Object CHAR(34)F, *
Context SYSPTR, *
Authority CHAR(2)F, *

ADDSPP Add Space Pointer Result SPCPTR
Source SPCPTR
Increment BIN

CMPSPAD
 IB req

 4 ext

Compare Space
Addressability

Compare 1 NUMV, NUMA, CHARV, CHARA,
 PTR, PTRA
Compare 2 NUMV, NUMA, CHARV, CHARA,
 PTRDOA
HI LO EQ UNEQ

SETDP Set Data Pointer Result DTAPTR
Source NUMV, NUMA, CHARV, CHARA

SETDPADR Set Data Pointer
Addressability

Result DTAPTR
Source NUMV, NUMA, CHARV, CHARA

SETDPAT Set Data Pointer
Attributes

Result DTAPTR
Attributes CHAR(7)F

SETSPP Set Space Pointer Result SPCPTR
Source NUMV, NUMA, CHARV, CHARA,
 PTRDO

SETSPPD Set Space Pointer with
Displacement

Result SPCPTR
Source NUMV, NUMA, CHARV, CHARA,
 PTRDO
Displacement BIN

SETSPPFP Set Space Pointer from
Pointer

Result SPCPTR
Source DTAPTR, SYSPTR, SPCPTR

SETSPPO Set Space Pointer Offset Result SPCPTR
Source BIN

SETSPFP Set System Pointer from
Pointer

Result SYSPTR
Source DTAPTR, SYSPTR, SPCPTR,
 INSPTR

STSPPO Store Space Pointer
Offset

Result BINV
Source SPCPTR

 97

OPCODE Name Operands and Conditions
SUBSPP Subtract Space Pointer

Offset
Result SPCPTR
Source SPCPTR
Decrement BIN

SUBSPPFO Subtract Space Pointers
For Offset

Offset Diff BIN(4)V
Pointer SPCPTR
Pointer SPCPTR

Space Management Instructions
OPCODE Name Operands and Conditions
CRTS Create Space Space SYSPTR

Template SPCPTR
DESS Destroy Space Space SYSPTR
MATS Materialize Space

Attributes
Result SPCPTR
Space SYSPTR

MODS Modify Space Attributes Space SYSPTR
Template BIN, CHAR(28)

Independent Index Instructions
OPCODE Name Operands and Conditions
CRTINX Create Independent Index Index SYSPTR

Template SPCPTR
DESINX Destroy Independent Index Index SYSPTR

FNDINXEN Find Independent Index

Entry
Result SPCPTR
Index SYSPTR
Options SPCPTR
Argument SPCPTR

INSINXEN Insert Independent Index
Entry

Index SYSPTR
Argument SPCPTR
Options SPCPTR

RMVINXEN Remove Independent Index
Entry

Receiver SPCPTR, *
Index SYSPTR
Options SPCPTR
Argument SPCPTR

MATINXAT Materialize Independent
Index Attributes

Receiver SPCPTR
Index SYSPTR

MODINX Modify Independent Index Index SYSPTR
Modifs CHAR(4)

Authorization Instructions
OPCODE Name Operands and Conditions
MATAU Materialize Authority Result SPCPTR

Object SYSPTR
User Profile SYSPTR, *

MATAUOBJ Materialize Authorized
Objects

Result SPCPTR
Object SYSPTR
Options CHAR(1)F, CHAR(*)

MATAL Materialize Authority
List

Receiver SPCPTR
List SYSPTR
Options SPCPTR

MATAUU Materialize Authorized
Users

Result SPCPTR
Object SYSPTR
Options CHAR(1)F

MATUP Materialize User Profile Result SPCPTR
User Profile SYSPTR

MATUPID Materialize User Profile
Pointers from ID

Result SPCPTR
Template SPCPTR

MODINVAU Modify Inv. Auth. Attrs Template CHAR(1)
TESTAU
 IB

 2 ext

Test Authority Result CHAR(2)V, *
Object SYSPTR, PTRDO
User Profile CHAR(2)F
AUTH NAUTH

 98

OPCODE Name Operands and Conditions
TESTEAU
 IB

 2 ext

Test Authority Extended Receiver CHAR(8)V, *
Authority CHAR(8)
Invocation BIN(2), *
AUTH NAUTH

TESTULA
 IB

 2 ext

Test User List Authority Receiver SPCPTR, *
System Obj. SYSPTR
Authority SPCPTR
AUTH NAUTH

Program and Invocation Instructions
OPCODE Name Operands and Conditions
MATBPGM Materialize Bound Program Result SPCPTR

Program SYSPTR
MATPG Materialize Program Result SPCPTR

Program SYSPTR
ACTBPGM Activate Program Template SPCPTR

Program SYSPTR
ACTPG Activate Program Program SPCPTR, SYSPTR, PTRDO

Program SYSPTR
CALLX Call External Program SYSPTR, PTRDO

Arguments OL, *
Returns IDL, *

CALLI Call Internal Entry Point ENTRY
Arguments OL, *
Return INSPTR

CLRIEXIT Clear Invocation Exit
DEACTPG De-Activate Program Program SYSPTR, *
PEND Program End
FNDRINVN Find Relative Invocation

Number
Inv Number BIN(4)V
Range CHAR(48)F, *
Criterion SPCPTR

MATACTAT Materialize Activation
Attributes

Receiver SPCPTR
Act. Mark UBIN(4)
Selection CHAR(1)

MATAGPAT Materialize Activation
Group Attributes

Receiver SPCPTR
Act. Mark UBIN(4)
Selection CHAR(1)

MATINV Materialize Invocation Receiver SPCPTR
Selection SPCPTR

MATINVAT Materialize Invocation
Attributes

Receiver SPCPTR
Invocation CHAR(48)F, *
Selection SPCPTR

MATINVE Materialize Invocation
Entry

Receiver SPCPTR
Selection CHAR(8)F, *
Options CHAR(1)F, *

MATINVS Materialize Invocation
Stack

Receiver SPCPTR
Process SYSPTR, *

MODASA Modify Automatic Storage
Allocation

Storage PTRDO, *
Size BIN

NOOP No Operation
NOOPS No Operation and Skip Skip Count UIMM
OVRPGATR Override Program

Attributes
Attr ID UIMM
Modifier UIMM

RINZSTAT Reinitialize Static
Storage

Activation SPCPTR to Template

RTX Return from External Return BIN(2), *
SETALLEN Set Argument List Length Arguments OL

Length BIN
SETIEXIT Set Invocation Exit Program SYSPTR

Arguments OL, *
STPLLEN Store Parameter List Length BINV
XCTL Transfer Control Program SYSPTR, SPCPTR

Arguments OL, *
MATPRATR Materialize Process

Attributes
Result SPCPTR
Process SYSPTR, *

 99

OPCODE Name Operands and Conditions
Options CHAR(1)

MATPRAGP Materialize Process
Activation Group

Receiver SPCPTR

WAITTIME Wait on Time Wait CHAR(16)
YIELD Yield Timeslice

Exception Management Instructions
OPCODE Name Operands and Conditions
MATEXCPD Materialize Exception

Description
Result SPCPTR
Description EXCM
Options CHAR(1)

MODEXCPD Modify Exception
Description

Description EXCM
Modifs SPCPTR, CHAR(2)C
Options CHAR(1)

RETEXCPD Retrieve Exception Data Result SPCPTR
Options CHAR(1)F

RTNEXCP Return from Exception Invocation SPCPTR
SNSEXCPD Sense Exception

Description
Receiver SPCPTR
Invocation SPCPTR to Template
Exception SPCPTR to Template

SIGEXCP
 IB
 2 ext

Signal Exception Signal SPCPTR
Exception SPCPTR
IGN DEF

TESTEXCP
 IB
 1 ext

Test Exception Receiver SPCPTR
Description EXCM
SIG

Queue Management Instructions
OPCODE Name Operands and Conditions
CRTQ Create Queue Queue SYSPTR

Template SPCPTR
DEQ
 IB

 2 ext

Dequeue Prefix CHAR
Message SPCPTR
Queue SYSPTR
DQ NDQ

DESQ Destroy Queue Queue SYSPTR
ENQ Enqueue Queue SYSPTR

Prefix CHAR
Message SPCPTR

MATPRMSG Materialize Process
Message

Receiver SPCPTR
Message SPCPTR
Source SPCPTR
Selection SPCPTR

MATQAT Materialize Queue
Attributes

Result SPCPTR
Queue SYSPTR

MATQMSG Materialize Queued
Messages

Result SPCPTR
Queue SYSPTR
Selection CHAR(16)

 100

Object Lock Instructions
OPCODE Name Operands and Conditions
LOCK Lock Objects Objects SPCPTR
LOCKOL Lock Object Location Template SPCPTR
LOCKSL Lock Space Location Location PTRDO

Lock Type CHAR(1), *
MATAOL Materialize Allocated

Object Locks
Receiver SPCPTR
Object SYSPTR, PTRDO

MATDRECL Materialize Data Space
Record Locks

Receiver SPCPTR
Selection SPCPTR

MATOBJLK Materialize Object Locks Receiver SPCPTR
Object SYSPTR, PTRDO

MATPRLK Materialize Process Locks Receiver SPCPTR
Process SYSPTR, *

MATPRECL Materialize Process
Record Locks

Receiver SPCPTR
Selection SPCPTR

MATSELLK Materialize Selected
Locks

Receiver SPCPTR
Object SYSPTR, PTRDO

XFRLOCK Transfer Object Lock Process SYSPTR
Template SPCPTR

UNLOCKOL Unlock Object Location Template SPCPTR
UNLOCKSL Unlock Space Location Space PTRDO

Lock Type CHAR(1), *

Context Management Instructions
OPCODE Name Operands and Conditions
CRTMTX Create Pointer-Based

Mutex
Mutex SPCPTR
Template SPCPTR
Result BIN(4)V

DESMTX Destroy Pointer-Based
Mutex

Mutex SPCPTR
Options SPCPTR
Result BIN(4)V

LOCKMTX Lock Pointer-Based Mutex Mutex SPCPTR
Template SPCPTR
Result BIN(4)V

UNLKMTX Unlock Pointer-Based
Mutex

Mutex SPCPTR
Result BIN(4)V

Heap Management Instructions
OPCODE Name Operands and Conditions
ALCHSS Allocate Heap Space

Storage
Heap Space SPCPTR
Heap ID BIN(4)V
Size BIN(4)

CRTHS Create Heap Space Heap ID BIN(4)V
Template SPCPTR

DESHS Destroy Heap Space Heap ID BIN(4)V
FREHSS Free Heap Space Storage Heap Space SPCPTR
FREHSSMK Free Heap Space Storage

from Mark
Mark ID PTRDO

MATHSAT Materialize Heap Space
Attributes

Receiver SPCPTR
Heap ID SPCPTR to Template
Selection CHAR(1)

REALCHSS Reallocate Heap Space
Storage

Heap Space SPCPTR
Size BIN(4)

SETHSSMK Set Heap Space Storage
Mark

Mark ID PTRDO
Heap ID BIN(4)

 101

Resource Management Instructions
OPCODE Name Operands and Conditions
CRMD Compute Resource

Management Data
Result SPCPTR
Source SPCPTR
Control CHAR(8)

ENSOBJ Ensure Object Object SYSPTR
MATAGAT Materialize Access Group

Attributes
Receiver SPCPTR
Access Group SYSPTR

MATRMD Materialize Resource
Management Data

Receiver SPCPTR
Control CHAR(8)

SETACST Set Access State Template SPCPTR
MATDMPS Materialize Dump Space Receiver SPCPTR

Dump Space SYSPTR
MATJPAT Materialize Journal Port

Attributes
Receiver SPCPTR
Journal Port SYSPTR, PTRDO

MATJPAT Materialize Journal Space
Attributes

Receiver SPCPTR
Journal SPC SYSPTR

MATINAT Materialize Instruction
Attributes

Receiver SPCPTR
Selection CHAR(16)

MATSOBJ Materialize System Object Receiver SPCPTR
Object SYSPTR

MATMATR Materialize Machine
Attributes

Receiver SPCPTR
Selection CHAR(2), SPCPTR

MATMDATA Materialize Machine Data Receiver CHARV
Options CHAR(2), UBIN(2), UIMM

TESTTOBJ
 IB
 2 ext

Test Temporary Object Object SYSPTR

EQ NEQ

MI Support Functions Instructions
OPCODE Name Operands and Conditions
GENUUID Generate Universal Unique

Identifier
Result SPCPTR

DIAG Diagnose Function BIN
Argument SPCPTR

Date/Time/Timestamp Instructions
OPCODE Name Operands and Conditions
CDD Compute Date Duration Duration PKDV

Date to CHAR
Date from CHAR
Template SPCPTR

CTSD Compute Time Duration Duration PKDV
Time to CHAR
Time from CHAR
Template SPCPTR

CTSD Compute Timestamp
Duration

Duration PKDV
Timestamp to CHAR
Timestamp fr CHAR
Template SPCPTR

CVTD Convert Date Result date CHARV, PKDV, ZNDV
Source date CHAR, PKD, BIN
Template SPCPTR

CVTT Convert Time Result time CHARV
Source time CHAR
Template SPCPTR

CVTTS Convert Timestamp Result TS CHARV
Source TS CHAR
Template SPCPTR

DECD Decrement Date Result date CHARV
Source date CHAR
Duration PVD
Template SPCPTR

 102

OPCODE Name Operands and Conditions
DECT Decrement Time Result time CHARV

Source time CHAR
Duration PVD
Template SPCPTR

DECTS Decrement Timestamp Result TS CHARV
Source TS CHAR
Duration PVD
Template SPCPTR

INCD Increment Date Result date CHARV
Source date CHAR
Duration PVD
Template SPCPTR

INCT Increment Time Result time CHARV
Source time CHAR
Duration PVD
Template SPCPTR

INCTS Increment Timestamp Result TS CHARV
Source TS CHAR
Duration PVD
Template SPCPTR

