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ABSTRACT

Sunspot cycles are widely used for investigating solar activity. In 1953 Bracewell argued that it is sometimes desirable to introduce the inversion
of the magnetic field polarity, and that can be done with a sign change at the beginning of each cycle. It will be shown in this paper that, for
topological reasons, this so-called Bracewell index is inappropriate and that the symmetry must be introduced in a more rigorous way by a
coordinate transformation. The resulting symmetric dynamics is then favourably compared with a symmetrized phase portrait reconstructed
from the z-variable of the Rössler system. Such a link with this latter variable – which is known to be a poor observable of the underlying
dynamics – could explain the general difficulty encountered in finding evidence of low-dimensional dynamics in sunspot data.
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1. Introduction

Solar activity is produced by the emergence of magnetic flux
through the photosphere forming active regions which include
sunspots. The most characteristic feature of solar activity is its
basic 11-year cycle discovered by Schwabe (1844). Schwabe
also described an irregular behavior with fluctuations in the cy-
cle duration as well as in the individual shape and maximum in-
tensity. The cycles of the sunspot numbers are thus modulated
on a time scale longer than the 11-year period. Hale (1919) and
co-workers discovered that every 11-years the polarity of the
Sun’s magnetic field reverses. This feature has been explained
for the first time by the dynamo model introduced by Babcock
(1961). It is now generally accepted that magnetic cycles in a
star like the Sun are produced by a dynamo located at, or near,
the base of its convection zone.

Although the global aspects of the solar cycle are well ex-
plained by dynamo theory, it remains doubtful whether irregu-
larities are deterministic or stochastic, that is, whether the ob-
servations favor an explanation in terms of nonlinear (chaotic)
dynamics or stochastic processes. Indeed, none of the studies
involving nonlinear dynamical systems theory (Mundt et al.
1991; Kremliovsky 1994; Jinno et al. 1995) provide convinc-
ing evidence of a chaotic Sun since no universal method was
able to discriminate between colored noise with power law
spectra and underlying dynamical processes in data (Theiler
et al. 1992). Recent studies have suggested that for an unam-
biguous detection of low-dimensional deterministic behavior,
we will have to wait for the availability of longer and more

reliable data sets (Carbonell et al. 1994). Nevertheless,
Knobloch and Landsberg (Knobloch et al. 1996, 1998) in-
troduced a six-dimensional model for the magnetic field cy-
cles. Such numerical simulations suggest the presence of
low-dimensional chaotic dynamics.

Since the end of the eighties, several different global mod-
eling techniques have been developed for constructing sets of
ordinary differential equations or discrete maps (Crutchfield
et al. 1987; Giona et al. 1991; Gouesbet 1992; Brown et al.
1994; Letellier et al. 1995). These are particularly powerful
techniques for providing a global model from a very limited
amount of data. Integrating or iterating these global models
may generate synthetic data with the same underlying dynam-
ics. When a satisfactory global model is obtained, clear evi-
dence for a nonlinear deterministic component of the dynamics
is thus provided. To the best of our knowledge, a single global
model has been presented for the sunspot data (Lainscsek et al.
1998). On the one hand, such a model captures a few charac-
teristics of the sunspot number dynamics, but on the other hand
the model is not completely compatible with our understanding
of solar dynamics.

Two reasons for the dynamical mismatch may be conjec-
tured. First, it has been noted that the data are not of uni-
form quality (Eddy 1976). The sunspot number series con-
sists of annual means from 1700 up to 1749. Between 1749
and 1818 monthly means were used. It was only from 1818
that daily indices were used to construct the time series. Thus,
no more than 23 cycles are available. This is definitely not
enough for using standard algorithms to search for signatures
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of low-dimensional chaos in time series (like Lyapunov expo-
nents, correlation dimension and so on). Moreover, the sunspot
numbers before 1850 were reconstructed by Wolf (Wolf 1952)
and are somewhat unreliable since some characteristics of the
underlying dynamics are significantly different for the data
recorded before and after 1850 (Carbonell et al. 1994). Even
after 1850, the dynamics appears to be non-stationary, that is,
there is still some change in the dynamics which cannot be
explained in terms of a low-dimensional deterministic system
(Carbonell et al. 1994). Since known attempts to construct a
global model used the full time series available or the first part
of it, this could explain the limited success of previous attempts
to obtain global models from the sunspot data, as reported in
the literature.

Second, the reversals of the Sun’s magnetic field have been
introduced using the so-called Bracewell index (Bracewell
1953). Such a procedure presents the disadvantage of forcing
the trajectory to pass near the origin of the reconstructed space
when switching from one cycle to the next. In that domain,
the noise contamination is sufficient to hinder any successful
global modeling. An alternative procedure is introduced in this
paper.

The paper is organized as follows. In Sect. 2, the prob-
lem of reconstructing a phase portrait from the sunspot num-
bers is addressed and the embedding dimension is estimated.
In Sect. 3 it is shown that the phase change can be intro-
duced by a coordinate transformation rather than the Bracewell
method. Section 4 is devoted to a comparison between the cov-
ers (Letellier & Gilmore 2001) obtained from the sunspot num-
bers and those obtained from some variables of the Rössler and
the Lorenz systems. Section 5 gives a conclusion.

2. Phase space reconstruction

2.1. The sunspot numbers

Since we are mainly concerned with the cycle-to-cycle vari-
ability, we used the monthly averaged sunspot numbers. We
have thus 12 × 11 = 131 data points per cycle which is a
reasonable sampling rate for investigating the dynamics using
tools borrowed from nonlinear dynamial systems theory. Even
when they are monthly averaged, the sunspot numbers still have
a considerable level of high-frequency fluctuations (Fig. 1).
They therefore need to be smoothed out before any analysis.
Many works devoted to the analysis of sunspot number be-
gin by smoothing out the data (Kremliovsky 1994; Lainscsek
et al. 1998; Palus & Novotná 1999; Mininni et al. 2000). Such
a smoothing is also used in investigating the dynamics underly-
ing light curves from pulsating stars (Serre et al. 1996; Buchler
et al. 2004).

We use a low-pass filter to eliminate the high frequency
components. The smoothed data are superimposed on the
monthly averaged sunspot number (Fig. 1). The low-pass filter
is based on a Fourier transform and a moving window whose
size, ws, corresponds to the number of points used. A window
size ws of 30 points – roughly a quarter of an 11-year cycle –
provides a useful result (Fig. 1). This value will be discussed in
the next section.
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Fig. 1. Monthly averaged sunspot numbers using Wolf’s index R =
k(10g + f ), where g counts the number of sunspot groups and f
counts the individual sun-spots. The factor k was introduced to al-
low a “normalization” among the different observers who contributed.
The time series used here is available on the web-site of the National
Geophysical Data Center (NGDC) in Boulder, Colorado, USA at
www.ngdc.noaa.gov. The smoothed data (ws = 30) – thick line –
are superimposed on the monthly averaged sunspot numbers.

Before any analysis of the dynamics underlying sunspot
numbers is carried out, it should be noted that the data are not
of uniform quality (Eddy 1976). Indeed, it has been shown that
the statistical properties of sunspot numbers differ before and
after 1850 (Conway et al. 1998). A simple analysis can be done
to verify this. For instance, the variability of the sunspot cycle
duration is between 8 and 14 years before 1850 and only be-
tween 10 and 12 years after. The transition between the periods
of large variability and low variability is around 1850. Conway
and co-workers (Conway et al. 1998) concluded that earlier
data should not be used to train neural network that are in-
tended to make predictions at the current epoch.

2.2. Estimating the embedding dimension

The first step in investigating the dynamics underlying a scalar
time series is to reconstruct a d-dimensional phase space
(Packard et al. 1980). Two different coordinate sets can be used,
namely the delay and the derivative coordinates. Let us start
with the delay coordinates. The reconstructed phase space is
spanned by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) = R(t)
u2(t) = R(t + τ)
u3(t) = R(t + 2τ)
...
ud(t) = R(t + (d − 1)τ)

(1)

where τ is the time delay, to be choosen. The estimate of the
embedding dimension could be dependent on τ but we should
use a time delay in a range where the estimated dimension does
not change with τ. Thus, for estimating the embedding dimen-
sion we use the algorithm written by Cao (1997) based on the
false nearest neighbor method. The idea is to increase the di-
mension, d, of the phase space up to the point where there are
no longer any self-intersections of the trajectory. It is based on
the fact that choosing too low an embedding dimension results
in points that are far apart in the original phase space being
moved closer together in the reconstruction space. But to avoid
the choice of a threshold to decide whether a neighbor is false
or not, Cao used the relative change in the average distance
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Fig. 2. Relative change in the average distance between neighbor
points versus the dimension d of the phase space reconstructed from
the smoothed sunspot data. For each value of the time delay τ (in
months), the smoothing parameter ws is equal to 30.

between two neighboring points in R
d when the dimension is

increased from d to d + 1. When this index saturates around 1,
the minimum dimension required to embed the trajectory with-
out any self-crossing is reached. This minimal dimension is the
so-called embedding dimension dE .

We made our computations for different time delays using
the 23 available cycles. Indeed, we used the data prior to 1850
since 23 cycles is already under the limit for having a good
estimate for the embedding dimension. Of course, the lack of
reliability of the earlier data can blurr our results and we have to
keep in mind that this is just an estimate. One could object that
the saturation value (E1 ≈ 1) is not exactly reached for d = 3
but only for d between 6 and 8 (Fig. 2). However we have to
keep in mind that we used the unreliable cycles before 1850
for this estimation and the data, although slightly smoothed,
are not noise free. These two reasons can actually affect the di-
mension estimate by inducing spurious false nearest neighbors.

We illustrate this method by estimating the embedding di-
mension of the Rössler system (see Sect. 4) using its x vari-
able. This was sampled at a rate equivalent to that used for
the monthly sampled sunspot numbers (roughly 120 points per
cycle). The phase space is reconstructed with a time delay
τ = 15δt, i.e. the same value as the one which is retained for
most of this analysis. With such a small data set (around 23 cy-
cles), saturation, although better than for the sunspot data, is not
observed for d = 3 (Fig. 3). The saturation is obviously poorer
when the data are noise contaminated (with a rate around those
of the sunspot data). Note that similar features with other noisy
data sets have already been described (Cao 1997). This lack
of a complete saturation does not hide the clear change in the
slope of the curve E1(d) which is a signature of a space with
a sufficiently high dimension. Indeed, the Rössler system can
be properly embedded in a 3D space from any of its variables.
We therefore estimate that the embedding dimension is three
for the smoothed sunspot data as well.

We also computed the embedding dimension for values of
the time delay up to 40 months as indicated by an estimation of
the best time delay by using the first zero of the auto-correlation
function (Liebert & Schuster 1989). This is one of the possible
ways to estimate the time delay (see for instance Kantz (1997)
for other techniques). Unfortunately, this value is too large and
the phase portrait is too unfolded as shown in Fig. 4. This is
also confirmed by the computation of the embedding dimen-
sion which clearly shows that a four-dimensional space would
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Fig. 3. Relative change in the average distance between neighbor
points versus the dimension d of the phase space reconstructed from
smoothed noisy data generated by the Rössler system. The time de-
lay is chosen so that there are around 120 points per cycle (τ is equal
to 15δt). Parameter values for Rössler equations: a = 0.405, b = 2 and
c = 4.
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Fig. 4. Phase portrait reconstructed from the sunspot data with a time
delay equal to 40 months. It is clearly too unfolded.

be required (Fig. 2) for this time delay. This is a consequence
of a spurious structure induced by a too large time delay. It
is known that different time delays may lead to different min-
imum embedding dimensions, especially for time series from
continuous time systems (Cao et al. 1998). A good choice of
τ may decrease the embedding dimension which is necessary
for phase space reconstruction. In other words, finding a range
of time delays for which the minimum embedding dimension
does not change constitutes a good indicator that actual prop-
erties of the dynamics are identified.

For any time delay τ ∈ [10; 20], the embedding dimen-
sion is not dependent on τ and is three (Fig. 2). We choose
τ = 16 months for our analysis, a value which is close to the
value used by Mundt et al. (1991). Thus, a three-dimensional
phase space should be sufficient to properly unfold the dynam-
ics underlying the sunspot numbers without any self-crossing
of the trajectory. Nevertheless, we have to keep in mind that
our data set is very short and has very few cycles. Such an es-
timated embedding dimension must only be considered as an
indicator. It suggests that a low-dimensional dynamics could
underly the sunspot cycles. Note that an embedding dimension
equal to 3 is consistent with the correlation dimensions esti-
mated by Kremliovsky (1994) (D2 = 2.4 ± 0.2) and by Mundt
et al. (1991) (D2 ≈ 2.3). Although a part of the data is not
very reliable, such embedding dimension is a first clue that the
dynamics underlying the long-term solar activity might be low-
dimensional.
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Fig. 5. Relative change in the average distance between neighbor
points versus the dimension d of the phase space reconstructed from
the smoothed sunspot data. Different values of the smoothing param-
eter ws are used. Time delay: τ = 16 months.

0 50 100 150 200 250

u
1
(t)=R(t)

0

50

100

150

200

250

u 2(t
)=

R
(t

+
τ)

Fig. 6. Plane projection of the phase portrait reconstructed using the
delay coordinates u1 = R(t) and u2 = R(t + τ) where τ = 16 months.
Note that the 23 cycles recorded since 1749 are shown here. This ex-
plains why some drift may be observed in this phase portrait.

We also checked that the embedding dimension is not ex-
cessively dependent on the smoothing parameter ws. Thus we
computed the embedding dimension for various values of the
smoothing parameterws ∈ [0; 45] (Fig. 5). The interesting thing
is that the curve tends to be independent on the smoothing pa-
rameter whenws is greater or equal to 30 (we checked that up to
ws ≤ 45). It therefore seems reasonable to choose the smallest
value from this range, that is, ws = 30.

A phase portrait is now reconstructed with the estimated
parameters. The phase portrait is shown superimposed on the
original unsmoothed sunspot numbers (Fig. 6). The phase por-
trait does not look like a “ball of wool” and there seems to be
some structure underlying the data. Obviously, smoothing out
the high-frequency fluctuations helps to recover some structure.
It is important to note that smoothing can remove part of the
original dynamics – in fact, our hope was to remove only the
stochastic part – but it cannot inject nonlinear dynamics into
the smoothed data.

In order to check that the smoothing proceedure cannot in-
ject deterministic dynamics we randomized the phase of the
monthly averaged sunspot number. This is a standard way of
producing surrogate data to detect nonlinear determinism in
a time series (Theiler et al. 1992). We then applied the same
amount of smoothing and obtained the phase portrait shown
in Fig. 7. When the surrogate data are smoothed (ws = 30)
and used to reconstruct a phase portrait (Fig. 7), the obtained
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Fig. 7. Phase portrait reconstructed from surrogate sunspot data. The
structure is substantially reduced. Reconstruction parameters: ws = 30
and τ = 16.
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Fig. 8. Embedding dimension estimated from the surrogate data
and compared to those estimated from the sunsport numbers.
Reconstruction parameters: τ = 16 months and ws = 30.

dynamics has significant departures from the one induced by
the sunspot numbers. There is an obvious lack of regularity in
the shape of the cycles and there is no longer a hole in the mid-
dle of the attractor, a condition required to properly compute a
Poincaré section.

In addition to the previous analysis, we estimate the em-
bedding dimension and compare it to the estimation from the
sunspot numbers (with the same reconstruction parameters). It
clearly appears that, as expected, the dimension of the phase
space reconstructed from the surrogate data is greater than the
dimension of the embedding induced by the sunspot number
(Fig. 8). Indeed, there is a clear change in the slope of the curve
E1(d) for d = 5. This is another clue to support the hypothesis
that the dynamics underlying the smoothed data really corre-
spond to the dynamics underlying the sun activity. We are thus
convinced that the dynamics seen in the phase portrait recon-
structed from the smoothed data has not been introduced by
smoothing but really comes from the original data.

3. Symmetry properties for the polarity inversion

Since the 11-year sunspot cycle is driven by the 22-year mag-
netic field cycle with a polarity inversion every 11 years, it is
necessary to introduce some symmetry properties to explicitly
show these features. Up-to-now this was done using the so-
called Bracewell index (Bracewell 1953) which is defined as
the sunspot number with a sign change at the beginning of
each period. This index displays a period of 22 years with a
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Fig. 9. Different topologically inequivalent covers of the phase portrait reconstructed from the sunspot numbers using the delay coordinates.
The location of the singularity – indicated by the cross – is displaced in the plane R

2(u, v) along the bisecting line. Rigorously, case (a) should
correspond to the Bracewell index.

sign change every 11 years. This procedure has been used by
(Lainscsek et al. 1998; Mininni et al. 2000). Moreover, there is
no statistical evidence for a departure between the odd and the
even cycles (Conway et al. 1998), thus allowing to think that a
symmetry could be involved.

Recently, two of us developed a rigorous way to introduce
symmetry properties in systems which have none (Letellier &
Gilmore 2001). Typically, a system without any residual sym-
metry is called the image system and it is possible to construct
a covering dynamical system with a symmetry group G using
a coordinate transformation. The so-called cover thus obtained
is locally dynamically equivalent to the image system. The in-
verse problem is to map a system which is invariant under the
symmetry group G into a locally equivalent dynamical system
without any residual symmetry.

In the case of the dynamics underlying the sunspot cycles,
the aim is to obtain a dynamics which takes into account the
inversion of the magnetic field at every 11-year cycle. This cor-
responds to an order-2 symmetry which could be a rotation by
π around an axis or an inversion. Our procedure accomplishes
the original objective for which the Bracewell index (1953) was
introduced. The phase portait reconstructed from this time se-
ries will be necessarily invariant under an inversion symmetry.

Our aim is to construct a cover of the plane projection
spanned by the delay coordinates (u1, u2) (Fig. 6). The proce-
dure for doing this is straightforward. We map the image co-
ordinates (u1, u2) to covering coordinates (X, Y) using a simple
2↔ 1 quadratic mapping given by (Letellier & Gilmore 2001):

Φ =

∣
∣
∣
∣
∣
∣

u1 = X2 − Y2 = Re(X + iY)2

u2 = 2XY = Im(X + iY)2.
(2)

This transformation Φ: R
2(X, Y) �→ R

2(u1, u2) “mods out” the
symmetry and has been used for obtaining the image of the
Lorenz system, the Burke’n Shaw system, and the Kremliovsky
system (Letellier & Gilmore 2001). In our case, we would like
to introduce symmetry. This can be easily done by inverting the
map Φ.

When the coordinate transformation Φ is used, its singu-
larity around which the symmetry is organized is located at
the origin of the phase space. This means that we would intro-
duce a symmetry with respect to the origin of the phase space
shown in Fig. 6. This is what Bracewell did in introducing a
sign change at each minimum of the sunspot cycles. It has been
shown by two of us that this is not the only possibility (Letellier
& Gilmore 2001). The singularity can be displaced along the
bissecting line of the plane u1-u2 by using the map

ϕ =

∣
∣
∣
∣
∣
∣

u1 �→ u1 + u0

u2 �→ u2 + u0
(3)

where u0 defines the position of the singularity in the phase
space reconstructed from the sunspot numbers. There are three
cases that must be described.

The first case is when the singularity is located at the ori-
gin of the phase space (u0 = 0). Since it is located outside
the attractor, it is not possible to obtain a single connected
attractor which is invariant under the symmetry (Letellier &
Gilmore 2001). Two co-existing attractors can only be obtained
as shown in Fig. 9a. This means that once the magnetic field has
a polarity, it cannot inverse it. Therefore this cannot possibly
correspond to what is observed.

The second case occurs when the singularity intersects
the attractor. In such a case, the inversion is irregular in time
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Fig. 10. Time series of the cover of the phase portrait reconstructed
from the sunspot numbers.

(Fig. 9b), that is, it does not happen at each cycle, as required.
This means that such a cover does not correspond to the dy-
namics underlying the sunspot cycle either.

The only remaining possibility is to locate the singularity in
the hole in the middle of the attractor (u0 ∈ [26; 34]). In this lat-
ter case, the cover (Fig. 9c) presents at each cycle an inversion
of the polarity of the magnetic field. Increasing u0 beyond 34,
induces an intersection between the singularity and the phase
portrait and, consequently, irregular inversions of the polarity
are again observed. Therefore there is a single possibility for
choosing the location of the singularity which matches with
the observations, that is when u0 is in the range [26; 34]. For
the remaining part of this work, we will choose to place the
singularity at u0 = 30.

The resulting time series has a period of 22 years with an
inversion at each 11 year cycle, as required. We chose linear
combinations X cos (θ) + Y sin (θ) of the covering variables X
and Y to represent the magnetic field. The angle θ was varied,
and value π/4 chosen as the shape of the trace is insensitive
to variations about that angle. As a result, we chose the lin-
ear combination 1

2 (X + Y) (Fig. 10) as a representative of the
magnetic field. Equal treatment of the cover variables X and Y
consistent with the equal treatment of the image variables u1

and u2 in Eq. (3).
Past attempts to analyse the sunspot dynamics from the

Bracewell index could have been biased by the unavoidable
discontinuity necessarily introduced by the sign change at the
minima, a discontinuity which was removed by using some
filters. Here we have proposed a new way to introduce phase
changes in the time series.

4. Equivalence with benchmark systems

Construction of a cover for sunspot numbers helps not only
to introduce in a rigorous way the symmetry properties re-
lated to the inversion of the magnetic field polarity, but also
to unfold the dynamics near the minima of the 11-year cycles.
Moreover, the coordinate transformation Φ−1 provides a two-
fold cover with a shape that strongly depends on the shape of
the “image” phase portrait. The correct application of a proper
coordinate transformation can be very useful in revealing sub-
tle differences in the underlying dynamics. Thus, it is a pow-
erful filter to determine whether the dynamics underlying a
time series – or equivalently the corresponding reconstructed
phase portrait – is close to the dynamics underlying the sunspot

numbers. Thus, we will try to identify which dynamical vari-
ables from benchmark systems like the Rössler system or the
Lorenz system mimic the sunspot cycle.

We start with the three dynamical variables of the Rössler
system (Rössler 1976):

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c).

(4)

These equations are integrated using a time step δt roughly pro-
viding 120 points per cycle to have a resolution similar to that
of the sunspot data. From each dynamical variable, we recon-
struct a phase portrait using delay coordinates with a time delay
τ = 15δt as used for the sunspot cycles. The parameter values
are chosen to have a hole in the middle of the attractor with
a reasonable size. Then, we apply a rigid displacement of the
attractor to place the singularity of the transformation at the
center of this hole, as done in Fig. 9c for the sunspot numbers.
Each reconstructed phase portrait – which plays the role of the
image system – and the corresponding two-fold cover obtained
using the inverted map Φ−1 – are shown in Fig. 11.

The three reconstructed phase portraits – the three images
shown in the first row of Fig. 11 – may be split in two groups.
First, the phase portraits induced by the x and the y variables
have a very different shape than the portrait induced by the
sunspot cycles (Fig. 6). In particular, the hole is more or less
at the center of the phase portrait, a characteristic which is
not present in the sunspot phase portrait. The two-fold covers
(Figs. 11a and 11b) present different shapes when compared to
the cover of the sunspot cycles (Fig. 9c). Therefore variables x
and the y of the Rössler system are dynamically quite different
from the sunspot number.

The phase portrait reconstructed from the z-variable is
clearly the most similar to the portrait induced by the sunspot
cycles. The hole is located near the origin (Fig. 11c, top) as is
the case for the portrait induced by the sunspot numbers. The
folding is not clearly seen, since it occurs in the small neigh-
borhood of the minima. When the cover is created, a symmetric
phase portrait very similar to the cover of the sunspot cyles is
obtained (Fig. 11c, bottom). This provides strong evidence that
the underlying dynamics of the sunspot cycles may be similar
to the Rössler system, particularly as expressed by its z vari-
able. This suggests that the dynamo dynamics could have a low
degree of observability, as does Rössler system observed from
the z-variable (Letellier & Aguirre 2002). This could account,
in part, for the difficulties encountered by many researchers in
analysing and modeling sunspot dynamics.

The comparison is even better when the square root of the
z-variable is used (Fig. 12). In order to improve the “simula-
tion”, we integrated the Rössler system with a multiplicative
noise and smoothed out the

√
z-variable. The smoothing pa-

rameter is the same as the one used for smoothing the sunspot
numbers. A cover derived from this smoothed noisy time se-
ries is shown in Fig. 12c. This noisy cover has a very similar
shape to the cover directly obtained from the smoothed sunspot
cycles (Fig. 9c).
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Fig. 11. Different covers of the chaotic attractor reconstructed from the dynamical variables of the Rössler system. Parameter values: a = 0.42,
b = 2.0 and c = 4.0.

We also compared the cover of the sunspot cycles with the
cover obtained from the phase portrait induced by the z-variable
of the Lorenz system (Lorenz 1963):
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = σ(y − x)
ẏ = Rx − y − xz
ż = −bz + xy

(5)

where the parameters have the usual values. The cover obtained
(Fig. 13) is obviously very different from the sunspot cover and,
consequently, the Lorenz dynamics seen from the z-variable
and dynamics underlying the sunspot cycles are very differ-
ent. A comparison with the phase portrait reconstructed from
the x or y variable is not necessary because, in the case of the
Lorenz system, these variables are mapped to their opposites
under the rotation symmetry around the z-axis. This means that
these two variables already provide covers of the image of the
Lorenz system (Letellier & Gilmore 2001). Moreover, as it is
well known, the trajectory switches from one “wing” to the
other in an irregular manner. These covers – or equivalently,
the phase portrait reconstructed from the x or the y variable –
thus correspond to the cover obtained from the sunspot cycles
when the singularity intersects the image attractor as shown in
Fig. 9b. In other words, it corresponds to an irregular inversion
of the magnetic field polarity. These two variables cannot re-
produce the most relevant characteristics of sunspot dynamics.
The Lorenz system is therefore not a good model for the dy-
namics underlying the sunspot cycles.

To end these comparisons, we built two-fold covers from
the phase portrait induced by the surrogate data computed from
the sunspot cycles (Fig. 7). The cover obtained (Fig. 14) has
no longer the regularity observed in the sunspot data. Only the

rough shape is preserved. In particular, there are some small
“loops” within each wing which do not occur in the observa-
tional data. Thus, we conclude that the dynamics underlying
the sunspot numbers is very similar to those of the Rössler sys-
tem investigated from its z-variable – or more accurately, the√

z-variable. This is rather strong evidence that the mechanism
driving sunspot dynamics exhibits low dimensional chaotic be-
havior. We note that a link with the Rössler dynamics was al-
ready discussed by Kremliovsky (1994).

Since we established that the sunspot time series is rather
similar to the z time series of the Rössler system, a few com-
ments will be given about the specificity of this variable.
Although coming from a quite simple system – the Rössler
equations – this variable is known for providing a very poor
observability of the Rössler dynamics (Letellier et al. 1998,
2002). In practice, this means that measuring the z-time series
does not allow us to recover the whole dynamics. In particular,
many attempts for getting a global model from the noise free
z-variable failed. Only a specific structure selection (Lainscsek
et al. 2003) or increasing the embedding dimension (Letellier
et al. 1998) allowed to succeed in such a task. This, in addi-
tion to the short record and some nonstationarity, would explain
why no successful autonomous global models were obtained
from the sunspot numbers.

5. Conclusion

Sunspot numbers have been investigated using some tools bor-
rowed from nonlinear dynamical systems theory. It has been
shown that, when the long term dynamics is investigated, an
embedding dimension equal to three is be sufficient. By using
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Fig. 12. Two-fold cover of the phase portrait reconstructed from the√
z-variable of the Rössler system. Parameter values: a = 0.42, b = 2.0

and c = 4.0.

the recent theory developed for covering dynamical systems,
it was shown that it is more useful to introduce a symmetry
by introducing a 2 → 1 coordinate transformation rather than
changing sign by hand using the Bracewell index. Indeed, the
dynamics that follow introduction of the Bracewell index is not
natural because some discontinuities are introduced “by hand”
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Fig. 13. Two-fold cover of the phase portrait reconstructed from the
z-variable of the Lorenz system. Parameter values: R = 28, σ = 10
and b = 8/3.
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Fig. 14. Two-fold cover of the phase portrait reconstructed from the
surrogate data computed from the sunspot cycles. The cover does not
present the 11-year alternation observed in the dynamics underlying
the sunspot cycles.

with this index and subsequently filtered away. This could
explain why previous searches for low-dimensional chaotic
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dynamics have been unsuccessful. We therefore propose a new
way to introduce the phase change after each sunspot cycle.

We then compared the so-obtained cover of the sunspot
number with the cover of the phase portrait reconstructed from
the three variables of the Rössler system and the z-variable
of the Lorenz system. The z-variable of the Rössler system is
clearly the best “simulation” for the sunspot cycles. We noted
that using

√
z slightly improves the resemblance with sunspot

cycles. Unfortunately, the z-variable of the Rössler system is
recognized as being a poor observable of the underlying dy-
namics, a fact that could explain why so many works lead to
a lack of evidence for a low-dimensional dynamics underlying
the sunspot cycles. We believe that using the appropriate cover
of the sunspot cycles could help to unfold the dynamics and
provide a better observability of the dynamics.
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