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SISTENCE IN GEOPHYSICAL AND COSMICAL 

PERIODICITIES 

BY J. BARTELS 

Abstract--The statistical aspects of the application of harmonic analysis, intro- 
duced by A. Schuster in his famous paper on the investigation of hidden periodicities, 
are discussed on the basis of recent developments in the theory of probability. Between 
the two extreme cases of random fluctuations and persistent waves, hitherto 
discussed exclusively, the intermediate case of quasi-persistence is introduced and 
recognized as a common phenomenon in the time-functions of meteorology, geophysics, 
and cosmical physics. Statistical methods, based on the conception of the harmonic 
dial, are given for dealing with quasi-persistence and its effect on tests for persistent 
waves, and they are generalized for the case of periodicities of other form than that of 
the sine-wave. Typical examples are given illustrating various forms of random fluctua- 
tions, quasi-persistence, and persistence, as well as questions related to harmonic 
analysis, such as the periodogram, non-cyclic change, curvature-effect, equivalent 
length of sequences, effective expectancy, random walk, interference, and the infectlye 
property of quasi-persistence on adjacent periods (see summary at end of paper). 

(I) INTI•ODUCTXON 
1. The problemsInvestigations on periodicities, cycles, recurrence- 

tendencies, and similar phenomena in geophysics proceed, in general, 
in three stages: (!) Analytical transformations of the observational 
data, for instance, harmonic analysis: (2) statistical studies on the results 
of these transformations, testing the degree of their significance: (3) 
physical explanations of the significant periodicities, for instance, by 
rotation-periods of the celestial bodies, by free or forced wave-motions 
or oscillations, etc. 

These three stages are not in every case of equal importance, nor is 
their order invariable. Tidal theory, for instance, starts from the well- 
known movements of the celestial bodies and develops a specially 
adapted harmonic analysis, and there is hardly a need for the statistical 
viewpoint. The situation is, however, different with respect to the great 
number of geophysical periodicities in which the length of the period is 
given beforehand and only the form of the actual periodic variation in 
this interval is wanted, for instance, in the case of the solar and lunar 
diurnal variations and the annual variations, which occur in practically 
every geophysical phenomenon. Here statistical methods have been 
applied successfully, for instance, in the case of the solar diurnal mag- 
netic variations, which show a marked day-to-day variability, x'• or in 
the case of the lunar diurnal variations of terrestrial magnetism or of 
atmospheric pressure, where small periodic changes are masked by much 
larger time-changes of different character, or in the case of the semi- 

•S. Chapman and J. M. Stagg, London, Proc. R. Soc., A, 123, 27-53 (1929); 130, 668-697 (1931). 
•J. Bartela, Ten'. Mag., 37, 291-302 (1932). 
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annual variation of magnetic activity. There is a large and promising 
field for further use of such methods. 

It seems, however, even more urgent to improve the procedure for 
testing the significance of such periodicities in which not even the lengths 
of the periods or recurrence-intervals are known or suspected from the 
outset. A large number of periods and cycles has been claimed in at- 
mospheric temperature, rainfall? solar radiation, 4 earthquakes, and even 
in business-activity? while only very few of them have been generally 
recognized. This strange result has brought about a state of uncertainty 
and instinctive distrust which sometimes even affects the attitude 
towards perfectly sound periodicities. An attempt is made in this 
paper to discuss the elementary principles underlying re,arch of periodic- 
ities. The main reasons for the contradictory results will be found in the 
lack of adequate combination of harmonic analysis with the theory of 
probability in its modern form. • 

2. $chuster's periodogram--The "Investigation of hidden periodic- 
ities" published in 1898 by A. Schuster in this JouRN^r. 7 has become 
famous because it is the first successful attempt to "introduce a little 
more scientific precision into the treatment of problems which involve 
hidden periodicities" by applying tile theory of probability. A. Schuster 
calculated his "periodogram" for 25 years of records of magnetic declina- 
tion at Greenwicl• 8 and for sunspot-data, ø modifying his original method 
according to the optical analogy between the periodogram and the 
spectrum of a luminous disturbance. A number of periodograms have 
been calculated since then:considerable progress in the practical appli- 
cation of the Schuster method, speeding up the heavy arithmetical work 
connected with it, has been made by K. Stumpif, •ø using instrumental 
methods, and L. W. Pol!ak, n who analyzed the international magnetic 
character-figure (designated C in this paper) for the years 1906 to 1926 
using punched cards and Hollerith tabulating machines. 

3. A short review of literature---Since Schuster's papers were written, 
a number of investigations in pure mathematics and theoretical physics 
have appeared bearing on subjects which are connected with periodo- 
gram-analysis•though this connection is not expressly mentioned and, 
sometimes, not even realized. Since these studies may be utilized for a 
revision and development of the periodogram-method, some of them 
may be enumerated here. On the analytical side, the theory of "almost 
periodic functions" created by H. Bohr •'•s generalizes the ordinary 
Fourier series by considering sums of sine-waves with frequencies which 

•'e, for instance, the l•uzzling list of periods ranging from a few hours to 260 years in Sir Napier 
Shaw's Manual of Meteorology, vol. 2, pp. 312-.!27, Cambridge, 1928. 

•C. G. Abbot, Smithson, Misc. Coil., 87, No. 9 (1932); 8?, No. 18 (1933); 8!}, No. 5 (1933). 
•Edwin B. Wilson, Science, 80, 193-199 (1933); Quart. J. Economics, 375-417 (May !9/t4). 
•R. yon Mises, Wahrscheinlichkeitsrechnung, Leipzig und Wien, 1931; E. Kamke, Einf/ihrung in die 

Wahrscheinlichkeitstheorie, Leipzig, 1932; A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeits- 
rechnung, Ergebn. Math., i}, Nr. 3, Berlin (1933); A. Khintchine, Asymptotische Gesetze der Wahrschein- 
lichkeitsrechnung, Ergebn. Math., 2, Nr. 4, Berlin (1933). 

•Terr. Mag., 3, 13-4! (1898). 
•Cambridge, Phil. Trans., 18, 107-135 (1899). 
*London, Phil. Trans. R. Soc., A, 20.6, 69-100 (1906). 
•0K. Stumpif, Analyse periodischer Vorglinge, Berlin, 1927. 
nL. W. Pollak, Prager Geophysika!ische Studien, tteft $ (•echoslovak. Statistik, Reihe 12, Heft 13), 

Prague, 1930, 
•H•rald Bohr, Fastperiodische Funktionen, Ergebn. Math., 1, Nr. 5, Berlin (1932). 
•A. S. Besi½ovitch, Almost periodic functions, Cambridge, !932; N. %Vienet, The Fourier intearal 

and certain of i•s applications, Cambridge, 1933. 
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are not entire multiples of a fundamental frequency. On the statistical 
side, the œundamental problem variously named "random vibrations," 
"random flights," or "random walk" (Irrfahrt), has been treated by Lord 
Rayleigh, TM on whose first paper A. Schuster based his periodogram, 
J. C. Kluyver, •:', K. Pearson, •6, G. P61ya, •7 and G. I. Taylor. •8 Some 
relations can also be found to papers on Brownian movement, or eddy- 
diffusion in the atmosphere. m•ø.•-t A part of the optical analogy, the 
superposition of light-waves with random phases, has been treated by 
M. yon Laue •'2 and A. Einstein. •a A. Basch's theory of "error-tensors "• 
developed for geodetical purposes must also be mentioned. A. 
Glogowski, • in a dissertation on hidden periodicities, does not sufficiently 
emphasize the statistical viewpoint and misconstrues Schuster's methods. 

Of the many papers dealing with geophysical and cosmical periodic- 
ities, a few may be selected as containing theoretical discussions of the 
periodogram-method. G. U. Yule •ø discusses the effect of superposed 
fluctuations and disturbances on harmonic analysis. Sir Gilbert Walker ø-* 
defines criteria for reality of periods. L. Weickmann's discovery of 
"symmetry-points" in the records of atmospheric pressure entailed a 
number of studies on periodicity in general. -øa.• H. H. Turner •ø con- 
sidered discontinuities in meteorological phenomena. I.eo Keller a• 
amplifies the mathematical system of periodography in a form suitable 
for geophysical applications. 

•[. Plan of this paper•It is not proposed to give here a bibliograph- 
ical account of the contributions of the various authors to the theory of 
periodogram-analysis. It seems to be more convenient to derive the 
new results directly by using elementary graphical illustrations of 
harmonic analysis. 

It would have been possible to derive the results of this paper in a 
quite genera! way, discussing mathematical-statistical properties of 
"populations' formed by a number of vectors in two or more dimensions. 
However, it seemed more appropriate to show the need for these con- 
siderations by dealing with time-functions representing actual geo- 
physical phenomena. After the introduction of the conceptic•n of 
persistence and quasi-persistence as contrasted with random fluctuations, 

•Lord Rayleigh, Phil. Mag., 10, 73-78 (1880); 36, 429-449 (1918); 37, 321-347, 498-515 (1919). Re- 
printed in Scient. Papers I and 6, Cambridge, 1899 and 1920. 

•'J. C. Kluyver, Amsterdam, Proc. Akad. Wet., 8, 341-350 (1906). 
•'K. Pearson, A mathematical theory of random migration (Math. contrib. to the theory of evolution, 

15), London, 1906. 

•*G. P61ya, Zilrich, Mitt. Physik. Ges., 19, 75-86 (1919). 
•G. I. Taylor, London, Proc. Math. Soc., 20, 196 if. (1922). 
•O. G. Sutton, London, Proc. R. Soc., A, 135, 143-165 (1932). 
•'L. F. Richard•n and J. A. Gaunt, London, Mere. R. Met. Sot., $, No. 30 (1930). 
•O. F. T. Roberts, London, Mere. R. Met. Soc., 4, No. 37 (1933). 
•M. yon Laue, Ann. Physik, 47, 853-878 (1915); 48, 668 if. (1915). 
•,•A. Einstein, Ann. Physik, 47, 879-885 (1915). 
•Wien, SitzBer. Akad. Wiss., Math.-Nat. Klasse, Abt. IIa, 137, 583-598 (1928). 
'-•A. Glogowski, Beltrage zur Auffindung verborgener Periodizit•iten, M(inster i. W., 1929. 
•C,. U. Yule, London, Phil. Trans., A, 226, 267-298 (1927). 

8oc •?•ir.,Gil•bert Walker, London, Quart. J. R. Met. Sot., $1, 337-346 (1925); London, Mere. R. Met. ' ., , •.,•o. 9 11927). $ No. 25 (1930)- Mort. Weath. Rev., 59, 277-278 (1931); London, Proe. R. Soc., A, 151, 518-532 (195i).' See also D. Bl'unt, Memoirs R. Met. Soe., 2, No. !5 (1928), the discussion in 
London, J. R. Met..•>c., 54, 299-303 (1928), and R. A. Fisher, London, Proc. R. $oc., A, 125, 54-59 (1929). 

•L. Weickmann, Beitr. Geophys., 34, 244-251 (1931). 
•K. Stumpif, Beitr. Geophys., 32, 379-41! (1931); F. Dilger, Beitr. Geoph•s., 30, 40-95 (1931). 
a,H. H. Turner, London, Quart. J. R. Met. Soc., 41, 315-336 (1915); 42, 163-173 (1916); 4:t, 43-60 !917). 

a•L. Keller, Beitr. Physik frei. Atmos., 19, 173-187 (1932). 
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if often appeared unnecessary to repeat the definitions in general abstract 
formulations. Furthermore, we regard throughout the paper all time- 
functions as given by values at equidistant intervals of time. This 
assumption clarifies the argument and holds in most geophysical appli- 
cations. Continuous functions of time could have been treated in exactly 
the same way, replacing the sums by integrals, without introducing a 
fundamentally different conception- in fact, continuous recording is 
practically represented by values at very short intervals of time. 

The standpoint taken in the present paper is the outcome of work 
on periods in meteorology and terrestrial magnetism, and has been dis- 
cus•(1 during several years in a number of talks at the Department of 
Terrestrial Magnetism of the Carnegie Institution of Washington and 
in courses of lectures at Berlin University. Exact proofs for some 
theorems involving theory of probability are omitted here and will be 
given in a later paper, to appear in the series "Ergebnisse der Mathe- 
matik" (Berlin, J. Springer). 

(II) Hx•o•c ANALYSIS AS X MATHEMATICAL REPRESENTATION OF 
THE OBSERVATIONS 

5. Principle of harmonic analysis--Records of geophysical phe- 
nomena yield functions of time, f(t), which for further research are 
mostly transformed into a series of values for equal intervals of time, 
for instance, hourly, daily, monthly, annual, etc. The record may cover 
the time t=0 to t= T. For convenience, another time-variable, x=tX 
2r/T, is introduced so that the length of the record, as measured by 
x, is 2•r. The number of values (or ordinates) given may be r-that is, 
the times (or abscissae) x•, x•, ... x, divide the time-interval 0 to 2r 
into r equal parts, and y• may be the value of the variable for the time 
(5.1) x•= o(2•r/r) 
No attention is paid, at this stage, to the value y0 at the time x0 =0 (see 
section 16). 

Consider sine-functions and cosine-functions of frequency v=0, 
1, 2 .... k, that is, completing • cycles in the interval 0 to 2•r [lengths of 
periods p• = T/v], and their sum 
(5.2) •(x) =a0+(a• cos x+b• sin x)+(a• cos 2x+b• sin 2x) 

+... + (a• cos ix +b, sin 
Harmonic analysis consists in determining the coefficients a0, a•, b•,... 
a•, b, so that • (x,) approximates the given ordinates y•, in other words, 
that the r, siduals [y•-q0•(x•)] are as small as possible. This problem 
is readily solved if it is put into the form that the average of the squared 
residuals 
(5.3) sl=Z 
shall be made a minimum. 

Since •}. contains (2k+ 1) coefficients and shall represent r ordinates, 
we consider only values of k so that 
(5.4) 2kq-1 <r 

Then it can be shown that the coefficients are given by the equations 
(5.5) r a0=•;• y•, (r/2) a•=.*• y• cos vx•, and (r/2) b• = • y• sin 
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where the sums are taken for p---1, 2 .... r, and • runs from 1 to k. a0 
is the arithmetic mean of the yp, and (a,, b•) are called the harmonic 
coefficients of the set yp of ordinates. If r is an even number, the formula 
for a,/• is 
(5.6) a(•/•) = (- y• q-y,.--ya q-y4 --. . . q-yr) /r 
which differs from the formula for v<r/2 in so far as the right-hand 
sum is divided by r and not by (r/2). 

From the linear form of the equations (5.5), the theorem on super- 
position of different functions is easily verified, namely' A finite number 
of ordinates y'•, y'•, ... y',: y"•, y"• .... y•,: ... may be given, and 
(a',, b',) may be the harmonic coefficients for the set y'•, y'•, ... y'•, 
etc. Then a set of ordinates formed by the linear combination A'y'p 
A ttyttt•-{' (p = ! 2, r) with constants A ' A" has the har- 
monic coefficients (A'a'•+A"a"•+..., B'b'•+B"b"•+...). This is 
known as the additive property of the harmonic coe•cients, or principle 
of sut•;rposition. 

The formulae (5.5) do not contain any reference to k, that is, the 
number of terms of the series •(x). Each harmonic coefficient is 
therefore determined independently, regardless of the number of addi- 
tional harmonic terms involved. This is a consequence of the so-called 
orthogonality of sine-waves and cosine-waves with periods which are 
submultiples of one and the same main period. 

A proof of the formulae (5.5), and a discussion of some other points 
such as smoothing, non-cyclic variation, etc., is given in the appendix. 

6. The harmonic d/a/•The sine- and cosine-functions of frequency 
v can be combined into a sine-wave with (positive) amplitude c, and 
phase • 
(6.1) a, cos vx+b, sin vx=c• sin (¾x+a•), with 
(6.2) a•=c, sin a•, b•=c, cos a, and c,•=a•+b?, tan 
These relations can be illustrated in the harmonic dial for the frequency 
v. In a plane coordinate system, in which a• is measured upward, and 
b, to the right (Fig. 1), the expression (6.1) is represented by a point P 

FiG I-5'CI-/E'ME' FOre t-.t,4DMONIC D/,•. 
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having the rectangular coordinates a•, b•, and, because of (6.2), the 
polar coordinates (c,, a•,): or, also, by the vector OP having the pro- 
jecfions a,, b•, on the axes, the length c,, and the azimuth a•,. This vector 
will be called c•. The first of the v maxima of the wave (6.1) occurs 
when (vx-+- •v) = 90 ø, that is, at the time x• = [90 ø- •,.] ¾. Therefore, 
a•=90 ø corresponds to xm==0, av=0 ø to x,•x=90ø,v, etc. It is 
therefore possible to indicate, on a circle around the origin, the times 
x•x (or tin=, expressed in the original time t) for the waves represented 
by vectors pointing in that direction. This gave the name to the dia- 
gram, because, in a semi-diurnal wave [time interval T from 0 • to 12 •], 
t= 1 • corresponds to x=2•r/12=30 ø, and the scale for t• becomes the 
ordinary dial of a clock. 

The "blank" for a harmonic dial of a certain frequency contains 
the origin O, a linear scale for the amplitudes c•, [or a number of circles 
around the origin designating certain values of c•,] and a circular scale 
at the edge, marked with the occurrence of the maximum and, inci- 
dentally, giving the length of the period p•. Changes of units for c•. 
or of time origin [for instance, from local to Greenwich time in dials for 
diurnal waves] are easily indicated by renumbering the respective 
scales. Each point J> entered, as a dot, in this blank represents, by 
the vector OP, a sine-wave of the period p•,. Since the blanks for har- 
monic dials 'of the period p, for the intervals t=0 to T, T to 2T, 2T to 
3T, etc., are identical except for the numbering of the circular scales, 
which differ by multiples of T, they can all be combined into that for 
the interval t=0 to T, because the various intervals can be indicated 
by marking the dots P. 

7. Vector-addition in harmonic d.k•ls and the average vector•It is 
sometimes convenient to ascribe to each vector CD on the harmonic 
dial the same meaning as to the parallel vector OP starting at the origin, 
so that all parallel vectors of equal length denote the same sine-wave. 
Then, the additive property of the harmonic coefficients [section 5] has its 
graphical analogy in the usual vector. addition. 

A number (say, n) of sine-waves of equal frequency v may be indi- 
cated as vectors c'•, c 't ..... starting at the origin O, and plotted as dots 
denoting the ends of the vectors. If these sine-waves are added and 
divided by n, the average sine-wave has the harmonic coefficients 
[(a'vq-a"•+...),,'n], [(b'•+b",,+...)/n] and is therefore represented 
by the mass-center of the n dots, or the average vector (c'•+c'•,q-...)/'n. 

This remark is often used as follows: Suppose the number r of 
ordinates is an entire multiple of the frequency v, say, r =vr•. Then the 
angles vx• (5.l) are vp (2r/vr•)=p(2r/r•), so that (apart from irrelevant 
multiples of 2•r), vx•=vx,,+•=v.ro.,,+• .... , etc. The equation (5.5) for 
a, (and for b,) can therefore be rearranged as follows 

a, = (2/r) •' ,• yo cos vxo = 1,/v [(2, rt) Z[*=• ya cos X (2•r, r•) 
+(2/'r•) Z2=• y,•+• cos X (2•r•/r•)+... 
+(2/r•) •'2• y(•-•),,+a cos X (2=• r•)] 

Comparing the first term in the bracket with (5.5), we realize that it is 
the coefficient for frequency 1 of the ordinates y• to yt•, and the second 
term is the coefficient for frequency 1 of the ordinates y•+• to 
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etc., and a•, is the average of these • coefficients. In other words, if a 
period p comprises an interval represented by r• ordinates, and v such 
intervals are given, then the harmonic analysis of the total of vr• or 
dinares gives, for the period p, harmonic coefficients which are the 
arithmetic means of the v harmonic coefficients computed from each 
single interval of r• ordinates. 

In another arrangement, (7.1) becomes 

(7.2) a•,=(2, r•) Z[•--• (1 
cos X (2•r,'r•) 

This is the basis of many schemes for numerical harmonic analysis, 
starting by writing the ordinates in v rows of r•.each, and then analyzing 
the averages of the r• columns. 

8. International magnetic character-figure C and harmonic dial for 
27-day periodsExamples demonstrating the use of the harmonic dial 
for research on solar and lunar diurnal variations and for annual varia- 
tions have been given formerly. a• For the purpose of this paper, the 
series of the daily international magnetic character-figures C has been 
selected, comprising the 10,206 days between January 1!, 1906, and 
December 20, 1933. C indicates the degree of magnetic activity for 
each Greenwich day by one of the figures 0.0 (denoting very quiet con- 
ditions), 0.1, 0.2, etc., to 2.0 (denoting very great disturbances). The 
rotation-period of the Sun, of about 27 days, is reflected in C in the 
recurrence of quiet and disturbed times. '•a This recurrence is demon- 
strated in graphical day-by-day records published in this 
For these diagrams, the whole series has been divided into 27-day 
intervals. For convenience, we shall refer to these intervals as "rota- 
tions" numbered 1 (beginning January 11, 1906) to 378 (beginning 
November 24, 1933). In each rotation the days are numbered 1 to 27. 
The dates of the first days in each rotation can be taken from the diagram 
in Volume 39 of this Jou•x•. or from the table on Figure 15 of this 
paper; the dates are repeated, with a shift of one or two days (after 
leap-years), every second year, since 2 X 365 = 27 X 27 q- 1. 

The character-figures C for the years 1906 to 1926 have been used in 
Pollak's pub!ication. n It may be remarked, however, that it is not 
intended here to demonstrate again the 27-day recurrence or to repeat 
Pollak's periodogram-analysis: the series of C is only taken as a suitable 
illustration of the general argument, which will gradually lead to other 
conclusions than those drawn by Pollak. 

For each of the 378 rotations, the harmonic coefficients of the sine- 
wave of 27-day period were computed and the results are represented in 
the harmonic dial of Figure 2. The dots are distributed in a "cloud" 
around the origin without, apparently, preferring any direction' the 
average vector, that is, the mass-center of the cloud formed by all dots, 
indicated by a cross, f&!ls close to the origin. The largest amplitude 
is 0.760 unit of C [or 0.760C] for rotation No. 208, beginning May 1, 
1921, and containing the heaviest magnetic disturbances [about May 12 

:•J. Bartels, Zs. Geophysik, 3, 389-397 (1927); Handbuch d. Experimentall)hysik, 25, I. TeiI, !67 if., 
631 if. (Leipzig, 1928); Sci. Mon., 35, 110-130 (1932); Terr. Mag., 37, 22.27, 29!-302 (1932). 

.•.•C. Chree and J. M. Stagg, London, Phil. Trans. R. Soc., A, 227, 21-62 (1927). 
"Terr. Mag., 3;7, 42 (1932), for the years 1906 to 1930; :•9, 201-202 (1934), for the years !923 to 1933 

together with a similar diagram for sunspots. 
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to 21] of our series' the maximum of this wave falls near May 16. Ampli- 
tudes of less than 0.01C occur in rotations Nos. 61 and 372. The diagram 
will be referred to in later discussions. 

F•a. Z-- H•MO•V• C O •AL, •vr•'•.•r/o•z•L M,•a•v• rlc C•A•C re•- 

•GINNI• JANUAM I& I• [=DAY I)-- 
s•-w•s 

9. Graphical in•rpretatio• of harmonic a•ys•--•ile we shall 
not go into the much-di•u• details of practical harmonic analysis, • 
that is, the actual evaluation of the equation (5.5) for the c•cients, 
a graphical interpretation of the• equations, using •e pr•ciple of 
su•rposition (•ction 5), will • helpful later. 

The character-fi•res C for rotation No. 275, starting April 14, 1926, 
have been plotted in •e top row of Figure 3A. This •t of 27 ordinates 
can • conceived as a sum of 27 primitive •ts, in ea• of which all 
ordinates are zero except one; the first •ree of •e• •ts are plotted 
in Figure 3A. •nerally s•a-•ng, the •t of ordinates 
(9.1) •z, •, •, ..., 
is equivalent to the sum of the primitive •ts 

•z, 0, 0,...,0 
0, y•, 0 .... ,0 

(9.2) 0, 0,•, ..., 0 

•For Dmcd• •onic a•i• 
Berlin, 1924; al• E. T. •it•er •d G. Robi•n, Th• c•culu• of o•aQons, •ndoa, 1924. For 

(1927); J. •t•, •im G•ph•k, •, !-10 (19•)1 •d the •k of K. Stum• •dy not• und• 
f•tnote 10. A •t help in num•i• w•k i• giv• by L, W. Po•k, H•d•i• •r •oni•en 
•y•e (••h•i•. Studien H•t 2), •hich • aB• • Cz•o••e Stati•tik, Reihe 
12, H•t !0, •e, 1928, while the •me au•or'• 
1926, • in •neml • rep• by C•Ile'• R•heamfeln or by the •lid•mle. 
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According to (5.5), the harmonic coefficients, multiplied by (r/2), 
for each primitive set are given, for the frequency v, by yp cos vxp, yo 
sin vx• (where p--1, 2, ..., r)- the representation in the harmonic dial 
(Fig. 3C) is a vector of length yp forming the angle vxp with the direction 
OA, because the projections of this vector are equal to the coefficients 
(times r/2). The sum of these r primitive vectors has, according to 
(5.5), the projections (r/2) av, (r/2) by and represents therefore the sine- 
wave for the original set (9.1). In our example--the set of 27 ordinates 
in the top row of Figure 3A--r= 27, x• =2r/r= 13ø.3: for a sine-wave 
of 27-day period, v=• 1, the angles vx• for the successive primitive vectors 
are 13ø.3, 26ø.7, 40ø.0 ..... 360ø.0, and the whole construction of sum- 
ming the vectors consists in joining together the ordinates yo, changing 
successively the direction clockwise by 13ø.3 (Fig. 3D). The vector 
between O and the end-point, P, should be divided by (r/2)--27/2 to 
obtain the amplitude cx: instead, we can measure it in a scale enlarged 
(27/2) times (radial scale for OP indicated in Fig. 3D). Thus, we see 
from Figure 3D, comparing it with Figure 1, that the orthogonal co- 
ordinates of P, in units of C, are a•--+0.48, bt--+0.13, and its polar 
coordinates c• =0.50, ax= 76 ø- the sine-wave, therefore, is 

(9.3) +0.48 cos x+0.12 sin x=0.50 sin (x+76 ø) 
Its maximum occurs about the time x = 14 ø, or t= 14 X (27/360) = 1.05 
days, or, since the time 1 day designates Greenwich noon of April 14, 
1926, about 1 o'clock in the afternoon of that day. 

If all the ordinates yx, y•,... y, were equal, the construction in Figure 
3D would lead to a regular polygon ending at the origin, that is, to 
vanishing coefficients, as could be expected. From the principle of 
superposition it follows, therefore, that a positive or negative constant 
can be added to all ordinates without changing the harmonic coefficients. 
For instance, the arithmetic mean a0 can be subtracted, which amounts 
to measuring the ordinates in positive or negative deviations from the 
level a0 (Fig. 3B): the construction of Figure 3E, plotting negative 
ordinates in the reverse direction, leads, of course, to the same point P 
as Figure 3D. 

Figures 3F and 3G are analogous to Figure 3D and show the con- 
struction of the harmonic coefficients with frequencies v=2 and 3, or 
periods of 13.5 and 9 days. The scales for the time of maximum are 
entered on scales around Figures 3F and 3G, while the scales for OP are 
the same in all diagrams 3D, 3E, 3F, and 3G. The sine-waves of fre- 
quencies 2 and 3, in units of C, are 

(9.4) 

(9.5) 

+0.16 cos 2x-0.20 sin 2x=0.26 sin (2xq-141 ø) with maxima on 
days 11.6 and 25.1 

-0.06 cos 3x+0.46 sin 3x=0.46 sin (3x+353 ø) with maxima on 
days 2.4, 11.4, and 20.4 

!0. The harmonic folding process---The constructions in Figures 
3D, 3F, and 3G can be interpreted as follows. Imagine a folding scale 
having links of the lengths of the ordinates y•. If stretched out, as 
illustrated in Figure 3H, its entire length is equal to the sum of the 
ordinates, in the general case, r a0. Suppose now each joint is turned by 
the angle 360ø/27--13ø.3 ß we then obtain Figure 3D- by turning each 
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joint by 2X360ø/27 or 3X360ø/27, we obtain Figures 3F and 3G. In 
general, this bending of the folding scale by the angles v X 2•r/r furnishes 
(r/2) a, and (r/2) b,, and the distance of the end-point from the origin 
is (r/2) ½,. This idea of the harmonic folding process, as it can be termed, 
will be helpful later. 

Usually, only the result of the folding process, P, is retained in the 
harmonic dial. Nevertheless, and although for most actual computa- 
tions numerical or mechanical harmonic analysis is preferable to graphical 
analysis, it is sometimes useful to recall the folding process as producing 
the vector OP, because it reveals the contribution of each single ordinate 
to the final vector. This contribution is particularly clear in the folding 
of the deviations from the arithmetic mean [the folding rule itself having 
then positive and negative links]; in Figure 3R., the large positive or- 
dinates 1 to 3 and the large negative ordinates 15 to 18 make the largest 
strides towards P. For illustration, Figure 4 shows, for an exact cosine- 

FIG 4-/1 t•RtOO OF FR/ZOU•NCY 3 iN 27 ORDtNATœ$ 
A/tO ItS GRAPHIC/IL HARMON/C AAYlLYSIS, OR FOLD- 
ING PROCE$• FOt• F•RiOD$ OF FREOU•NCY /,2,3• 4 
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wave of 9-day periods, the folding process for the frequencies 1 to 4 
(periods 27, 13.5, 9, and 6.75 days) of a set of 27 days. 

The folding process is also a good illustration of the remark at the end 
of section 7. 

11. Standard deviations for sine-waves and residua•s--An exact 
representation of the set of r ordinates y• is obtained by a series 4z(x) 
of the form (5.2) if it is extended so that the number of coefficients 
ao, a•, b•,... az, b• is equal to that of the ordinates; if r is uneven, then 
k=(r-1)/2, while for even values of r the last term is a(r/•.) cos (rx/2), 
with a(r/:) given by (5.6). This procedure to represent a set of ordinates 
in the interval t = 0 to T as a sum of sine-waves, as well as the approxima- 
tion obtained for smaller values of k, is a purely mathematical affair 
and involves in no way the physical nature of the phenomenon described 
by these ordinates. Especially the fact that the sum 4z(x) is periodic, 
repeating its values after intervals which are entire multiples of T, does 
not imply a similar property of the geophysical phenomenon outside 
the range of observation. The question of the physical meaning of the 
various sine-waves, and the possibility of "forecasting" by means of 
periodicities requires, therefore, additional tests, statistical in nature, 
which will be discussed later. 

With less than r coefficients, the series 4•(x) gives only an approxima- 
tion, the degree of which can be estimated in the following way: The 
deviations of the given ordinates yo from their respective arithmetic 
mean a0 may be called 
(11.1) •p=y•-ao (for values of p=0, 1, 2,... r) 

The standard deviation •' may be defined as usual, that is, •a is the 
average of the z•. It can be easily calculated from the yf and a0' for 
z•'=ypZ-2y•ao+ao • and summing over p=l to r gives Zz,a=•y• - 
2ao Zy,+raoa: replacing Zy, by rao and dividing by r, we obtain the 
well-known formula 

(11.2) •'•.=•y•"/r-ao • 
It can be shown (Appendix 1) that the average value of •(x•) is 

ao, and its standard deviation • is given by •=(a•eq-b•q-a•q-b,. • 
+...+a•q-b•)/2 or, applying (6.2) 

(11.3) 

except in the [geophysically irrelevant] case of the exact representation 
and r even, when the last term in the bracket is 2 a(•/,.) '•. Furthermore, 
the standard deviation s• of the residuals, defined by (5.3), yields, on 
evaluation (see Appendix 1), the remarkably simple expression 

(11.4) 
or 

(11.5) s}?=•:--(cx:+c=:+...+cz:)/2=(1/r) • y•'"--ao•--(cz:+c::+... 

Each additional harmonic term reduces, therefore, the residuals by 
subtracting half of its squared amplitude from t•, the squared standard 
deviation of the given ordinates. This applies also if only one or a few 
terms of q• are selected, for instance, the waves with frequencies 2 and 4. 
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In the case of exact representation all residuals and therefore s• 2 are 
zero so that, from (11.5), 
(11.6) (c•+...+c•_•)/2+a•2=• '• (with r even, l=r/2) 

or (czø-+...c•:)/2 = •': (with r uneven, l=(r- 1)/2) 
For convenience, we shall put, for r even, acr/:)x/2=c(•/•), so that the 
second equation always holds. This equation (for convenience, we shall 
only consider the case of r uneven) furnishes an estimate for the upper 
limit of the remaining coeficients, if a number of coefficients, up to the 
index k, have already been computed: because, from (11.6) and (11.5) 
(1!.7) cz+•:+c•+,.:+. . .+o•=2 •'2-cz:-c,.:-. . .-c•=2 s• • 
The square of the largest coefficient among the coefficients of the terms 
with higher frequency than k can therefore be not larger than the right- 
hand side, 2 sz :. 

.t,, T tt.,,.,_T.,, 1 '; t. '"'"1 " .... 1 1 1 
.... , , , , ................. , ...... , .......... , , • • 

S•t• C. SU• • C•UTED S•-•VES • • •.• A• 9-•Y •RI• •PARATE •INE-•AVE• AND RESIDUA•S 

12. Examples•Figure 5 illustrates the harmonic analyses of the 
international magnetic character-figure for the three 27-day rotations 
No. 208 (day l=May 1, 1921), No. 193 (day l=March 22, 1920), 
and No. 175 (day 1 = November 22, 1918) which, in this order, have the 
greatest amplitude ct, c•, and c• for the waves of frequency 1, 2, and 3, 
or 27-, 13.5-, and 9-day period, found in any of the 378 rotations analyzed. 
Rotation 208 was mentioned at the end of section 8 as containing the 
heavy disturbances of May 12 to 21, 1921. Figure 5 gives, for each of 
the three rotations, in the first row the observed C, and the sum of three 
sine-waves, then the three sine-waves separately, and, finally, the 
residuals or differences between the observed C and the sum of the 
sine-waves. Some numerical values are given in Table 1- day 0 (or 27) 
is the origin of time, •=90 ø means that a maximum of the sine-wave 
occurs on day 27. The standard deviation • refers to the observed 
values of C, va to the sum of the three sine-waves [•a•= (c•+c•+ca•-)/2], 
and sa to the residuals (sa•=t•-•). The unit used is 0.01 unit of C. 
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I--Harmonic analysis of the three rotations with the largest amplitudes c•, cs, and 
ca (unit for ao, c•, c•, cs, f, •a, and sa is 0.01C) 

Rotation 
number 

208 
193 
175 

Arith- 27-day ! 
metic period 1 ... 

, ,. ao ...... ½.t 

90 I 76 1235 I 
76 I •2 I 79 I 

,j, , 

13.5-day 
period 

Ct 
, 

29 32 
66 40 
17 290 

9-day 
period 

196 318 121 

,, 

Standard 
deviations 

•73 33 

66 59 29 
62 55 27 
55 46 30 

13. Generalized harmonic d/a/--The equations given in section 11 
suggest the conception of a generalized harmonic dial •6 consisting of a 
rectangular coordinate-system in 2k dimensions, the axes assigned to 
a•, b•, ... a•, b•. Our set of r ordinates [or deviations zp] is then repre- 
sented by a single point/> in this system, or the vector OP, and super- 
position is again represented by vector addition. The ordinary harmonic 
dials for the various frequencies are two-dimensional projections of the 
generalized dial. For the exact representation [if r is even, the last 
coordinate entered is not a(,/2•, but c(r/2)=x/2_Xa(,/,.)], the length of 
the vector OP is, according to (11.6), equal to •'x/2. All sets of ordinates 
with the same standard deviation f are therefore exactly represented 
by a point on the sphere with radius •x/2. The formulae (11.4) and 
(11.5) for approximate representation can also be easily interpreted in 
this geometrical illustration. While, of course, actual drawings cannot 
be made, the conception of the generalized dial will be found useful in 
certain applications, especially for the transition from sine-waves to 
periodicities of other form (section 40). . 

14. The ordinary periodogram--The periodogram of a function f(t) 
in the interval t =0 to T is a diagram in which the amplitudes cv of the 
sine-waves are plotted against their frequencies v or their periods T/v. 
A. Schuster 8'9 himself favored later the use of c? (instead of cv) as 
ordinate in order to simplify the statistical considerations based on the 
periodogram [or, as he called it, the periodograph], but for actual plotting 
c, is preferred as an illustration. 

For the series of the international magnetic character-figure C for 
the years !906-1926 used in Pollak's tt paper, with a total of r=7670 
days, an exact representation would be obtained by the same number of 
coefficients, namely, the average a•=0.62C [C is, as always, used to 
denote the unit of character-figures], 3834 amplitudes c, and as many 
phases a•, and, finally, the coefficient a•sa• for a cosine-wave of two-day 
period. As in (!1.6), we put again casa, =v'2 as•. The periods p, of 
the successive waves of frequencies v= 1, 2, 3,... would be, in days, 
p•=7670, p•--3835, pa=1917.5, ..., p•0=383.5, p,.•---365.2 (a year), 
.... p•--182.6 (6 months),..., p•9•=40.16, p•=39.95, ..., p2•= 
30.08, p•, = 29.96 .... , p• = 9.002, Psis = 8.992, . . . , P**8 = 8.006 .... , 
p,•e=3.0008, p•,=2.9996 ..... Pa• = 2.0005, Pain = 2.0000. These 
few values indicate that the difference in the length of the successive 
periods T/v is very small for the high frequencies, because p•-p,+•-- 

**J. Barrels, Pub. Nat. Res. Council, Trans. Amer. Geophys. Union, 12th annual meeting, pp. 126-131 
i1931). 
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T/v(v+l) is approximately proportional to I/v:. The labor involved 
in computing all coefficients would be very great. Pollak selected the 
periods 3 to 7 full days and 21 to 40 full days and their halves and thirds, 
because they are most easily calculated, the angles •x• in (5.5) repeating 
themselves after each period. 

The fact that most of these peri- . 
ods selected by Pollak are not entire 
submultiples of 7670 must not be 
overlooked' however, if we omit a 

few days at the end of the series, they become submultiples of the 
slightly reduced number of days [for 
instance, 17 goes in 7667], so that 
the amplitudes c can still be said to 
be derived from practically the whole 
series. 

Around the periods 9.00 and 
30.0 days, waves for the additional 
periods of 8.95, 8.96, ..., 9.05 days 
and 29.7, 29.8, ..., 30.2 days were 
inserted by Po!lak, using Darwin's 
scheme of approximation [section 
38]. I have computed, in addition, 
the amplitudes for four submultiples 
of a year (periods 3, 4, 6, and 12 
months). Pollak's periodogram, with 
these additions, is reproduced in 
Figure 6' for clearness, the scale for 
abscissae is not uniform, spreading 
between 8.95 to 9.05 and 29.5 to 
30.5 days, and changing as indicated. 

The periodogram gives only the 
amplitudes c,. The phases a• could 
be indicated by writing them down, 
or making the periodogram three- 
dimensional, combining the separate 
harmonic dials for each frequency 
by aligning them along their origins, 
like wheels on a common axis, which 
would correspond to the base-line in 
the ordinary periodogram. A mixed 
two-dimensional dial of all frequen- 
cies, indicating c•, av by vectors, 
seems, however, to be confusing. 

15. Discussion of Pollak's pe- 
riodogram--We shall apply formulae 
(11.3) to the 73 amplitudes c, cal- 
culated by Pollak. The sum of the 
c, 2 is 0.02388C •, and therefore the 
standard deviation ,/• of the sum of 
these 73 sine-waves is given by 
=0.01194C •, or w=0.1093C. This .. 

ß 

: . 
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means that the approximative series •, which is the sum of the arith- 
metic mean a0=0.621C and of these 73 sine-waves, has values which 
deviate from a0 only by a few tenths of the unit C. The poor approxi- 
mation of • is even better illustrated by applying (11.4). The standard 
deviation of the 7670 daily values of C, for the years 1906 to 1926, is 
/'=0.461C. The standard deviations of the residuals, s•, is given by 
s•=.('2-•2=0.21266-0.01194=0.20072C 2, or s•=0.448C. If, there- 
fore, the sum q• of the 73 sine-waves is subtracted from the given values 
of C, the fluctuation of the residuals, measured by s•=0.448C, is practi- 
cally the same as the fluctuatim, of the given values of C, measured by 
•-0.461C. 

Are, then, the 73 sine-waves of the selected frequencies at least dis- 
tinguished by large amplitudes, as compared with the rest of the total 
of 3835 amplitudes? The answer is suggested by (11.7). The sum of 
cv 2 for the remaining 3762 sine-waves is 2s• 2 = 0.•0144CL If all amplitudes 
except one were zero, this one amplitude would be 0.63 C--a case obviously 
ruled out by a mere glance at the original series. If, on the other hand, 
all remaining amplitudes should have the same value c', this would be 
given by (c')2=2s•2/3762, or c'=0.0103C. The sum of the squares of 
73 of the remaining amplitudes would then be 73(c')•=0.0078C 2. This 
is distinctively less than the sum of the squares of the 73 amplitudes for 
the actually selected waves, which above was given as 0.0239C ø-. The 
answer to our question is therefore affirmative. 

We must remember, however, that the 73 selected frequencies are 
in no way equally distributed between all frequencies' from the list for 
the lengths of all periods given in section 14 it is seen that 958 periods 
are longer than 8 days, and the remaining 2877 shorter. Of the selected 
periods, 67 belong to the former and only six to the latter group: on the 
average, one out of 14 periods has been actually computed in the group 
of periods longer than eight days, but only one out of 480 periods in the 
group of shorter periods. This remark will be used later (section 32). 

16. Non-cyclic variation, selection-, or curvature-effect•Harmonic 
analysis can be applied to all functions of time, f(t), occurring in geo- 
physics, and will result in a satisfactory approximation of f(t) by a sum 
of sine-waves. It has already been said (section 11) that the significance 
of each sine-wave has to be tested, as will be described later. Apart 
from these tests, it will be easier to trace the real periodicities if such 
parts of f (t), which are obviously non-periodic, are separated before 
the harmonic coefficients are discussed. 

A typical case of a non-periodic part is the secular variation in ter- 
restrial magnetism, which, in the course of a day or a month, can be 
considered as a linear one-sided trend. In computing diurnal variations, 
its effect is seen in a systematic difference between the values for suc- 
cessive midnights, the midnight-difference, or non-cyclic variation. 
Another, and even more effective, cause for non-cyclic variations in 
terrestrial magnetism is the recovery after disturbances. f(t) can be 
freed from such effects by subtracting a suitable linear function of time, 
either by correcting the ordinates before the harmonic analysis, or by 
correcting the coefficients after the analysis. [The formulae deduced 
numerically by C. C. Ennis •* can be derived in general terms (see ap- 

a*Terr. !vlag., 32, 161-!62 (1927). 



GEOPHYSICAL AND COSMICAL PERIODICITIES 17 

pendix 4).] There has been some discussion on the feasibility of such 
non-½ydi½ ½orr½½lions. They should be applied only if it is certain that 
the non-cyclic variation is due to an approximately linear function. 
This seems to be the case, for instance, in the average diurnal variations 
of magnetic horizontal intensity on quiet days, which show a systematic 
increase from midnight to midnight, and of those on disturbed days, 
showing a decrease. 

More troublesome to eliminate is a systematic (mostly parabolic) 
curvature, which appears in selecting certain parts of a function of time. 
The classical case is the computation of the average diurnal variation 
of atmospheric pressure on clear and cloudy days in extra-tropical 
latitudes, which, in effect, amounts to selecting from the barogram and 
superposing, intervals of 24 hours between successive midnights, with 
high pressure (for clear days) and intervals with low pressure (for 
cloudy days). Now the general curvature of each single interval will be 
systematic so that, after non-cyclic correction, the average diurnal 
variation for clear days will show a pronounced maximum about noon, 
and that for cloudy days a pronounced minimum about noon. That 
these maxima and minima have nothing to do with an actual diurnal 
variation can be proved by selecting intervals of 24 hours between suc- 
cessive noons, which will show the maximum in the average clear-day 
variation about midnight. The possibility of such an effect, which was 
found in various phenomena by the author, as has often been overlooked, 
leading to curious misinterpretations. By suitable arrangement, this 
effect can be determined separately and corrected for. 

(III) STATISTICAL PRINCIPLES--RANDOM WALK 
17. •h½ random walk with equal stretches---The basis for all statistical 

considerations on periodicity is the problem of the "random walk," 
formulated, in its simplest case, by K. Pearson sø as follows' "A man 
starts from a point 0 and walks a distance ! in a straight line: he then 
turns through any angle whatever and walks a distance l in a second 
straight line. He repeats this process n times. I require the probability 
that after these n stretches he is at a distance between r and (r+dr) 
from his starting point, 0." Figure 74o illustrates the case n= 27' in 
addition, the random azimuths of the successive stretches are marked, 
in the upper left corner, by dots on a circle with radius l, in order to 
demonstrate (as in section 7) that the mass-center of these dots, as the 
average of the n-vectors of length l, is removed from the center of the 
circle by exactly 1In of the distance between the starting and the end- 
point of the random walk. 

The problem as well as its generalizationsmfor instance, to the case 
of stretches varying in length [section 18], or to more than two dimen- 
sions-has been amply discussed. •a'2• We need here only the following 
asymptotic expression for large values of n. Only the main theorems 
will be cited and discussed here: as to exact proofs, see the remark at the 
end of section 4. 

'•J. Bartels, Ann. Hydrogr., 51, 153-160 (1923); Beitr. Physik frei. Atmos., 11, 51-60 (1923); Terr. 
Mag., 37, 18-20 (1932). See also S. Chapman and M. Austin, London, Quart. J. R. Met. Soc., 60, 23-28 
(1934). 

•'K. Pearson, Nature, 72, 294 (1905). 
•øConstructed by taking the a•imuth's from L. H. C. Tippert, Random sampling numbers (Tracts 

for computers, No. 15, Cambridge, 1927). 



18 J'. BARTF_•S [VOL. 40, No. l] 

ß ß ß ee • 

F/G, ?-RANDOM WALK WITH EQUAL $TRœTCHE$ 

The random walk of n stretches may be repeated a great number 
(N) of times. The distance reached in each case may be called L•(n), 
L2(n), ..., L•r(n). Then it can be shown that the average square- 
distance, defined by 

(17.1 ) M•(n) = limes [ (L •'•(n) -5-... + L•(n) ) / N] 

is simply nl •. M(n), called the expectancy, 4• is therefore given by 

(17.2) M(n) 

and the probability w(r)dr that a distance between r and (r+dr) is 
reached is (with e•=exp x) given by 

(17.3) w(r) = (2/M') r exp (-r•/M ') 
This curve, for which examples are given later (Fig. 9), reaches a maxi- 
mum for r=M/x/• and has an inflection-point at r=Mx/'•'/2. As 
always, "probability" means distribution of "relative frequency," that 
is, w(r)dr is the limit, for N---•o•, of the ratio of the number of distances 
falling between r and (r+dr), to the number N of all distances. 

w(r)dr is the probability for the end-point falling between r and 
(r-{-dr), that is, within an area 2a-rdr' the probability for the end-point 
falling within an infinitesimal area da is therefore (1/•rM •) exp 
(-ta/M•)da. If we plot these probabilities as vertical ordinates on the 
plane of the random walk, we obtain a symmetrical_bell-shaped surface, 
produced by the rotation of a curve which is (1/Mx/'•r) times an ordinary 
normal Gaussian frequency-curve for standard deviation M/%/'•'. 

•This definition of the expectancy, as thesquare-root of the average •quare-diatance, makes the for- 
mulae aimple. Some autl•ors prefer to call Mry'•'/2 the expectancy for a reason given at the end of sect/on !7. 
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It is convenient to express the distance r as a multiple of the ex- 
pectancy M 
(17.4) r = •M 

Then the probability that a distance between •M and (•q-d,OM is 
reached, is w(•)d •, with 

(17.5) w(K) = 2 K exp (-- •*) 

The total probability W(g) that a distance greater than gM is reached, 
is obtained by integrating w(K) from g to oo, giving 

(17.6) W(K) =exp (- •) 
TABLE 2--Probability W Oc)=exp (-•ca) that a random walk reaches a point 

beyond a circle with radisas •M 

K w(K) • w(•) • w(•) • w(•) 

0.0000 1.0 0.8326 0.5 2. 146 10'a 4.015 10 -7 

0. 3246 0.9 0. 9572 0.4 2. 628 10-* 4. 292 10's 

0.4724 0.8 1.097 0.3 3.035 10 -4 4.552 10'9 

0.5972 0.7 1.269 0.2 3.393 10 '• 4. 799 10't0 

0.7147 0.6 1.517 0.1 3.717 I 10 '8 5.257 10'ta 
The higher values in Table 2 apply, of course, only to large values of n, 
because, for instance, with n=16, M=4l, and the greatest possible 
distance, with all 16 stretches in line, is 16l = 4M, so that W(4) = 0 in 
this case. For values of K smaller than x/•, however, the formula 
(17.6) is a very good approximation, and it is hardly ever necessary 
in geophysical applications to use the exact distribution-formulae 
worked out by K. Pearson? and replacing (17.3) for small values of n: 
it is sufficient to note for later use that (17.2) remains valid for small 
values of n, including n = 2. 

In Table 2, the value g=x/log nat 2=0.8326, with W(0.8326)=0.5 
is of special interest, because a circle with the radius 0.8326 M (usually 
called the probable radius, though this expression is misleading) divides 
the plane into two areas in which the end-point of the random walk may 
fall with equal probability. 

The arithmetic mean of the L•, L,., ..., that is, limes (L•q-L•+... 
+L•r)/N, can be shown to be 

(17.7) M x/r-72 = 0.8862M 

18. Random walk with unequal stretches•The statistics of a random 
walk, for which the successive stretches are unequal, say, lx, la .... l,, 
obey, under certain conditions, the same set of formulae as that in section 
17. The conditions and the proof are fully given by A. Khintchine•: it 
is sufficient here to say that the 2V sets of n stretches, l'•, l'u, ... 
1•", l•", . . . I,[' ; . . . ; 1• (m, l• (m, ... 1,? •, used for each walk must be taken 
at random from a common "supply" of stretches (nN in number)' the 
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frequency-distribution of the lengths of the single stretches in this 
supply is arbitrary in wide limits 4•' for instance, it can be itself of the 
form of the equation (17.3). We obtain then the solution for the problem 
of the random walk if we simply define the expectancy ! of the single 
vectors by 

8--R•NDOM WALK W/FH UNEQUAL 
STRETCHES 

•a'i'hts result was not known to K. Stumpif, who i•n his interesting paper on periodicities in sunspot- 
numbers (Prager Geophysika!ische Studfen, Heft 4--Cechoa!ovak. Statistik Reihe 12, Heft 14, Prague, 
!930) discusses a special case of frequency-distribution, differing from the normal curve, and finds, of course, 
by rather intricate analysis, the general result of Khintchine for this special distribution. 
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and apply the equations numbered (17.2) to (17.6)' that is, the random 
walk leads, with the same probability, to distances between r and (r +dr) 
from the origin as if it had consisted of n equal stretches of length l, 
where l is given by (18.1). 

An example of such a random walk of n--125 stretchesmagain con- 
structed with the help of Tippett's random numbers•ø--is given in Figure 
8; the amplitudes are distributed around their average value l accord- 
ing to a normal Gaussian law with standard deviation 0.39/ (derived 
from the random numbers in Sir Gilbert Walker's •)_aper of 193027). 

19. The expectancy for an average vector, the 1/x/'r• law---Our formulae 
can be readily used for another geometrical problem, which is only a 
formal modification of the random walk. If we conceive each stretch of 
length l•,/• .... l• as a vector 1•, 1•,... 1•, the line between O and the end- 
point of the random walk is the vectorial sum 1•+1•+ ... +1•, and 1/• 
of its length is the average vector. If each single vector is plotted with 
O as starting point, and its end-point indicated by a dot, then the mass- 
center of the dots represents, again, the average vector (1•+1•+... 
q-l•)/n, much as indicated in section 7. The distribution of the average 
vector for a large number (N) ef random walks (of • stretches each) 
is therefore a reduction of the distribution for the vectorial sum in the 
ratio 1' n. For the sum, (17.2) gives the expectancy lx/n' therefore the 
probability for the average vector is governed by (17.3) and (18.1), 
with the expectancy m (defined by the average square m •' of the average 
vector) given by 

Since l, according to (18.1), is the expectancy of the single vectors, 
and m that of the average of n vectors, we can formulate as follows' 
Averages for n random vectors have an expectancy which is the orig:nal 
expectancy of the single vectors reduced in the ratio 1/.v/n. 

20. Comparison of harmonic dial and random walkraThe main appli- 
cation of the theory of probability to geophysics consists in finding, for 
a given set of observed quantities, a suitable statistical ana!ogue which 
can be accepted as representing the idealized case reached if the number 
of observations, under the same conditions, could be infinitely increased. 

The random walk, in the modification of section 19, offers itself as 
the statistical analogue to such harmonic dials as Figure 2, showing 
378 sine-waves of 27-day period (amplitudes c, phases a) in the character- 
figure C. We shall first ask whether the "cloud" of 378 points on the 
dial is distributed so that each point can be regarded as the end-point 
of a random walk made under the same conditions. This puts N--378 
and leaves n arbitrary. As the parameter governing the distribution we 
compute the expectancy M, where M*', analogous to (17.1), is defined as 
the average of the squares, c •, of the amplitudes for the 378 waves, and 
find M=0.262C. 

In order to find the frequency-distribution, we count out how many 
amplitudes c fall in classes between equidistant limits. These limits, 
chosen according to the conventional role that about 20 classes should 
be occupied, are 0, 0.036C, 0.072C, etc. The numbers of amplitudes 
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in each class [the limits of which are marked by vertical lines] are en- 
tered as ordinates in Figure 9, and are compared with the theoretical 
frequency-distribution (probability), that is, with the curve computed, 
with the expectancy M=0.262C, from (17.6), the theoretical frequency 
between •M and •2M being, of course, N[W(•) - W(•2)]. The observed 

FIG. 9-NLg•BER OF ROTATIONS QN?ERVALS OF 2• DAYS)Pt•Vl• FOR 
tNDtCATœD F•RtOD5' IN/NTœRNAT/ONAL •/•'7'/½ CHARACTœR- 
FIGURE C• I•-I• AMPLITUDES BETI4•EEN 0 AND 003• C• 0,03• C 

AND 00•2 

frequencies agree fairly well with the theoretical curve, the differences 
appearing to be of accidental nature. Only the isolated highest amplitude 
c--0.760C might need some comment. However, if it is expressed as a 
multiple gM of M, we obtain g=2.90, for which, after (17.6) W(g) is 
about !/4500, meaning that, on the average, 1 out of 4500 amplitudes 
should be even greater than 0.760C; it is therefore not strange that one 
occurs already among the first 378 amplitudes observed, that is, in 1/12 
of the average number 4500. [The limitation of C to values between 
0.0 and 2.0 excludes, of course, amplitudes c of sine-waves over a certain 
theoretical limit, which implies a restriction on the use of (17.6) for 
higher values of g. The theoretical limit mentioned for c is, by the way, 
not 1.00C, as one might guess, but about 4/r=1.27C, furnished, for 
instance, by a succession of 14 days with C--2.0 followed by !3 days 
with C= 0.0.] 

From the observations described in section 8, for each "rotation" of 
27-day length, the sine-wave of frequency 2, or !3.5-day period, was also 
computed. The 378 amplitudes obtained in this way, applying the same 
analysis as in the case of the sine-waves with 27-day period, give the 
expectancy M=0.264C, and the frequency-curve in Figure 9. The 
highest amplitude is 0.657C, with •=2.49, and W(2.49)-.1/500, even 
greater than above, and practically not much different from 1/378. 
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Another test consists in deriving, from the 378 amplitudes, the 
"probable radius" and the "arithmetic mean," for the cloud, which 
should (section 17) theoretically equal 0.833M and 0.886M, respectively. 
The cloud for the 27-day period actually gives for these ratios 0.86 and 
0.88, and that for the •3.5-da¾ period gives 0.82 and (k87. The agree- 
ment with the theoretical values is satisfactory, because the deviations 
of these "observed" ratios from the theoretical values may be expected 
to be of the order 1/x/N, or 0.05. The probable radius is also drawn in 
Figure 2. 

So far as these tests go--and only so far•ach of the Ar-- 378 vectors 
in the harmonic dial can therefore be conceived as the result of a random 
walk of n stretches of lengths l•', 1•', ... l•,'; 1• '•, l• '•, . .. 1,•'•; ... •(a78), 
... l• (•78), where the stretches vary at random around a__mean-square 
value 1, formed as in (18.1). Only the parameter M•-lx/n, the expect- 
ancy, is prescribed by the observations, while n can be chosen arbitrarily, 
with l--M/•n following. Of course, the equivalent interpretation of 
section 19 can also be applied, conceiving each vector in the dial as the 
average vector of n random vectors. 

21. Harmonic dial and average vector--This interpretation of section 
19 can also be applied to our dial in Figure 2 in another way. This time 
we put n--378, and consider the hypothesis that our dial in Figure 2 is 
just a sample of a great number, N, of dials, each representing 378 
vectors, with the same (or only slightly different) expectancy/--0.262C 
for the single vectors. In each of these hypothetical dials, we consider 
the average vector, just as in Figure 2, where its end-point is indicated 
by a cross. Then, according to (19.1), the expectancy of this average 
vector is m=l/x/•'--O.262/x/378--O.0135C, and the frequency-distribu- 
tion around the origin is governed by (17.3), with the expectancy m 
put for M. Now, in our dial Figure 2, the average vector is actually 
found to be 0.0336C, or 2.49m. According to (17.6), a value exceeding 
2.49m should occur only once in about 500 cases. Here it seems doubtful 
whether it might be assumed as merely accidental that, in the one and 
only dial actually obtained, a large average vector should be obtained 
such as might be expected only once in about 500 trials' still, the proba- 
bility 1/500 for chance is generally considered not so small as to warrant 
a definite claim that the observations considered (in our case, the vectors 
plotted in Fig. 2) do not correspond to the statistical ana!ogue (random 
walk) with which they are compared. By the way, 1/500 is roughly 
the chance, that, in throwing a coin, a predetermined side appears nine 
times in succession. 

If, in all 378 sets, the 27-day period were perfectly persistent, that 
is, would have the same amplitude and the same phase (or time of 
maximum) persisting throughout the 28 years, then the average vector 
would be exactly equal to the single vectors, that is, the average amplitude 
would be M, instead of m--M/x/378. This would give •--x/'37'8 •. 20, 
and the possibility W(•) for chance would become practically zero. If 
the 27-day period should vary at random, we would obtain values of 
• around 1. The value •--2.49 actually obtained could be interpret• 
as meaning that there is a probability of 500:1 that the 27-day period 
contains at least a small persistent part. We shall see later why this 
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interpretation--which is commonly used in applications of periodogram- 
analysis--is not warranted (section 36). 

In the case of the waves with 13.5-day period, we obtain the expect- 
ancy of the average vector m-- 0.0136C, while the average vector actually 
computed is 0.0200C = !.47m, and the probability for chance is W(1.47) •- 
1/9, much higher than in the case of the 27-day period. 

22. Remarks on the probability of chance ( •-test)-- We have fol!owed the 
generally adopted convention in calling W(g) the "probability of chance." 
This is, of course, only a short expression for the exact definition of 
W(g), which may be repeated for the case of average vectors. From 
the amplitudes of n single vectors for the same frequency, we calculate 
the ex•pectancy of these single amplitudes analogous to (18.1), divide it 
by x/n and thus obtain, according to (19.1), the expectancy for the 
amplitude of the average vector of that. frequency; this expectancy, our 
m of sections !9 and 21, will be called e from now on. It is based on the 
assumption of complete independence of the single vectors. By actual 
calculation (vectorial sum, division by n) of the average vector, we find 
its amplitude c, and calculate g=c/e. W(g) is exactly the probability 
that, under random-walk conditions, an amplitude greater than c= •e 
should be found. In other words, if the random walk is repeated N 
times, about NW(g) times a distance greater than ge should. be reached, 
or about once if it is repeated (1/W(•)) times. If W(•) is very small, 
that is, [(1/W(•)] is very large, it is reasonable to assume that the con- 
ditions of random walk, or pure chance, do not hold because in the one 
and only case considered we bave obtained a result which should occur 
only very rarely, and the suspicion is justified that some systematic 
regularity is contained in the distribution of the single vectors--which 
will be seen later. 

Ad. Schmidt and Sir Gilbert Walker •7 have 'called attention to the 
following point' If only one frequency is considered, the considerations 
regarding W(s) hold. But some authors, having calculated c, c, and • 
for each of a number (say 100) of independent frequencies, picked out 
that frequency with largest •, say, •. Then, of course, we must ask 
for the probability that once in 100 independent cases a value greater 
than • times its expectancy should occur, and that is 100 W(g•). 

Since the question whether W(•) is small enough in order to exclude 
chance is a matter of opinion anyway--one in a million is often considered 
as an upper limit--it is not necessary in most cases to consider the more 
accurate formulae introduced by Sir Gilbert Walker. He asks for the 
probability that, on random-walk conditions, the 100 independent 
values of • should all be smaller than •, and finds{ 1-[1- W(•)] •øø}; 
this, however, is, for small W(•), practically 100 W(•x) If the observa- 
tional material is large enough, some objections raised by BrunC '7 do 
not hold. Much more serious is a common mistake in the choice of 
the expectancy c, which it is the object of this paper to indicate (section 
32 and following). 

23. Elliptical distributions--The discussion of the properties of N 
sine-waves of the same frequency has, by the harmonic dial, been trans- 
formed into the geometrical analysis of the equivalent N vectors plotted 
from the origin, or of the "cloud" formed by their N end-points. We 
have seen that, under random-walk conditions, this cloud approaches 
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circular symmetry around the origin for large values of N. In actual 
geophysical work, however, especially for diurnal and seasonal variations, 
the cloud can have quite different shapes. If, for instance, the phenom- 
enon contains a regular sine-wave of the frequency considered, with 
constant phase and amplitude, which is superposed by random fluctua- 
tions (introduced, for instance, by errors of observation), the cloud of 
points will be circular, but centered around the point A representing the 
regular sine-wave instead of around the origin O. If the regular sine- 
wave bas constant phase, but a varying amplitude, the cloud is stretched 
into elliptical shape, and this elliptical distribution will be recognized 
most easily if the superposed irregular fluctuations are comparatively 
small. 

Such elliptical distributions, which, in the most general case, have 
been discussed from the standpoint of the theory of probability by A. 
Khintchine, 6 have been found in the diurnal variations of terrestrial 
magnetism' statistical methods for computing the ellipses and further 
discussion of their physical meaning are given in a former paper in this 
JOURNAL? 

If the center A of the cloud is well outside the origin O, it is sometimes 
desirable to consider each single vector c =OP to consist of the regular 
vector OA =r (with constant amp!itude r) and an irregular part AP=i 

(23.1) i =c-r 

The expectancies of c and i---computed in the usual way by summing the 
squares of the amplitudes, dividing by the number of vectors, and taking 
square root--may be e and i. The following relation is convenient for 
changing from c to i, or vice versa, namely 

(23.2) • = e: -- r • 

This formula is a two-dimensional generalization of (1!.2), because 
(23.1) corresponds to (11.1). [The proof is simple: The coefficients 
a and b of the vectors i and c follow (!!.1) and (11.2) separately, and the 
squares of the vector-amplitudes are a2+b2.] If, therefore, we have 
calculated, for a cloud of points, the expectancy for distances of these 
points from any origin O, we obtain the expectancy for the distances of 
the points from their mass-center A by subtracting r 2, where r is the 
distance OA. 

24. The expectancy of sine-wave amplitudes calculated from rare 
events occurring at randore--In the preceding paragraphs, we have applied 
the conception of the random walk to vectors representing sine-waves 
in the harmonic dial. It can, however, also be applied to the actual 
calculation of the harmonic coefficients, as represented in the folding 
process (section 10), and this will establish a statistical relation between 
a set of random ordinates and its harmonic coefficients, which was the 
starting point oœ A. Schuster.* 

The original conception of the random walk, with stretches of equal 
length, is the geometrical expression for the harmonic analysis of a 
function of the following type' Consider a long time-interval T, (20 
years, say), divided into a large number r of equal intervals (about ten 
million minutes of time). The ordinates are put equal to 1 for minutes 
characterized by a (comparatively rare) event, for instance, the beginning 
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of a magnetic storm with sudden commencement at a given observatory, 
and zero for all other minutes. The total number r• of events, or ordi- 
nates 1 will then be small (in our example not more than, say, 500) 
compared with the number r0 of ordinates O (r• < <r0) and they will be 
scattered over the whole interval 7' considered. Take, then, a sine-wave 
of high frequency, say, K = 240, with a period of one month; in the folding 
process, this means that the directions of the links describe a full swing 
of 360 ø per month. if, now, the events are scattered at random (like 
the atomic disintegrations in radioactive material), the folding process 
will lead to a diagram equivalent to a random walk with n =r• stretches. 

In order to introduce the theory of probability, we must again 
hypothesize that our interval of observation T is a sample of a large 
number N of such time-intervals of length T with the same statistical 
properties, the average number of events in each interval being r•. 
For a given period, the random walk of the folding process will lead 
to distances L•(r•), ... L•(r•), and their relative frequency, or the 
distribution of the end-p_oints, will be governed by the formulae (17.2) 
and (17.3), with M= V'r•. Now, according to sections 9 and 10, the 
amplitudes c• of the sine-waves are obtained by dividing the distance L 
by half of the number (roq-r•) of ordinates. If, therefore, we define, 
analogous to (17.1), the expectancy ½• of the amplitude by 
(24.1) c? = (c•+c•.•+...+c•)/N 
we obtain 

(24.2) c,= 2x/r•/(ro+r•) 
The remarkable feature of this result is that the expectancy 

does not depend on the length of the period, or the frequency v. 
25. Random walk and folding process, equipartition of the variance• 

Some caution is necessary in applying the idea of the random walk to 
the ordinary case of equidistant ordinates, in which the directions in 
the folding process are limited to a few submultiples of 360 ø, such as in 
Figures 3D-3G. The theorem can be formulated most clearly if we use 
in the folding process, not the ordinates yo themselves, but their devia- 
tions z• from the mean ao, z•=yo-ao (o= 1, 2, ... r), as illustrated in 
Figure 3E. 

A great number N of sets of r ordinates may be given. The average 
of all Nr ordinates shall be zero, and the sum of their squares may be 
Nrr •, so that •- is their standard deviation- nothing else will be assumed 
except that the ordinates are "random numbers," quite independent 
of each other. 

Such sets can, for instance, be obtained by drawing ordinates at 
random from a great supply of ordinates having normal (Gaussian) 
frequency-distribution with standard deviatiorr i' and combining them 
to sets of r each. In each individual set, the arithmetic mean a0* of the 
r ordinates will not be zero, and the standard deviation •* will not be 
exactly •', but, on the average for all N sets, according to well-known 
statistical laws, 

(25.1) (ao*)==•=/r and 

This example is, however, by no means the most general case for 
which the following theorem holds, because the frequency-distribution 
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of the supply of ordinates may deviate from the normal law in wide 
limits. •.• 

Each set of r ordinates is subjected to harmonic analysis yielding, 
for r uneven, (r-1) • 2 amplitudes cv and phases •v; for r even we obtain 
(r-2)/'2 amplitudes cv and phases a• and a(r/•_). We form, for each 
frequency v separately, the average square amplitude, or expectancy, 
ev for all N sets, defined by (24.1) and, in the same way, ar/o.. Then it 
can be shown that 

(25.2) c• = 2 •- x/r; arl•_ = •,' -v/r 
The independence, for random ordinates, of e, of frequency • can be 
termed the law of the equiparlition of the variance (where variance is the 
expression introduced by R. E. Fisher 44 for the square of the standard 
deviation). Because, taking the case of r uneven, we know from (11.3) 
that each amplitude c• contributes cf/2 to the variance •/•o. of the sum 
• of sine-waves. If, therefore, we write down (11.3) for each set, sum 
up, and divide by N, we obtain 
(25.3) (•*)• = 
If we assume 4'• equipartition, or c•=c•. ø- .... =c(,_•/o.ø=c •, we obtain 
(•'*)==cø'(r-1)/4. Remembering that, because of (25.1), (•*)•=•'= 
(r-1), 'r, we obtain e•-=/-= 4./r, that is, (25.2). 46 

The former formula (24.2) appears now as a special. case of (25.2), 
because, in the example considered in section 24, •' = x/rt,, •r and r =r0+r•. 

In a single set of r ordinates, c• can have an5' (positive) value, but the 
frequency-distribution of c, in a large number N of sets is governed by 
(17.3) to (17.6), with M=e; the total probability that a single c• exceeds 
Me, is again W(•) =exp (- •). 

26. I>eriodogram for random fiuctuations•The periodogram, as 
defined in section 14, can be plotted for each of the iV sets of r ordinates 
considered in section 25; each periodogram shows, against the abscissae 
v, the individual amplitudes cv as ordinates which, if it is desired. can be 
connected by a more or less arbitrary line. The mean periodogram, 
representing the average of all sets, shows the expectancy ½•, defined by 
(24.1), as a function of v; according to the law of equipartition (25.2) 
the mean periodogram for random ordinates would show a straight line 
at the distance 2•//x/7 above the horizontal axis (only declining, for r 
even, to •/x/r for the highest frequency v=r/2). 

It may be noted that the mean periodogram does not only depend on 
the standard deviation •', but also on r. If, for instance, we divide 
!00,000 random ordinates into N= 1000 sets of r--100 ordinates, the 
mean periodogram is only half as large as if we divide the material into 
N= 4000 sets of r = 25 ordinates. 

The discussion of this paragraph applies at once to the case that the 
ordinates of any given function have accidental and independent ob- 

•See section 18. 

•K. E. Fisher, Statistical methods for research workers, 3rd ed., Edinburgh, 1930. 
•The remarks given above are only illustrations, not a proof of the law of equipartition. For a simple 

l)roof, insert (5.5) into ½v • =av•+bv • and add for all 31 sets. 
•In the case consictered, it has been necessary to distinguish between r and (v--l), because r, the 

number of ordinates in a single set, may be as small as 3. But in all cases where the total number of ob- 
servations ap12ears in the equations, we shall •enerally not ouestion scrupulously whether (N•I) should 
stand for N, because we take N so large that this difference should not matter. In other words, observa- 
tional material in which the addition or omission of one or a few observations should alter the conclusions 
seriously, is not considered sufficient for a statistical treatment. 
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servational errors, with standard error •'. Then the peri_odogram of the 
true ordinates is superposed by the periodogram 2•/x/r of the errors, 
the superposition, for each separate frequency, following (23.2). The 
influence of observational errors on the harmonic coefficients is, however, 
mostly negligible in geophysical applications; it has been often mistaken 
for the influence of the actual irregular fluctuations of the observed 
quantity, which are fundamentally different in nature and will be shown 
to have, in each case, a peculiar type of mean periodogram (section 30). 

(IV) PERSISTENT PERIODICITIES 
27. The expectancy as a function of the length of period--The definition 

(24.1) of the expectancy ev can, of course, at once be extended to the 
case that the Nr given ordinates represent a real geophysical phe- 
nomenon. The discussion in section 20 can therefore, simply by putting 
e for M, be expressed in the following way: With N=378 and r=27, 
that is, from 378 sets of 27 character-figures C for consecutive days 
(rotations), we obtain the expectancy e =0.262C for sine-waves of 27-day 
period computed from single rotations. 

Since the expectancy e, is the basis for all further discussion, it is 
necessary to consider the reliability of ev if it is derived from N sets. 
It is clear that a single set, that is, a single amplitude c•, is a bad approxi- 
mation for ½•, because the single values of c• vary as expressed by (17.3) 
with e• for M (see the probability-curves in Fig. 9). We imagine a 
very large supply of amplitudes cv. If we take, at random, N amplitudes 
c• from this supply, we shall compute an approximate expectancy 
½•(m which differs from ½v. If we repeat the computation for another 
set of N amplitudes, and another, etc., the e• ½m will be distributed 
around ev. This scattering, for large values of N over, say, at least 25, 
can be expressed by the standard deviation of the ev era, which is approxi- 
mately 

(27.•) e•/V'• 
If N is large, this distribution around e, approaches the normal law of 
errors; for smaller values of N, the distribution has been calculated by 
A. Schuster., 

We now turn to a fundamental consideration. The character- 
figures C for consecutive days are certainly not independent, since a 
.magnetica!ly quiet or disturbed time generally extends over a few days 
•n succession. A number of statistical considerations are available 
for testing the degree of this dependence of consecutive values of C; 
for instance, by adding the figures C for two, three, and more consecu- 
tive days. If the standard deviation of C is f(!), and the standard 
deviations of the sums for 2, 3, etc., days, each divided by x/•, 
etc., are /'(2), f(3), etc., respectively, then, on complete independence, 
we should expect •(1)--•(2)--f(3)•-..., so that the ratios •'(2)/•(1), 
•'(3)/•'(1), ... can be taken as measures of dependence. This test 
is mentioned here because its two-dimensional analogue will be used 
later for testing quasi-persistent periods. 

Although, of course, no harmonic analysis is needed, and, in fact, 
would be clumsy for testing independence, we are, on the other hand, 
interested in the effect of dependence on the harmonic coefficients, 
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especially, on the expectancy e•. It should, of course, make the expect- 
andes for periods of a few days smaller than those for longer periods, 
instead of equipartition as expressed in (25.2). We shall test this as- 
sumption for the 27-day period in the series of international character- 
figures C. In this case, with i'=0.467C (this value of/' for the interval 
1906 to 1933 is only slightly higher than that, 0.461C, for the interval 
1906 to 1926 used in section 15) and r=27, equipartition (obtained, for 
instance, by mixing up the daily figures at random) would give, from 
(25.2) the expectancy 2X0.467/x/27=0.180C. The actual expectancy 
e, has been obtained for the 27-day period in section 20 (where it was 
called M), namely, ev=0.262C, and its standard deviation, according 
to (27.1), is 0.262/x/2X378--0.0095C. The actual expectancy 0.262C 
exceeds therefore the equipartition value 0.180C by nearly nine times its 
standard deviation' the difference between the two values is therefore 

significant, not "accidental," and proves that the expectancy as derived 
by (24.1) from the actual amplitudes obtained by harmonic analysis 
from single rotations depends definitely on the length of the period. 

28. Persistent periodicitiesmA sine-wave of period p is called 
persistent if it is repeated with the same amplitude and the same phase 
in all intervals of length p. Is it possible to trace such a persistent sine- 
wave if it is superposed on other fluctuations? The answer is affirmative, 
provided the number N of periods p contained in the interval of observa- 
tions is sufficiently large. The procedure is suggested by the preceding 
discussion' Each single interval of length p is subjected to harmonic 
analysis and yields a sine-wave of period p, which, if represented in the 
harmonic dial of period p, is the vector-sum of two sine-waves, namely, 
the persistent sine-wave and another "accidental" sine-wave, for which 
the average square amplitude, calculated according to (24.1) from the N 
accidental sine-waves for the single intervals, may be ½. Then the 
average sine-wave of period p computed from all Np observations will 
be the vector-sum of the persistent wave (of amplitude c) and an average 
"accidental" sine-wave, the amplitude of which, according to section 19, 
is of the order c/x/N. Therefore, so small as c may be as compared 
with c, in the average taken over a sufficient number N of periods the 
persistent wave will finally overwhelm the "accidental" waves produced 
by the non-persistent fluctuations which mask the hidden periodicity 
in the original data. 

This process of reducing the average of the accidental wave is best 
visualized in the harmonic dial for the period p: The dial showing the 
sine-waves obtained from single intervals of length p will be a cloud of 
points widely scattered; but the cloud on the dial of the average sine- 
waves of period p obtained from a number of intervals of length Np will 
be reduced with respect to the end-point .4 of the persistent sine-wave 
vector, in the ratio 1/x/N, till, with 2V increasing infinitely, the whole 
cloud contracts into A. 

The determination of the atmospheric tides of lunar origin has been so 
far the greatest "triumph" of this 1/x/At law, 47 because, at extra-tropical 

ß *S. Chapman, London, Mon. Not. R. Astron. Soc., 78, 535-538 (1918); see also foot-note 50 and the 
__s0co•d and third references in foot-note 32, and J. Bartels, {•uart. J. R. Met. Sot., 51, 173-176 (1926). 
,5ir•ce then, the determination of the lunar semidiurnal variation of atmospheric temperature at Batavia, 
1866-1928, with an amplitude of 0ø.009 Centigrade, has added an even better example: S. Chapman, 
London, Proc. R. Soc., A, 137, 1-24 (1932). 
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stations, the expectancy c is about 0.30 mm mercury, for semidiurnal 
waves computed from 24 hourly values of atmospheric pressure, while c 
is only 0.01 mm, so that 900 days are needed to bring the accidental 
waves down to the level of the persistent wave and 100 years to reduce 
the accidental part to about c/6. 

In a wider sense, also such periods can be called persistent (and 
traced in the same way), which have a constant period p, a phase fluctuat- 
ing a few degrees around an average value, and a variable amplitude. 
Most diurnal and annual waves in meteorological or terrestrial-magnetic 
phenomena are of this nature. The reduction of the elliptical distribu- 
tions discussed in section 23 follows the same 1/¾'.N law, unless the 
averages are taken for systematically selected single intervals (section 16). 

29. Example: The semiannual persistent wave in terrestrial-magnetic 
activity; the summation-dial---In our 28-year series of international 
magnetic character-figure C, only the period of six months can be definitely 
considered as persistent. In Figure 10, the harmonic dials have been 
plotted for sine-waves of six-month period, at the left computed from 

FiG. tO--,'-•.,1t-?,MONtC D1•œ$ rOt• 6-MOAITHLY' S/IVE-WAI,,'E..,c IAI Tilt' 
•½AG•.•E?IC CH•RACTER-/--IGURœ- C 

the 56 half-years, at the right computed from the 28 calendar years; of 
course (section 7), each dot in the right-hand diagram is the mass- 
center of two dots on the left. The average wave for all 28 years has the 
amplitude c=0.0675C, and its phase is given by maxima which occur 
about the dates March 22 and September 20, very near the equinoxes: 
it is represented by the average vector OA which, of course, is the same 
in both diagrams. The expectancy for single waves (vectors reckoned 
from origin O and combined according to (24.1)), is e---0.111C at the left, 
c=0.096C at the right. For the average__of 56 or 28 accidental waves 
we should expect therefore 0.111/x/56=0.0148C, and 0.096./x/2-• 
=0.0181C. The actual average vector, 0.0675C, is •=4.6 and 3.6 times 
as large. With these values of g, Table 2 for W(g) gives only a proba- 
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accidental. That the analysis based on the 
half-years gives even better results than that 
based on full years is easily understood, be- 
cause. the expectancy 0.096C obtained from 
full years is relatively more increased by the 
presence of the persistent wave than the ex- 
pectancy, 0.111 C, obtained from half-years. 

For the "accidental" or "irregular" vectors, 
reckoned from A, (23.2) gives the expectancy 
for single vectors 0.088C or 0.068C, and for 
averages of 56 or 28 vectors, 0.0118C or 
0.0129C. This makes g=5.7 or 5.2, and W(g) 
smaller than !0 '•2. 

The basis of this discussion has been the 
comparison between a random walk and the 
gradual vectorial addition of the single vectors 
in the harmonic dial represented in Figure 10. 
This summation has been represented in Fig- 
ure 11 (in a diagram which may be called sum- 
mation-dial);the decisive preponderance of the 
directions indicating maxima near the equinoxes 
excludes all similarity with a "random walk" 
and illustrates the "reality" of the 6-month 
wave, which has just been quantitatively 
proven by the g-test. 

A more detailed analysis of this persistent 
semiannual wave and a discussion of its phys- 
ical nature may be found in a former paper? 

30. Mean periodogram for geophysical 
phenomena--Our procedure of testing the 
reality of a periodicity consists in deriving a 
value for the expectancy e• which is based ex- 
clusively on harmonic analysis for single waves 
of the same period. This value represents 
therefore, in exactly the right manner, the 
combined effect of the standard deviation • of 
the given ordinates and the dependence of suc- 
cessive ordinates (section 27). The latter is 
present in most geophysical cases in so far as 
high values and low values of the ordinates 
occur in groups. 4• If, therefore, we cut the 
series of ordinates into sets of r successive 
ordinates, the arithmetic mean in each single 
se• will, in general, differ more from the arith- 
metic mean of all ordinates than in the case 
of independence; in other words, the stand- 

•Terr. Mag., $7, 22-27 (1952). 
•The analogy to the Lexis theory of dispersion is obvious; this 

theory is described in ever•, textbook on the theor>, of probability 
flor instance, that of Kamke• or R. E;. Fiaher•), and has been 
applied by F. Baur to meteorological phenomena [Met. Za., 47, 381- 
389 (1930)]. In relation to l)eriodicities, the Lexis theory must be 
modified, or specialized, as will be seen later (section 40). 

31 
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ard deviation of the arithmetic means for sets of r successive or- 

dinates will be greater than the random value •'/x,/r. [Example- 
International magnetic character-figure C, 1906 to 1933, bas standard 
deviation for single daily values •--0.467C; if we form arithmetic means 
for each of the 378 rotations (intervals of r=27 days), their standard 
deviation is found to be 0.148C; if the values C for successive days were 
independent, this value should be only 0.467/¾'27=0.090C(•-0.003).] 
On the other hand, if, in each single set, the deviations of each of the r 
ordinates from the arithmetic mean for that set are formed, their standard 
deviation •'• will be smaller than the standard deviation • of all ordinates, 
the ratio •/f increasing to unity with increasing r (in the case con- 
sidered, •'•=0.444C). From (11.6), it follows therefore that the ex- 
pectancy for smaller periods (computed from sets of a few ordinates) 
will be, in general, smaller than that for longer periods. 

6 IZ 18 • 
.mgRtO0 lat h•OR$ tat hOL•$ 

, INrœ•llMg. • tM:)atrld 



GEOPHYSICAL AND COSMICAL PERIODICITIES 33 

As an example, consider the hourly values of atmospheric pressure 
observed at Potsdam, Gerrnany? The expectancies for the sine-waves 
with 6-, 8-, 12-, and 24-hour periods, computed from single sets of r--24 
hourly values, are, in mrn of mercury, 0.11, 0.14, 0.30, and 1.11. They 
are entered in the mean periodogram of Figure 12. The free-band 
curve drawn through the four ordinates can reasonably be expected to 
repre•nt the actual mean periodogram, that is, the expectancy ½ as a 
function of the period p. 

We now make the assu•nption--to be tested by its consequences-- 
that the harmonic coefficients of period p, computed from different sets 
of r observations, are independent and do not contain a persistent part. 
Then the "random-walk" theory (19.1) is applicable, and we can at 
once obtain the mean periodogram for the amplitudes computed from 
the average harmonic coeflfcients won by harmonic analysis of sets of 
2r, 3r .... , in general, of qr ordinates, because (7.1) the vectors for the 
average sine-waves derived by the harmonic analysis of •/r ordinates are 
the averages of the q sine-v•aves computed from r ordinates each. From 
(19.1) it follows, therefore, that we obtain the mean periodogram for 
sets of qr ordinates simply by r_educing the mean periodogram for sets 
of r ordinates in the ratio 1/x/q. This applies, of course, only to such 
periods p which are submultiples of the interval represented by r ordi- 
nates. The reduction can, by increasing q, in actual computation, be 
continued till the whole set, • =Nr, of available ordinates is subjected 
to harmonic analysis. Persistent waves of amplitudes c greater than 
e/'x/2V, where ½ is the expectancy for that particular period, will then be 
discovered, and the ratio •=c/(e/x/N) will indicate the degree of 
reliability. 

Figure 13 shows, in the curves, the mean periodogram for waves 
from 6- to 24-hour periods in atmospheric pressure at Potsdam, calcu- 
lated from single days (r=24), and the mean periodogram for waves 
computed from q =5, 30,365 days and 22,000 days (60 years), obtained 
by reducing the curve for single days in the ratio 1/x/q; for clearness, 
Figure 13E has a scale magnified ten times. The persistent waves of 
6, 8, 12, and 24 solar hours, of amplitudes 0.011, 0.026, 0.226, and 0.095 
mm have been indicated by vertical lines in each periodogram, and, in 
addition, the lunar tidal •va•e of period 12 hours 25 minutes, with ampli- 
tude 0.011 ram. It is striking how the persistent waves, with increasing 
number q of days, gradually pierce the mean periodogram, which repre- 
sents the veil of the non-periodic fluctuations hiding the persistent waves. 
One year of observations (Fig. 13D) is sufficient to extract the solar 
12- and 24-hourly waves, while 60 years of observations (Fig. 13E) are 
necessary to press the level of the mean periodogram in the neighborhood 
of 12-hour period down to one-fifth of the amplitude of the actual lunar 
tidal wave. 

31. A. Schuster's exarrzpIe of a mean periodogram--The idea of the 
mean periodogram as drawn in Figure !2 is the outstanding contribution 
of A. Schuster to the study of periodicities. In fact, on page 122 of his 
second paper, s he gives an actual mean periodogram showing the same 

•J .Bartels, Ueber die atm0s•hltri•mhen Gezeiten, Berlin, Ver6ff. Preuss. Met. Inst., No. 346 (1927). 
The values given above are the probable radii, as they were actually calculated; the expectancies should 
be about 20 per cent higher, but that •10es not matter for our purpose here. 
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characteristic feature as our Figure 12. In order to show the details 
more clearly, logarithmic scales for both periods and amplitudes have 
I>een used in Figure 14, which represents Schuster's calculations based 
on the daily means of magnetic declination at Greenwich, 1871-1895, 
corrected for the non-cyclic variation due to secular variation (section 
16), and shows the expectancies for sine-waves from 2- to 365-day 
periods supposed to be calculated from single years of observations, 
that is, the average amplitudes, computed according to (24.1) from the 
amplitudes obtained by harmonic analysis of N= 25 sets of r= 365 ordi- 
nates each. Figure 14 corresponds to Figure 12; the vertical lines give the 
expectancies as calculated, and the smooth line has been drawn to fit 
approximately. 

A. Schuster used his values for the expectancy to test the presence of 
a persistent wave with period between 25.5 and 27.5 days. Since the 
whole interval of observation is 9160 days, these periods would represent 
the frequencies 9160/25.5=358 and 9160/27.5=332, so that about 26 
independent sine-waves lie between these limits. The greatest among 
them, calculated from all N= 25 years, has an amplitude of c=0'.0785, 
while the chance value, with e=0'.163 for a single year, is 
0.163/5 =0'.033. Therefore g=0.0785/0.033 = 2.4. This value, according 
to (17.6), should, if pure chance were xvorking, be exceeded once in about 
300 cases, and it cannot be claimed to be unusual if an event, occurring, 
on the average, once in 300 cases, occurs already in the 26 cases actually 
considered. Schuster considers also periods which are not entire sub- 
multiples of 9160 (see section 38), which increase the number of "inde- 
pendent" periods between 25.5 and 27.5 days to 4 times our number 26, 
or about t00; this is even more unfavorable for a claim that the greatest 
period found indicates a persistent wave, because the probability for 
chance becomes as high as 100,:300= 1, 3. 

32. Erroneous applications of the periodogram•['nfortunately, 
neither the original and powerful method of Schuster, just described, 
nor its equivalent in the harmonic dial, as developed since 1922 by the 
present author, have been applied in any of the later papers dealing with 
the periodogram. This seems to be due partly to an exaggerated con- 
ception regarding the amount of labor needed to compute a large number 
of harmonic coefficients, partly to the fact that Schuster himself, in his 
paper on sunspots? does not use his own method. 

Most of the recent papers on periodograms (for instance, those of 
Pollak n) and Stumpff TM) use the following substitute for the exact 
methods' The harmonic coefficients for a number of selected periods 
[in Po!lak's case (section 14), 73 periotis ranging between 2 and 40 days] 
are computed from the whole observational material, without effective 
subdivisions (that means, r is taken as the nunfix:':•r of all observations). 
The amplitudes for these "trial periods," or, in some cases, their squares, 
are summed and divided by the •un•t'•er t>f the trial-periods (in Pollak's 
case, 73); with this "expectancy," whict• is the substitute for 
of section 30, the amplitudes of the trial periods are compared, and the 
ratio g of each amplitude to the "expectancy" is used to decide, by means 
of (17.6), on the reality of the large amplitudes. 

A. Schuster, ø in his paper on sunspots, recommends the following 
procedure for deducing the exwctancy' From the whole of the observa- 
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tional material, without subdivisions, he computes the harmonic coeffi- 
cients for a number of periods with lengths between 55 days and 24 years 
and enters their amplitudes in a periodogram. Then he goes on to say: 

"It has been stated that in the absence of definite periods the expectancy of the 
intensity of the periodogram must be obtained from the periodogram itself in all cases 
where the events to be analyzed are not, as regards their succession, independent of 
e•ch other. The expectancy not depending or• the period we may select for the purpose 
any portion of the curve in which we have no reason to suspect any periodicities. The 
portion most suitable for this purpose in our case is th.at lying between 54 days and 1.5 
years. Shorter periods must be avoided . . . owing to the fact that sunspots as 
a rule last several days .... Spots persist during more than one solar rotation. This 
effect will, however, disappear when the period is well above that of the solar rotation. 
When the periods come near to 1.5 years, the sub-periods of well-ascertained periodic- 
ities make their presence felt. Hence the limits chosen for calculating the natural 
intensity of the periodogram must be confined to about 35 days on the one hand and 
1.5 >'ears on the other." 

It seems strange that Schuster, in the phrase printed here in italics, 
renounces his own discovery made in the second paper, and represented 
here in Figure 14. In fact, it is quite clear that in the case of sunspots 
the expecta.•zcy must depend very largely on the period, because of the 
general reamns discussed in section 30. This is confirmed by an inde- 
pendent calculation 48 of the expectancies for 6-monthly and 12- 
monthly periods in relative sunspot-numbers, 1872-1930; the amplitudes, 
calculated from single years, have, in the units of the relative sunspot- 
numbers, the expectancies 8.3 and 10.9. This distinct increase of the 
expectancy by about one-third of its value if the period lengthens from 
6 to 12 months is likely to continue for longer periods. • 

Now it seems extremely desirable to "clean the slate" of all uncertain 
periodicities and regard persistent periods as established only after the 
severest test. From this standpoint, the danger lies, of course, not so 
much in cases where the assumed expectancy for a certain period is 
greater than its proper value--though this might occasionally prevent 
the detection of an actual persistent wave--but in cases where it is 
smaller, because that makes the actually calculated amplitude appear 
more significant and entails higher values of g. If, for instance, the 
proper value of g is 2.15, indicating a probability for chance W(g) = !/100, 
an underestimated expectancy assumed at half the proper value would 
yield g=4.3, with W(g)= 10 -•, which would erroneously appear to justify 
a claim for a persistent wave. Table 2 (section 17) illustrates the serious 
mistakes possible if the expectancy is assumed too low, and, conse- 
quently, g too high, even by as little as one-fourth of the proper value. 
And such an underestimate of the expectancy is almost certain if, as 
sometimes suggested, the largest amplitudes of the periodogram are 
omitted in calculating (in the manner indicated) the expectancy on the 
ground that they might indicate persistent waves and raise the expect- 
ancy unduly. 

The periodogram has been discussed here because it has been used 
so often in previous work. The author prefers the illustration of per- 
sistent waves in the harmonic dial for their period, with the cloud of 
points contracting, with increasing number iV of periods combined, into 
the end-point of the persistent vector (section 28). The harmonic dial 

•K. Stumpff in his paper on periodicities in sunspots (see foot-note 42) distinguishes at least between 
short and long periods, the division being taken at about 3 years' length. He follows, however, Schuster in adopting a common expectancy for the longer periods. 
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confines the attention to the period for which the persistence is to be 
tested, and avoids the confusion produced by mixing amplitudes for 
periods of different length, and, therefore, of different expectancy. 

(V) QUA$I-PER$ISTENCE---EFFEC?IVE EXPECTANCY 

33. Quasi-persistent waves--We call quasi-persistent such periodicities 
which are repeated with approximately the same phase and amplitude for 
a certain number of periods, forming what may be termed a sequence, each 
sequence ending more or less abruptly without any relation to other 
sequences. This conception is not restricted to sine-waves; in fact, the 
most striking example is offered by the diagrams • for the 27-day recur- 
rences in terrestrial-magnetic activity as described by the international 
magnetic character-figure C. This recurrence-phenomenon is expressed 
in quasi-persistence of the various sine-waves with periods that are 
submultiples of 27 days. Here we shall consider those with periods of 
27, 13.5, and 9 days; later (section 40) we shall formulate our results 
without reference to harmonic analysis or sine-waves. 

Quasi-persistence is best studied in connection with the summation- 
dial, introduced in section 29; summation-dials for the periods of 27 
and 13.5 days are reproduced in Figures 15 and 167 (In order to get a 
better rel•roduction, the dial in Figure 15 has been turned by 90 ø from 
that in Figure 2, vectors with maxima on day 27 pointing to the right.) 
These diagrams illustrate the vector-addition, step by step, of the single 
vectors in the harmonic dial for successive rotations; for instance (Fig. 
15 for 27-day periods), the vector from the origin 0 to the point marked 
130 in the summation-dial is the sum of all vectors for the single rotations 
1 to 130, inclusive' a reduction to 1/130 would give the average vector 
for the interval of time covered by these 130 rotations. Of course, the 
summation-dial can also be used to form other averages than those 
starting at the origin. For instance, the vector connecting the points 
marked 130 and 378, divided by (378-130)--248 would be the average 
vector for rotations 131 (because the vector connecting points marked 
130 and 131 refers to rotation 131) to 378, inclusive. ¾Vhere the track 
returns to approximately the same point, the average vector for the 
intervening rotations is small; for instance, on the summation-dial for 
the 13.5-day period, the points 140 and 344 fall so close together that they 
are less than 0.05C apart, according to the scale for the single vectors. 
This means that the average vector (or amplitude for the 13.5-day 
period) for all the 204 rotations 141 to 344 comprising the whole interval 
between May 18, 1916, and June 16, 193!, is smaller than 0.05C,/204, 
or 0.00025C. 

On the other hand, we can select, on the same diagram, Figure 16, 
long distances traversed in a few rotations. For instance, the points 
marked 324 and 349 are 6.38C apart, indicating an average vector, for 
the 25 rotations Nos. 325 to 349, of 6.38/25=0.255C. Applying con- 
siderations analogous to section 21 we find, for these 25 rotations, the 
expectancy for the single vector equal to 0.332C, and the expectancy 
for the average of 25 vectors therefore 0.332/v/25 •- 0.0664C; this gives 
K--0.255/0.0664=3.84, W(K)---4X10 -7. The probability W(g) for 

•Figure 15 represents the summation of the single vectors in Figure 2, while Figure 16 represents the 
same process for the 13.5-day period, for which the analogtie to Figure 2 is not reproduced here. 
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chance is so low in this case that even a multiplication by a few powers 
of ten (because of "selecting" this particular stretch from Figure 16, as 
mentioned in section 22) might not destroy the strong indication of a 
persistent wave of 13.5-day period within that interval of 25 rotations-- 
vanishing, however, outside that interval. 

Quasi-persistence is indicated in the summation-dials by sequences 
of vectors of approximately equal directions, for instance, the long 
sequences in the 13.5-day diagram between the points marked 216 to 
231 (December 1921 to January 1923), or 324 to 338 (December 1929 
to January 1931), which both correspond, of course, to distinct sequences 
in the former diagrams a4 for the 27-day recurrences. On the other hand, 
no such long sequences can be detected in certain parts of the summation- 
dials Figures 15 and 16, for instance, in the year 1926, rotations 272 to 
284. These parts resemble closely the random walk pictured in Figure 
8. And if we detect, in the random walk, Figure 8, the apparent "se- 
quence" between the points 76 and 85, we are forced to give up the idea 
of distinguishing between random walk and quasi-persistence by a 
mere inspection of the summation-dial or haphazard considerations. In 
fact, the problem is to find a numerical measure for the geometrical 
property of the summation-dial which will give a clear distinction be- 
tween random-walk conditions (Fig. 8), quasi-persistence (Figs. 15 and 
16), and persistence (Fig. 11). 

34. Quasi-persistence measured by equivalent length o' of sequences-- 
in order to find such a measure, we consider a random walk, with the 
expectancy ½ of the single vectors. If we form the vectorial sum of 
every two successive vectors and divide it by 2, that is, if we form 
averages of every two successive vectors, we obtain a new set of vectors 
which has the expectancy e/x/2' in general, if we average h successive 
vectors, these averages will have the expectancy •/•v/h according to 
(19.1). If, however, we have a perfectly persistent wave without any 
superposed fluctuations, that is, if we have vectors of equal direction, 
the expectancy for the average of h successive vectors would be, of course, 
obtained as e. 

We can express these conditions in another way. Suppose we com- 
pute, from N successive vectors given, the expectancies for the single 
vectors, for the averages of two vectors, etc., in general, for the averages 
of h successive vectors. [In order to be able to obtain a satisfactory 
approximation to the expectancy (section 27), the number of inde- 
pendent averages, roughly •',/h, must not be too small; because of formula 
(27.1), h must not be much greater than about N/50, if we want the 
expectancy correct within 10 per cent.] We multiply the expectanc>. 
for the averages of h vectors by x/h [or, what amounts to the same, 
divide the expectancy for the sums of h vectors by •/h], and obtain a 
value w!fich we shall call e(h). In the case of the random walk, 
always the same value e--c(1), the expectancy for single vectors; but 
for persistent vectors, we obtain the ever-increasing value c(h) 
In the case of quasi-persistence, ½(2) will be greater than e(1)• and e(3) 
will be greater than ½(2), etc., but this increase will not continue pro- 
portionally to x/h, as in the case of persiste½ce, but will, in general, 
asymptoticall>, approach an upper limit, limes c(t•), for h = oo, say, c(oo). 
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If we now put e(oo)/e(1)=x/•r, we may call • (which need not be an 
entire number), the equivaleni length of •he sequences of the quasi-per- 
sistent wave. 

This designation of • is justified as follows' In order to compute the 
expectancy for our quasi-persistent wave for large values of h, we can 
proceed as if the average of h single vectors, showing quasi-persistence, 
is the same as the average of (h/rr) random vectors of expectancy e(1); 
in other words, as if, of the h vectors, every • successive vectors are 
equal, and only h/•r vectors are independent. In fact, the average of 
(h/•) random vectors has the expectancy e(!)/x/h/•r, and multiplication 
with x/h gives e(1)•/e, that is, the same value e(h) as actually computed. 

Perhaps e is the exact expression for what H. H. Turner ;ø designated 
as a "chapter." 

35. Quasi-persistence in terrestrial-magnetic activity•The actual 
computation for testing quasi-persistence was based on the summation- 
dials for the periods of 27, 13.5 and 9 days, the first two of which are 
reproduced in Figures 15 and 16. h was chosen equal to 4, 9, 16, and 25. 
Because of (17.7) the arithmetic mean of the amplitudes of a number 
of vectors, (c •+c" +...)In, distributed according to (17.3), is a constant 
fraction (0.8862) of the expectancy, defined as the square root of 
[(c')•+(c")•+...]/n. Now, as the law (17.3) can safely be taken as 
governing the distribution of the single vectors (Fig. 9) as well as their 
sums, we'can be sure to make no systematic error in considering the ratios 
of the corresponding arithmetic means (which are somewhat easier to 
calculate) as sufficient approximations for the ratios of the expectancies 
e(h)/e(1). 

For instance, e(4)/e(1) for the 13.5-day period was calculated as 
follows' The amplitudes of sums of four consecutive single vectors, 
namely, distances of the points.marked O and 4, 4 and 8,... 372 and 376, 
as well as of the points 2 and 6, 6 and 10 ..... 374 and 378, were measured 
on Figure 16. The sum of these 188 distances is 127.06 units of C, and 
the average distance therefore 127.06/188=0.6759C. In order to deal 
with averages, and not sums, for four successive vectors, this value must 
be divided b_y 4, and then, in order to obtain the equivalent of e(4) multi- 
plied by •/4--2. This gives 0.3380C. This should, under random-walk 
conditions, be equal to the arithmetic mean of the lengths of *.he single 
vectors, that is, equal to the arithmetic mean of the 188X4=752 dis- 
tances 0 to 1, 1 to 2, 2 to 3, .... 375 to 376 and 2 to 3, 3 to 4, .... 
377 to 378 (in this arithmetic mean, all single vectors appear twice 
except those for the rotations 1, 2,377, and 378). On actual calculation, 

2• 13..5., AND 9 DAYS IN THœ INTœRNATIONAL t4AGN•TIC CHARACTœR- 
l•O•-t• TH• ASYMPTOTIC I/•4LU• ½'(•)/½'(I}-1.74 INOICATE$ EOUIVA- 

LENT LENGTH 01 m •E•A½C•$' /. 2'4 z - q•O ROTATIOiV$ 
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this mean of these 752 distances is found to be only 0.2298C. Conse- 
quently, our ratio ½(4)/e(1) is 0.3380/0.2298=1.470. in the case of a 
perfectly persistent wave, we should have obtained for this ratJoy/4--2, 
and in the other extreme, the random case, ratio 1. 

Table 3 shows the results of the calculations. The average ratios 
have been entered against x/h as abscissae, in Figure 17, and fit well into 
an exponential curve which approaches asymptotically c(oo ),/e(1)--1.74. 
Therefore, the equivalent length of sequences is a= 1.743= 3.0 rotations. 

TXSLE 3--Quasi-persistence in the international magnetic character-figure C, 
190• to 1933 

Ratio e(h)/½(1) for h-- 
Period e(!) ..... 

1 4 9 16 25 
.... 

days 
27 0.262C 1.000 1.4!0 1.561 1.632 1.766 

13.5 0. 264C 1.000 1.470 1. 729 1. 713 1.738 

9 0. 236C 1.000 1.322 1.478 1.611 1.608 

Average 1.000 1.401 1. 589 1. 652 1. 704 

In addition, for the periods of 27 and 13.5 days, the ratios have been 
computed for h=2, for individual years. Only for the two years 1916 
and 1917 (rotations 136 to 162), in the 27-day period, the ratio e(2)/½(1) 
is smaller than 1, namely, 0.89 and 0.95; this is expressed in the summa- 
tion-dial Figure 15, where the trace between the points marked 135 
and 162 appears very irregular. For the 13.5-day period, the ratios 
for the same years are 1.20 and !.12. Particularly_high values of 
e(2)/"e(1), approaching the theoretical maximum of x/2= 1.41 for per- 
sistence, are found, in the 27.day period, for the years 1911 (1.38), 
1913 (1.39), and 1933 (1.38); for the 13.5-day period, for the years 
1922 (1.37) and 1930 (1.40). The average ratio for all rotations (years 
1906 to 1933) are e(2)/e(1)= 1.196 for the 27-day period, and 1.226 for 
the !3.5-day period; the average value 1.2ll has been entered in 
Figure 17. 

For h=4, the ratios e(4)/e(1) were computed for 14 pairs of years 
19'06 and 1907, etc. All ratios are greater than 1, the lowest being, of 
course, 1.04, in the 27-day period for the two years 1916 and 1917, which 
already gave the lowest ratios e(2)_/e(1). Particularly high values of 
c(4)/e(1), approaching the value x/4-- 2 for persistency, are found, in 
the 27-day period, 1912 to 1913 (1.64), and in the years 1924 to 1925 
(1.68), and, in the 13.5-day period, in the years 1930 to 1931 (1.80) and 
1932 to 1933 (1.71). 

In order to test the strong quasi-persistence noticeable in the former 
27-day recurrence-diagram for the years 1928 to 1933, 8• the ratios 
e(h)/•(1). were also computed for these years alone; they are, for h--2, 
4, and 9 

For the 27-day period' h=2, 1.252; h=4, 1.436; h=9, 1.661 
For the 13.5 day period' h=2, 1.308; h=4, 1.698; h=9, 2.151 
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The highest value, 2.151, would already correspond to an equivalent 
length of the sequences of more than •=2.151ø-=4.6 rotations. 

A diagram equivalent to Figure 17 may be called the characteristic 
for the period p in the observational material. 

36. Influence of quasi-persistence on tests for persistence' Effective 
expectancy---The vectorial average of N vectors which have the expect- 
ancy e(1), and quasi-persistence characterized by the equivalent length 
v of the sequences (N great compared with v), has an expectancy which, 
multiplied by x/N, we have called, in section 3•[, e(N); it is therefore 
c(N)/'•/N, and if N is great enough so that c(N),•'c(I) has the limiting 
value v'a, we can write e(1)x/v for e(N) and obtain for the expectancy 
of the average of N vectors 

(36.1) e(1 

This value differs from the random value e(1). x/N, obtained by assuming 
successive vectors c independent, by the factor V"a. if, in quasi-persistent 

g , waves, we search for persistent waves as described in sections 2•-32 
this value (36.1) must be taken as the expectancy with which the ampli- 
tudes actually found by vector-addition must be compared. The crucial 
ratio • of the amplitudes actually found to their expectancy is therefore 
reduced in the ratio ! /.v/rr against the ratio calcukzted on the assumpt, ion of 
random-walk conditions, or of independence of successive single vectors, 
without regard to quasi-persistence. The consequences for the considera- 
tions on the probability for chance W(x) are sometimes decisive, because 
even a small decrease in g may mean a large increase of W(s), according 
to Table 2 (section 16). e(1)x/v may appropriately be called effective 
expectancy, as contrasted to the ordinary expectancy e(1). 

The decisive influence (36.1) of quasi-persistence on tests for per- 
sistence as well as on the uncertainty of average sine-waves derived 
from a large material can also be expressed in another way' Against 
random conditions, the effective number (N/v) of the available obser- 
vations is reduced to 1/v of its apparent number N. 

We can now adjust our considerations in section 21. There, assuming 
random-walk conditions and starting from the ordinary expectancy e(1), 
we obtained, for the average vectors of the 27-day and 13.5-day periods 
for the 378 rotations 1906 to 1933, the values g=2.49 and 1.47, with 
W(2.49) = 1/500 and W(1.47) = 1/9. Taking •/•= 1.74 (which is cer- 
tainly not too high, judged from Table 3), the consideration of quasi- 
persistence, as expressed in the effective expectancy, reduces • to 1.43 
and 0.84, raising W(•) to W(1.43)=1/8 and W(0.84)=1/2. These 
"probabilities for chance" are so high that there can be absolutely no 
doubt about the absence of a noticeable persistence in these periods of 
27 and 13.5 days; or, expressed more accurately, if persistent waves of 
these periods existed, the material at hand is not sufficient to trace them. 

In the same way, we can dispose of the persistent wave of 9.00-day 
period which Pollak tt believed to have traced in the international 
magnetic character-figure C for the years 1906 to 1926. He obtained 
for this wave an average amplitude of 0.0•12C, and, with his expectancy, 
disregarding quasi-persistence, a value W(2.76)=!/2000, which he 
considered sufficiently low to exclude pure chance. Our own calculation 
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for the 9-day period gives, for the 284 rotations in the years 1906 to 
1926, ½(1)=0.232C (only slightly different from the value 0.236C given, 
for all years 1906 to 1933, in Table 3); for x/a, we make, from Table 3, 
the conservative estimate 1.62 giving the effective expectancy 0.376C. 
The expectancy for an average of 284 rotations is, therefore, 0.376C/x/2•4 
=0.0224C, and K=0.0412/'0.0224=1.84, with W(1.84) = 1/'30, which 
is not at all suspiciously low. The full series 1900 to !933 gives, by the 
way, about the same indication. 

37. Infection of adjacent periods b,y quasi-persistence--We have seen 
that the 27-day sine-wave period in the international magnetic character- 
figure C shows quasi-persistence with v=3.0 rotations. It is easy to see 
that, for instance, the 28-day period must be affected by this quasi- 
persistence. Suppose, namely, the series of character-figures C to be 
divided into intervals of 28 days, beginning January 11, 1906. These 
single intervals would, on harmonic analysis, give amplitudes of 28-day 
sine-wax'es which are only little different from those of the 27-day sine- 
waves computed from the first 27 days in each 28-day interval; this is 
easily recognized by considering the folding process (section 10, and 
Fig. 3), in which the turning angles for the 27-day and 28-day periods, 
respectively, are (360ø,•27)= 13ø.33 and (360ø/'28)= 12ø.86, so that the 
successive links in the 28-day folding-process are only 0ø.47, 0ø.94, etc., 
less inclined against the vertical than the same links in the 27-day folding- 
process. Therefore, the ordinary expectancy ½(1) for the 28-day sine- 
waves will not differ greatly from that for the 27-day sine-waves. How- 
ever, successive 28-day intervals begin always one day later than the 
successive 27-day rotation;if, in the summation-dial for sine-waves of 
27-day period, the vectors for successive rotations have nearly the 
same phase, because of quasi-persistence, then, in the summation-dial 
for the 28-day sine-waves, because of the relative shift of 27-day and 
28-day intervals, the vectors should have phases increasing about 
(360ø,'27) = 13 ø from one 28-day interval to the next [the maxima ap- 
pearing to occur one day earlier in successive 28-day intervals]. There- 
fore, the general aspect of the summation-dial for 28-day sine-waves 
would be about the same as that for the 27-day sine-waves (Figure 15), 
except that successive vectors were turned by about 13 ø anti-clock- 
wise. This would not greatly affect the values of ½(2)/e(1) and even 
e(3) .... c(1) (sections 34, 35); only for higher values of h, c(h)/'½(1) for the 
28-day period may not increase to the same values as given in Table 3, 
so that the equivalent length , of sequences for the 28-day period may 
be smaller than 3.0. In other words, the 28-day period will show quasi- 
persistence because it is "infected" by the quasi-persistence of the 27-day 
period. This makes it, apart from other reasons, •'3 difficult to determine 
the exact length of the 27-day recurrence-interval, which might differ 
from 27 days by a few tenths of a day, and could be recognized as yielding 
the highest value of •. 

This kind of infection will diminish the greater the difference of the 
periods. For periods of 30 days, for instance, the infection by the 27-day 
period will be small. Actual calculation of 27-day periods and 30-day 
periods for the character-figure C for the two years 1924 and t925 gave 
the following results--the values for 27-day period and 30-day period 

•J. M. Stagg, Meteorological Office, Geophysical Mem. No. 40, London (1927). 
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being, in each case, printed after each other- Number oi full intervals 
considered 27, 24; expectancy for single interval ½(1)=0.258C, 0.248C; 
e(2)/e(1) = 1.26, 1.22; e(4)/e(1)--1.68, 1.21. This sample calculation 
allows one to assume, for the 30-day period for all years 1906 to 1926 
used by Pollak, x/a about 1.2, and the ordinm3, expectancy ½(1) =0.252C, 
namely, 0.010C less than e(1)=0.262C for the 27-day period in the same 
years 1906 to 1926, so that the effective expectancy becomes 
x/* -- 0.302C. 

The expectancy for the average wave of Pollak's 255 intervals of 
30 days is therefore 0.302C/x/255 --0.0189C, and the same value will hold, 
with high approximation, for a wave of 29.9 days. The actually cal- 
culated sine-wave of Po!lak for 29.9 days from his material has an 
amplitude of 0.0511C. Therefore, K=(0.0511/0.0189)--2.70, with 
W(2.70)=1/1460. This value might look suspiciously small, though 
not so small as the value of 1/110,000 which Pollak himself derives 
using a too low expectancy. But, since the 29.9-day period is picked, 
because of its high amplitude, out of 73 amplitudes actually calculated, 
the "probability for chance," according to section 22, is (73,/1460).--- 1/20, 
and this is not small enough to warrant the definite assumption of per- 
sistence. There remains the possibility of long-range quasi-persistence, 
corresponding to Ad. Schmidt's idea of deep-seated long-lived fo½i in 
the Sun's surface-layers, with a rotation of about 30-day period. 

38. InterferenceraThe infectiousness of quasi-persistence, as de- 
scribed in section 37, is related to the general interference-phenomenon 
leading to the "spurious periodicities" which A. Schuster s discovered 
as complete analogues to the secondary maxima obtained in analyzing 
homogeneous light by a spectroscope of finite resolving power. His 
exact formula will be illustrated l•ere by a straightforward application 
of the summation-dial which will yield an approximation sufficient for 
practical use. 

Consider the persistent sine-wave of half-year period (section 29) 
in the international magnetic character-figure C, of amplitude 0.0675C, 
and constant phase. The summation-dial of this period for the 56 half- 
years 1906 to 1933, freed from the irregular fluctuations exhibited in 
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Figure 11, would be a succession of 56 perfectly aligned single vectors 
leading from the center O of the dial to the point Q (Fig. 18A). 

What should we obtain if we would analyze the train of these 56 
sine-waves of exactly p=0.500-year period for a slightly different period 
of length, say, p' =0.502 year? Fifty-six complete waves of period p' 
would cover an interval of 56.112 half-years. The harmonic dial for the 
56 single waves of period p' in that interval would show amplitudes 
practically equal to that of the actual half-year period, but the maxima 
of each wave of period p' would shift gradually and occur earlier. Since 
250 p'--251 p, the phases of two periods would agree again after 250 
intervals of length p'; consequently, the phase of the period p' shifts 
from one interval of length/5' to the next by (360ø/250)= 1ø.44. After 
56 intervals, the phase-shift would be about 8! ø. We will call this angle 
2•. The summation-dial for the period p' =0.502 year is therefore 
approximately part of a circle (Fig. 18B), the length of the arc O'Q' 
being equal to OQ, and the tangent of the circle drawn in Q' forming an 
angle of 2i5=81 ø with the tangent drawn in 0'. 

Now the vectorial sum of the 56 sine-waves with period /5' is repre- 
sented by the straight line O'Q', while the vectorial sum of the 56 sine- 
waves with period p is represented by OQ, which, as we have seen, is 
equal to the length of the arc O'Q'. The amplitudes of the average 
vectors of periods p and p' are obtained by dividing the vectorial sums by 
56. Therefore, the ratio of the amplitudes of the average sine-waves 
with periods p' and p is equal to the ratio of the lengths of the chord 
and the arc O'Q', or sin •5//J, as the auxiliary construction in Figure 
indicates. 

In general, consider a train of waves with a persistent period of 
length p, and suppose it to be analyzed for a period of slightly different 
length, p'=•+/kp, where •p/p is small. Putting m=•//xp, we find 
top'= (mq-1)p, and since m is large, this will hold also if, instead of the 
exact value m=p//xp, we take the nearest integer for m. Then our 
equation means that the interval covered by m periods p' is covered by 
(m q-1) periods p. This means that, in the summation-dial for period 
p', the shift of phase between a certain vector to the vector for an interval 
occurring top' later is 2•r, and therefore the phase-shift for successive 
vectors is 2•'/m. If the interval considered contains only n waves of 
period p, the angle 2/• of Figure 18B becomes 21J=2•'n/m=2•'n /xp/p, 
and the ratio of the average amplitude of the "spurious" period p' to 
the average amplitude of the persistent wave with period p becomes 

sin •/a with •=rn /xp/p 

where p is the length of the exact period, (p+/xp) the length of the 
spurious period, and np the length of the whole interval analyzed. Be- 
cause of the slight idealization assumed at the end of the summation- 
dial, this formula gives the correct value within the limit i/n, which is 
practically sufficient since n must be large enough anyway (see foot- 
note 46). 

The function sin/•//• has been plotted in Figure 19A. The "spurious" 
.amplitude vanishes for •--•r, 2•r, etc., that is, /xp=p/n, 2p/n, etc. This 
•s only another expression for the independence of the harmonic coeffi- 
cients in the series (5.2), because the length of the whole interval is 
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so that the period p has the frequency n (supposed to be high), and the 
frequencies (n-I), (n-2), ... have the periods [np/(n-1)], [np/ 
(n-2)], ..., or, nearly, [p+(p/n)], [p+(2p/n)], etc. Of course, our 
discussion applies equally to periods (p-/xp), etc., so that Figure 19 
may be extended symmetrically to 8=0. The negative sign of sin •j/a 
between •=,r and 2•r, 3•r and 4,r, etc., is, in our case, not significant 
and can be disregarded, as in Figure 19B. 

If the observational material contains a persistent wave, the period p 
of which is no entire submultiple of the total interval :F of observation, 
ordinary harmonic analysis would, in the series (5.2), not indicate the 
full amplitude c of this wave, but only a part of it in spurious periodicities. 
For instance, if (n+0.5)p= T, where n is an integer, we have •p,/p= 
0.5/n, and 8=,r/2, so that the waves with frequencies n and (n+l) 
would show amplitudes with 0.637c. It is therefore necessary to search 
the neighborhood of periods with suspiciously high amplitudes for the 
exact period of a possibly persistent period. This is done by Darwin's 
method of approximation, first used for the calculation of tides, and de- 
scribed by Stumpff and Pollak (foot-notes 10 and 11). The summation- 
dial, Figures 18A and 18B, is a reliable guide in applying this method, 
which approximates the arc O'Q • in Figure 18B by a number of smaller 
chords: in other words, partial average vectors for the period p are calcu- 
lated for a small number of groupswfor instance, 16 groups of 4 half-years 
in our case--and these partial averages are combined in different ways, 
namely, without phase-shift to obtain the average vector for period p, 
and with appropriate phase.shifts to obtain the average vector for adja- 
cent periods (pq- Zkp). 

For another aspect of interference, see appendix section AS. 
39. Special kinds of quasi-persistence---The interference-phenomenon 

described in section 38 can be conceived as some regular kind of quasi- 
persistence caused, by a persistent wave of period p, in waves with adja- 
cent periods (p+/xp). The diagram of Figure 17 for such an adjacent 
period would begin with interference "beats" similar to those of Figure 
19B, but these oscillations would gradually be damped and end in the 
value e(h)/e(1) for the actual quasi-persistence. A lunar wave derived 
from material with larger solar waves, for instance, in atmospheric 
pressure, or in the terrestrial-magnetic force, is a typical example. 

A more general kind of quasi-persistence would be given by a case 
where, in the summation-dial, not the successive intervals, but perhaps 
the first, fourth, seventh, etc., exhibit a tendency to have the same phase. 
We obtain exactly this case, if we break up our 378 rotations of 27 days 
in the international magnetic character-figure C into (3X378)=1134 
intervals of 9 days. We shall designate each of these 9-day intervals 
by the rotation-number and distinguish the three thirds of each rotation 
by the letters L, M, R (left, middle, right). Figures 20 and 21 show, 
in different arrangement, the summation-dials for these sine-waves 
with 9-day periods for the years 1931 and 1932, comprising the 27 rota- 
tions Nos. 339 to 365, or 81 intervals of 9 days. Figure 21 shows the 
81 vectors for the 9-day intervals as they follow each other in time, that 
is, for interval 339L, 339M, 339R, etc., up to 365R. The vectors for 
intervals L, M, R have been distinguished by drawing them in full, 
dashed, and dotted, respectively. In Figure 21 the number of each 
rotation is entered against the end (marked more boldly) of the last 
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'O--$U'MMAT/ON-OIAL$ fOR g-DAY •E'R/OO $fAIE'-WAV'œ$ IN INTERNATIONAL M•G1V•T/½ ½HARACTœR-?/GUR• C• 
• A,¾D !•8• AS COMPUTED FOR 9-DAY INTœRVAL$ L •)AY$ I--•, 

INTE'RVAL• ROTATIONS 
'/--SUMMATION-DIAL L-M-R FOR g-DAY INT•'RI/AL$ OF FIGURe' 2.0 

vector R for each rotation. (It is to be remarked that should we retain 
only these points marked in Figure 2! and omit the points for the ends of 
vectors L and/•œ, we should obtain the summation-dial, on a three-fold 
magnified scale, for the 9-day periods calculated from •v/•o/,e rotations 
of 27 days, analogous to Figures 15 and 16, and discussed in section 35.) 
The time of maximum is indicated by the scales around the borders of 
the dials, by days 1 to 9 for L, 10 to 18 for _•, 19 to 27 for R, according 
to the numbering of the days in the rotations. 

Calculations similar to those in section 35, based on Figure 21, lead 
to the expectancy, for single vectors, e(!)--0.540C, and for the ratios 
c(}0/e(1), we obtain 1.109 for }•--3, 1.369 for/•=6, and 1.669 for/•--9. 

On inspection of Figure 21, we find the feature indicated above, 
namely, practical independence for vectors immediately following each 
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other, but every third vector--for instance, those Ior xSœ-intervals indi- 
cated by dashed lines--has a tendency to keep its phase. This is brought 
out more clearly in Figures 20L, 20M, and 20R, where the vectors for 
the L-, M-, and R-intervals are added separately and show considerable 
quasi-persistence. If we calculate ½(h)/e(!) for these three summation- 
dials of Figure 20, we obtain, on the average, 1.24,1 for h= 2 and 1.395 
for h=3. The contrast between the values of c(h)/e(1) for h=3, 
namely, 1.109 for Figure 21, 1.395 for Figures 20L, 20M, and 20R, 
is the numerical expression for this particular kind of quasi-persistence, 
which could be called intermittent' The three thirds L, M, R of each 
rotation give nearly independent 9-day sine-waves, but corresponding 
thirds, for instance, the L-intervals alone, show strong quasi-persistence. 
This proves incidentally that the 9-day period has no self-existence, but 
is only a sub-period of the 27-day period, which is the actual periodicity. 

The value e(3)/c(1)= 1.109 for Figure 21, small as it is, is neverthe- 
less greater than unity and reveals a weak degree of quasi-persistence, 
which, however, seems to be a general phenomenon in many cases in 
which dependent ordinates are divided into sets, because, for instance, 
a group of high ordinates, divided up by a limit between two sets, adds 
likewise, in both sets, to the cosine-coefficient av of the successive sets. 

The most general definition of quasi-persistence as distinguished 
from random conditions leads, of course, to the same fundamental diffi- 
culties encountered in a satisfactory definition of the term "accidental" 
in the theory of probability. In this respect, we refer to the books of 
Mises and Kamke 6, especially to the definition of the "fields of proba- 
bilities" discussed by Kamke. 

From our much-used example of the 378 rotations in C, we can easily 
construct an illustration of these remarks. Imagine our 378 rotations 
divided into seven groups comprising rotations Nos. I to 54, 55 to 108, 
109 to 162,..., and 325 to 378. In each group, mix the numbers of the 
rotations at random. Then draw the summation-dial for the 27-day 
period which, in the points 54, 108, .... 378 would be identical with 
that in Figure 15, and test for quasi-persistence. Obviously we should 
obtain a different curve from Figure 17, namely, e(h)/'e(1) would remain 
near unity for low values of h, because the mixing has produced random 
conditions for these, but with h approaching 54, ½(h)/e(1) will rise to 
the limiting value indicated in Figure 17. 

If a persistent wave of amplitude c is present, e(h) in Figure 17, with 
abscissa x/h, would finally approach the line cx/h, or cx/iV, if we write 
iV for large values of h. The g-test for persistent waves (section 36) 
can easily be applied to this characteristic, because cv/Ar/e( 1 ) x/, = c/(e(1 ) 
x/trix/N), and this is K because of (36.1). We can therefore enter a 
uniform scale of K, where K--1 corresponds to the effective expectancy 
c(1) x/• (see section 41). 

40. 2%riodiciti½s of other form than sine-waves--The application of 
harmonic analysis to research on geophysical periodicities is sometimes 
criticized because the form of the periodicity---for instance, an average 
diurnal variation of magnetic declination--is said to be in no way con- 
nected with sine-waves, which are forced upon it by the purely mathe- 
matical process of harmonic analysis. In fact, a physical reason for 
expecting periodicities having the form of sine-waves is given only in a 
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few cases, for example, if the phenomenon is due to resonance in an 
oscillating system (semidiurnal wave of atmospheric pressure), or if it 
•s caused by forces changing like sine-waves (tides), or wherever a 
differential equation of the type y" -- -•y may hold. But a mathematical 
reason for applying harmonic analysis is always given, because it fur- 
nishes an adequate approximation, replacing the given ordinates by a 
few harmonic coefficients. 

In order to meet the criticism mentioned, the 27-day recurrence- 
phenomenon in magnetic activity has been treated here as an example 
just because the harmonic analysis is, in this case, a mere mathematical 
affair, with no simple physical meaning ascribable to each of the separate 
sine-waves of 27-, !3.5-, and 9-day periods. Yet we have been able to 
develop the ideas of persistence and quasi-persistence in this material. 
There can be therefore no doubt that the same methods can be success- 
fully applied in dealing with other geophysical and meteorological 
phenomena. 

However, the following outline of a test for persistence, quasi- 
persistence, or random fluctuations will show how our methods can be 
generalized so that they do no more imply an explicit reference to har- 
monic analysis. Consider the international magnetic character-figure 
C, 1906 to 1933, arranged in 378 rotations, that is, written in 27 columns 
with 378 rows. Form, for each rotation, the standard deviation, take 
its square, sum up for all rows, divide by 378, take square root' the value 
obtained is called •'(1). Add each two successive rows of C and divide 
by two, thus obtaining average 27-day variations for two rotations each. 
For these new average rows, form standard deviation, take its square, 
sum up, divide by number of average rows, take square root, multiply 
with V'2; the value obtained is called •'(2). In general, form average 
rows of h successive rotations, compute standard deviation for each 
row, square, sum up,_divide by number of average rows, take square 
root, multiply by x/h, so obtaining values called •(h). With random 
fluctuations, •'(h)=•(1); with persistent periodicities •'(h)=__•(1)x/h; 
with quasi-persistent periodicities of 27 days, •(h)--•'(1)x/v, where 
v is the equivalent length of sequences. u 

Remembering formula (11.6), and the conception of the generalized 
harmonic dial (section 13), in which the vector is proportional to •', it is 
easily verified that this method corresponds exactly to the generalization 
of the two-dimensional summation-dial to the generalized harmonic 
dial. Instead of Figures 15 and 16, we should consider a track of vectors, 
a summation-dial, in 26 dimensions. In the case of the character- 
figure C, the value for v obtained will be not far from that of v=3.0 
rotations obtained from the three sine-waves of 27-, 13.5-, and 9-day 
periods, since the amplitudes of these waves contribute most of •'(1). 

In general, rows of r ordinates would be written down, and averages 
of h such rows formed. In particular, for r= 1, we should obtain some 
form of Lexis test of independence of successive ordinates, suitable for 
geophysical applications. 

4!. General statistical test for periodicity in geophysical phenomena• 
•As to persistent waves, the method given above is materially the same as that given in 1924 by 

E. T. Whittaker and G. Robinson (see foot-note 35). It had been independently found and applied in 
the author's doctor thesis, G6ttingen, 1922. 
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In short, the full test of a period p for quasi-persistence and persistence 
is obtained as follows- Divide, in a suitable way as shown in section 35, 
the whole interval T of observations into intervals of equal length hp. 
Compute the amplitudes of the sine-wave of period p for each interval 
and from these amplitudes compute their expectancy according to (24.1). 
Multiply this expectancy by x/h and obtain e(h). Derive ½(h) for 
various values of/;, beginning with h--1, and ending with a value of h 
so that hp is still only about 1/20 of T, so that the function e(h), repre- 
sented as ordinate against the abscissa x/h, is properly determined. 
From this characteristic, the nature of the fluctuations can be judged. In- 
stead of the amplitudes of sine-waves, standard deviations can be used 
as indicated in section 40. 

In Figure 22, five typical cases are shown. They will be enumerated 
below, and we add tentatively a few more examples for each type of the 
characteristic' 

(A ) Random fiuctuations--e(h) equal to the ordinary expectancy e(1)-- 
Disintegrations of •adioactive substances; a•tificial examples obtained 
by random sampling (summation-dials resembling Figs. 7 and 8). 

(B) Random fluctuations plus quasi-persistence--c(1) increases asymp- 
totically from the ordinary expectancy e(1) to a limiting value, the 
effective expectancy ½(1)x/, (summation-dials resembling Figs. !5 and 
16). 27-day period in terrestrial-magnetic activity (section 35), 
aurora, and in solar phenomena, due to solar rotation; many meteorologi- 
cal phenomena, for instance, the periods of from 20 to •0 days in at- 
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toospheric pressure (Weickmann), the waves of periods of a few days 
in rainfall (Defant), the period of 3.5 years in atmospheric pressure in 
the Indian Ocean, the cycles of Br(ickner, A. E. Douglass (tree-rings), 
and many others. 

(C) Intermittent quasi-persisten½½•e(l•) increases slowly for e(1) 
up to ½(h0), from there follows example B (summation-dials resembling 
Fig. 21). Period p is submultiple of actual period of length hop. Nine- 
day sine-waves in international magnetic character-figure C (section 39), 
and all cases of subperiods. 

(D) Random fluctuations plus persistence•e(_h) increases from e(1), 
approaching asymptotically the straight line cx/h, where c is the ampli- 
tude of the persistent wave. Probability of chance for persistent wave 
judged by W(g), (17.6), with g=ratio of e(h) to ordinary expectancy 
e(1) (summation-dials resembling Fig. 11). Six-monthly wave in 
terrestrial-magnetic activity (section 29); the period of about 11 years 
in sunspots (?) and its effects in geophysical phenomena; most annual 
variations in meteorology; cyclic variations in the radiation of variable 
stars. 

(E) Random fluctuations plus quasi-persistence and persistence--- 
Combination of B or C with D. Probability of chance for persistent 
wave j_udged by W(g), (17.6), with • =ratio of ½(h) to effective expectancy 
e(1)x/•. All waves of 24 solar- and lunar-hour period, and their sub- 
periods, in terrestrial magnetism, atmospheric electricity, meteorology, 
etc. Periods in sunspots other than 11 years. Biological and economical 
cycles. Quasi-persistence exhibited in the vectorial differences between 
the waves for single intervals and the persistent wave. 

The illustration of these five cases in the summation-dial may finally 
be indicated' A--Random-walk; B--Modified random walk, so that 
each successive direction has a preference for the direction of the last 
vector; C•Like/3, but the preferred direction is, for instance, that of 
the third vector before; D•Modified random walk preferring a fixed 
direction;E--Combination of B, or C, with D. 

42. Acknowledgments---The numerical and graphical examples given 
in this paper were worked out with assistance given by C. C. Ennis 
and W. C. Hendrix at Washington, D.C., and by W. Zick at Ebers- 
walde, Germany. 

APPENDIX 

A1. Harmonic analysis of equidistant ordinates' Theorem I•The 
interval x--0 to 2r is divided into r equal intervals, of length 2•r/r, by 
the abscissae O, x•, x.•,... x•, where x•-- • 2r/r. A function f(x) is given 
by the ordinates yo = f(xo) for • •- 1, 2,... r. The arithmetic mean of the y• 
may be f0 = Zy•/r;their standard deviation may be •, defined by •--2: 
(y•-fo)•/r. Consider a sum of sine- and cosine-functions of frequency 
v=0, 1,..., k. with k<r/2 

(Ai.1) •(x) =ao+ (a, cos vxq-b• sin vx) 

The coefficients ao, a•, b• (v= !, 2 .... k) of 4•(x) must be determined so 
that q•(x) approximates the given ordinates yo of f(x) in the meaning of 
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least-square adjustment, that is, so that the mean square s• • of the 
residuals yp-•(xp), that is 

(A 1.2) s• 2 = Zp [y•-q•(x•)]•/r 

has the minimum value possible. The solution is 

(A 1.3) a0 = y•./r=fo, 

av= y• cos 

' "'2) b• y• sin vx•.. tr/ . 

a•, b• are call• harmonic coefficients. If r is an even number, a final 
term a(•/•) cos (r/2)x can be add• to 4•(x), for which the minimum 
condition (A1.2) gives 

(A 1.3a) a(,/•) = (-y• +y•-y,+y4- . . ß +y•)/r 

Furthermore, the ordinates 4•(x•) of the approximating function have 
•e average value 

(A a0 = 

and their standard deviation • is given by 

• (a•+b•),/2 
or, for r even and k =r/2 

(A 1.5a) •(e•> • = • (•/•)'• (a?+b?)/2 +a(•/•) • 
Finally for k < r/2 

(A •.6) s• • = r:--• = r •- (a2+b• •)/2 

If the number of coefficients a0, a•, b• in •z equals the number r of 
ordinates [for r even, k=r/2, for r uneven, k=(r-1)/2], the oMinates 
y• are repre•nted exactly by the ordinates of •. 

ProofsThe proof is based on the fact that the system of functions 1, 
cos vx, sin vx (v= 1 to k) are orthogonal n in the interval x=0 to 
This fundamental property is express• in the following formulae, in 
which the sums are extended from p= 1 to r and the indies v and 
range between 1 and (r-1)/2, for r uneven, and between 1 and r/2 for 
r even, unless the index r/2, for r even, is expressly indicat• by a •p- 
arate formula. 

(A!.7) Z cos vx• =0 (v<r), Z sin vx•=O (v•r) 

(A1.8) • cos • vx•=r/2, Z sin = vx• =r/2 (v<r/2), • cos: (r/2) x•=r 
,,Developmen• of arbitram function, int•$e•e$ of ortho•a• f•ctio•a, a•ch. aa •n•v•a, 

•o.ni•, etc., •e diacu•, for instant, in g. courant an• D. mit•rt, Metn•en •er matnemattm•en 
Ph•ik, 2nd ed, •lin, 1931. 
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(31.9) 2• cos vx• cos t•c• =0, 2: sin vx• sin ux• =0 (v•u) 

ß cos vx• sin t•x• = 0 (v = u or v • 

We first prove (31.7) by Moivre's theorem, namely, (writing exp z for ½•) 
cos vx•q-i sin vx•=exp i •x•=exp i vp2r/r= (exp i v 2r/'r)•=q•, putting 
q=exp i v 2r/r. Summing these equations from t>=l to r, we obtain 
on the left hand 2; cos vx•+i sin vx•, and on the right hand the geometrical 
series 

(31.10) q+q,.+q•+. . . +qr =q(q,_ 1) /(q- 1 ) 

But this is zero, for the denominator (q-1)•0, since 1 < v <r and q•-- 
exp iv2•r--1. The real and the imaginary part of the left-hand side 
must therefore also vanish, proving (31.7). 

The well-known formulae for cos (v+•)x, cos (v-•)x, etc., give at 
once for all values of v and t• 

2 cos •x• cos •x• =cos (•+u)x•+cos (•-•)x• 

(AI.11) 2 sin vx• sin •x•=cos (v-•)x•-cos (v+•)x• 
2 cos vx• sin t•x•-•sin (vq-/•)x•-sin (v-•)x• 

Summing from •= 1 to r, the right-hand sums vanish because of (31.7), 
except 21 cos (v-•)x• =r for v--u, because cos 0= 1, and • cos (v+u)x• •r 
for v=•=r/2, r even, because cos r x•=cos 2r = 1. That proves (31.8) 
and (Xl.9) •. 

We can now prove our theorem. First, (31.4) follows from (31.7), 
and if we form (•(x•)-ao)•--(at cos x•+b• sin x•q-...+a• cos kx•+ 
b• sin kx•) •' and sum from •= 1 to r, (31.5) follows from (31.8) and 
(31.9). We consider now a function q•*(x) of the same form as q•(x), 
but with arbitrary coefficients ao, a,, b,, while for q•(x) we take the 
coefficients defined by (31.3). We consider the sum q•(x)+•*(x) and 

shall find that this approximation to q•?(ixs ) worse than that given by •(x) alone, unless all coefficients of disappear. We form the 
square of the residual (omitting the index k in q•(x•) and q•'(x•) where 
it is not necessary) 

[y•- ($(x,) q- q•'(xo))] a = y/q-q•(x•) a q- q•'(x•) a - 2 y,4(x,)-2 
+2 •(x•)•'(x,) 

Inserting the series (AI.!) for q• and its equivalent for q•', and adding 
•All these formulae can easily be transformed into simple geometrical problems by means of the 

harmonic dial or our folding process (•ctioa I0). (A 1.7) is, for instance, only the expression for the clo•ing 
of a regular polygon, if star-shaped polygons are admitted. (A •.8) and (31.9) refer to some kind of epi- 
cyclic motion, described by a point on the circumference of a circle revolving with frequency (v+•), 
while its center revolves with frequency (v--•) on another circle of the same radius and fixed center. 
Thi• explains the regularit•r of Figure 4. With h circles with radii ½v, each center moving with frequency 
on t!•e circumference of the preceding circle, with beginning of the /hovemerit given by the l•hases 
the movement of a point on the circumference of the outermost circle, projected on a vertical line, rel•ro- 
duces the functio• •(x); this is the principle of tidal computing machines. 

Of course, .the hazanonic dial is equivalent to the ordinary geometrical representation of coml•lex 
numbers, because .• sin (•x +•v) is the imaginary part of ½• exp i (•x +•.)• our vector in the harmonic 
dial represents the "complex amplitude" ½v exl> i%, the factor exp ivx being common to all waves of 
frequency v. This is the connection to the electrotechnical diagrams used for describing alternating currents 
(see, for instance, lg. part 1, of the Handbuch der Experimentalphysik, Leipzig, 1934). For geophysical 
purposes, however, the special fore of diagram described as harmonic dial is clearer. 
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up for p= 1 to r, the terms on the right hand yield successively (the 
formulae applied being cited in brackets in each row) 

p__• 3¾•'=r•2+rao 'ø After (11.2) 

•--• 4(x•)2--rao•+(r/2) • (avø'+b?) After (A1.7) to (A1.9) 
E (,./2) Z ,=• ,:• [(a,*)-O(b, *) After (Al.7) to (A1.9) 
- 2 • y•4(x•) -- - 2 rao •-r (a•'+bv 0•) After (A •.3) 

'V * E/* --2 Z. • (xp) = -2 raoao*-r (a•.a, +b,bv*) After (A1.3) 

2 Z 6(x,)6*(x•) =2 raoao*+r (a,,•,*+b,,b,*) After (AI.•) to (A1.9) 
vml 

Therefore, the average square residual is, if we use (A1.5) 

(A.t2) [y. - (O(x.) + O*(x.))l=/r = 
[(a,*) = 

The minimum value of the right-hand side is (A/.6), if ao*=a•*=b•*=... 
---a• =b• =0. The case of ar/=, for r even, is adequately covered by 
the proof. 

Incidentally, (Al.12) proves a corollary to our main theorem. Thus 
if we require to approximate f(x) by a sum of sine- and cosine-functions 
of frequency ,,<r/2, in which some of the frequencies are omitted (for 
example, if r=12, and we require approximation by a0+aa cos 3xq- 
ba sin 3x+b• sin 5x), the formulae (AI.3) remain valid, and (A1.6) also, 
if only the coecffiients actually used are inserted (in our example, 
s•'--t"-(aaø'+ba=+b•")/2). This may be proved by putting the co- 
efficients of •' equal to the negative coefficients (AI.3) of the terms 
omitted, and applying (Al.12). 

The proof given here does not make use of differential calculus, at 
the same time furnishing the corollary mentioned. 

AZ. Fourier series for continuous function, and harmonic coefficients 
for equidistant ordinates' Theorem II•A continuous function f(x) 
between x=0 and 2•r may be developed into an infinite Fourier series 

(A2.1) f(x) =A0+ (A, cos vx+B, sin vx) 

implying that f(x) complies with the conditions necessary for this develop- 
ment. Furthermore, the r equidistant ordinates f(x•)=yo may, by 
(A1.3), be represented by the finite series •(x) (AI.1), with harmonic 
coefficients a•, b• (v < r/2). Then 

(A 2.2) a0 =A 0+At +A • +Aar+. ß ß 
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{ av=Av+Ar-v+Ar+v+A=r-v+A=•+,+. . ß b• =Bv- B, _ , + Br +v - B.•, _• +.B =r +, -- . . . 

and, for r even, 

(A 2.4) ar/, = A r/, + A •/*. + A s•/, +... 

Proof--In order to avoid excessive use of indices, the general proof 
may be abstracted from the following example- Put r= 12, v= 5' then 
x•=30 ø, x•=p30 ø, cos (r-v)x•=cos (12-5)p30ø=cos (p360ø-p150 ø) 
=cos p150ø=cos 5x•=cos vx•. Similarly, sin (r-v)x•=-sin 
sin (r+v)x• =sin ,,x•. Therefore, the finite series •(x), with coefficients 
given by (A2.2) to (A2.4), has, for x=x•, ordinates equal to those of f(x). 

Take asan example r=3 and v= 1. Then a•=At+A•q-A4+A•+ .... 
In the analysis of annual values, a wave A • of frequency 2 in 3 years, 
that is, of period 1.5 years, can be mistaken for a wave A• of frequency 
1 in 3 years, that is, of period 3 years. The reason is obvious since cos x 
and cos 2x have, for x=0 ø, 120 ø, and 240 ø, the same numerical values, 
namely, 1, -0.5, and -0.5. 

A3. SmoothingsFrom a continuous function f(x) with the period 
2r, that is, f(x)=f(x+2r), a smoothed function g(x) may be derived 
by ascribing to each abscissa x the average of f(x) for the interval 

(x-•) to (xq-•), that is, g(x)= f_• f(xq-•)d•/2•. Then the Fourier 
series of g(x) is 

(A3.1) g(x) =A0q- ,,•l (Av cos vx+B• sin vx)(sin •/v•) 
If we plot a harmonic dial (section 6) for the vectors of sine-waves of 

period 2r/v, that is for frequency v, this equation means that the vector 
for g(x) has the same direction, or the same phase, as that for f(x), but 
t•e amplitude in g(x) is reduced in the ratio sin v•/v•. This function 
has been plotted (with l•=v/•) in Figure 19A. Negative sign of sin 
v•/v• means here reversal of phase, for instance- Average of f(x) 
sin x for •= 3r/2, that is, when smoothed over intervals of length 3•r, 
g(x) • - (2/3•r) sin x. 

Proof•!ntegrate each term of f(x) in (A2.1)' for instance, the integral 
of cos v(x+•) over l•=-tg to q-t• is (I/v) (sin v (x-I-•)-sin v (x- 
=(I/v) 2 sin vt• cos •x, and division by 2• gives the average (sin 

COS •. 

Application---Hourly means in terrestrial magnetism (day = 360 ø, 
•=7.5ø), monthly means (year=360 ø, /g=15ø), etc. In practice, for 
instance, the hourly means are submitted to harmonic analysis as if 
they were equidistant values observed at the half-hours, and then the 
harmonic amplitudes are corrected to "instantaneous values" by multi- 
plication with v•/sin v/•. This procedure neglects the possibility of 
higher frequencies in f(x) than r/2, discussed in section A2' this is, 
however, generally not serious because, if r is not too small, the waves 
with frequencies above r/2 are very much reduced by smoothing. 

A4. Non-cyclic correction--The values of the ordinates for x=0 
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and 2•r may be y0 and yr. For r ordinates, our form of harmonic analysis 
(section 5 and section A1) considers only the ordinates y• to y,, giving 
of course., q•(0)--y, instead of y0. If 

y,- y0 = d (non-cyclic change) 

we can apply a non-cyclic correction by adding, before harmonic analysis, 
an appropriate linear function, namely, adding to yp (o--0, !, ..., r) 
the value 

(A 4.2) (d/2) - (do/r) 

If we submit these corrections to harmonic analysis, entering them for 
y, in (.41.3), we obtain harmonic coefficients which we may call 
and Abv. Actual calculation gives the value of Aa0=-d/2r. In order 
to obtain /Xa• and Abe, we can, because of (g!.7), omit the constant 
part (d/2) and consider only (-do/r). Inserting this value in (AI.3), 
we obtain for A bv, putting, = 2,rv/r 

/xb•=(2/r) Z' (-d/r) o sin o' 
P,b• (•r"/d) sin (,,/2)= Z • 2o sin o' sin (,/2)= 

p=• tO cos (9--1/2)'--0 cos (0+1/2),} 

= • I(9--1/2) cos (a --1/2)• -- (a + l/2) cos 
[cos (o-- 1/2),]/2+[cos (oq- 

= •--, t (•--1/2) cos (•-1/2) ,- (•-t-1/2) cos (•-F1/2),} + 
cos (, / 2 ) cos 

By this rearrangement (known as "partial summation"), we can find 
the sum. The last sum vanishes because of (AI.7), and if we write out 
the successive terms for 9: 1, 2,..., r in the first sum we see that the 
positive and negative parts cancel, and only two remain from the terms 
with p:l and o:r, namely, cos (,/2)/2-(r+1/2) cos (r+l/2),, or 
-r cos (,/2) [since r,:2•rv, and therefore cos (r+l/2),:cos (,/2)]. 
Therefore, Abv:(d/r) cot (,/2). /Xa• can in the same way, by multi- 
plying by sin (,/2), be found as -d/r. 

The non-cyclic correction can therefore be applied in the following 
simple way: Compute a0, a,, by from the given ordinates y• to yr accord- 
ing .to (A1.3), find the non-cyclic change d:y•-yo, add to a0, av, by the 
corrections 

(A4.3) Aa0:--d/2r, /Xav=-d/r, /xb•= +(d/r) cot (a-v/r) 

Then (ao+/xao) is the arithmetic mean (yo/2+y•+y2+...+y,-• 
-+-y•/2)/r, and (a,+/Xa,) and (b,+ Abe) are the harmonic coefficients 
of corrected ordinates obtained by adding to the given ordinates a linear 
function which makes the ordinates for x =0 and x = 2r equal. 
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The general formulae (.44.3) give, for r=24 and r= 12, the correc- 
tions computed numerically by C. C. Ennis 87 (whose C=yo-y,=-d). 

If the number r of the ordinates becomes infinite, the formulae (A4.3) 
become Aa0=Aa,=0, and, because x/sin x becomes 1 for x=rv/r 
decreasing to 0, /Xbv=d/•rv. This is of course nothing but the coefficient 
of the Fourier series for the continuous linear function (d/2•r) Or-x), 
into which the non-cyclic correction (A4.2) is transformed by r=oo, 
namely 

(A4.4) (d/2•r) Or-x) =(d/•r) {sin x/l+sin 2x/2q-sin 3x/3+... 
+sin vx/v+. . . } 

This function is, by the way, discontinuous at x=O and 2r, changing 
suddenly by the amount d. Finite partial sums of (A4.4) up to frequency 
v exhibit therefore, near the discontinuity, the systematic lack of approxi- 
mation known as Gibbs' phenomenon? This is of little importance in 
geophysical applications, except as a warning that abrupt changes in 
the given function f(x) can only be represented by including sine-waves 
of high frequency in the approximating series q•(x). 

A5. Harmonic analysis and correlation--The correlation-coefficients 
between the given ordinates Yo (or their deviations zp = (yo-ao) from 
their arithmetic mean a0) and the ordinates of the cosine-wave cos v__xp 
or the sine-wave sin vxo are, respectively, av,/(•x/2) and b•/(•'x/2), 
where •' is the standard deviation of the y• or z,. [Indeed, the numerator 
of the correlation-coefficient is •zo cos vxo, or because of (A1.7) and 

/ (AI.3), •:y• cos vxp=(r/2)a•, and the denominator is the square root 
of the product •:z• (=rU) times • cos a vx• (=r/2, because of (A1.8)).] 
Harmonic analysis can therefore be conceived as computation of correla- 
tion-coefficients. 

Another relation to correlation can be seen in the formulae used in 
deriving (A1.12), because they can be interpreted for the calculation of 
the correlation-coefficient of two sets of ordinates 4(xo) and •*(x,) from 
the respective harmonic coefficients. 

A6. The method of exhaustion--From (A3.1), it follows that the 
smoothed function g(x) does not contain any per. iods p for which sin 
v• = 0, that is, v/• is an entire multiple mr of r, or, since the length of the 
period p = 2r/v, no periods of lengths p= 2•/m, for which the smoothing 
interval 2/• is an entire multiple top; adjacent periods are weakened. 
If, therefore, we form the difference d(x)=f(x)-g(x), it contains the 
sine-waves of these periods in full intensity, and adjacent periods in 
nearly full intensity. That is, in d(x), the periods with longer periods 
than 2B are suppressed in favor of the shorter periods, This process 
and several similar processes like differentiation or integration, have been 
recommended therefore in order to help finding periodicities. However, 
though they may be useful for reconnaissance work and illustrative 
purposes2' they do not lend themselves readily to the application of the 
statistical tests for persistence, etc. 

d(x) may again be smoothed for a longer interval/Sz, and this succes- 
sive smoothing and difference-formation--a process which could be 

•See the tmoers and diagrams given by M. et Mme. H. Labrouste, Ann. Inst. Phys. du Globe, Paris, 
7, 190 if. (1929);9, 99-101 (1931); 11, 93-101 (1933); Solxante-six•me Congr. d. Socl•t•s Savantes,_46 - 
471 (193,•I); C.-R. Assembl•e Lisbonne 1933, Union •. Gc•ophys. Internat., Ass. Mag. E!ectr. Terr. 
Bull. No. 9, 292-295 (1934). 
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called method of exlmustion--has often been used as a substitute for 
harmonic analysis, not only because of the apparent saving of computing- 
labor but also because it has been thought to be independent of sine- 
waves (section 40). The method leads, however, in a roundabout way, 
to practically the same results as harmonic analysis, only obscuring 
its statistical aspect. The criticism •8 directed by H. H. Turner against 
an analysis of the sunspot-numbers, made by H. Kimura using the 
exhaustion-method, applies to a number of other papers. 

A7. Refined computation of a persistent wave--As soon as the length 
of the period of a persistent wave is definitely known, its amplitude and 
phase can be obtained with an accuracy determined by the effective 
expectancy (section 36) and the number N of periods contained in the 
interval T of observation. Since, in general, N cannot be enlarged at 
will, the only possibility of increasing the accuracy is to lower the 
effective expectancy, for instance, by selecting, out of the whole interval 
T, suitable partial intervals with relatively smaller unperiodic variations. 
This has been done successfully in the computation of the lunar semi- 
diurnal waves in atmospheric pressure '7, •0; fortunately, the error-esti- 
mates in the former paper •0 are based on monthly averages of the diurnal 
variation and need therefore not be revised after the effect of quasi- 
persistence has been detected. Of course, the selection of "quiet inter- 
vals" opens pitfalls which must be recognized, for instance, the curvature- 
effect (section 16). Particularly erroneous would be an attempt to 
compute an average vector from the single vectors with smaller ampli- 
tudes alone, for instance, from those in Figure 2 falling within the 
probable-error circle, because that would certainly lead to a systematic 
underestimate of the amplitude. But it would probably be admissible 
to compute the lunar 12-hour wave in pressure only from those days 
which have a small 24-hour wave. S. Chapman has proposed a scheme 
for a systematic reduction of the expectancy? aiming at a corresponding 
increase of the accuracy with which the average sine-wave is obtained. 

AS. Persistent waves with periodically changing amplitudes--The 
following formula is easily proved by applying (A i.11) 

(AS. 1) (c+2k cos/•c) sin vx= c sin vxq-k sin (v+/•) xq-k sin (v-m)x 

A wave with periodically changing amplitude is therefore equivalent to 
the sum of three persistent waves of different frequencies. This formula 
is much used in tidal theory, and can easily be demonstrated in the 
harmonic dial for frequency v (two vectors of amplitude k, revolving 
with frequency /• in opposite directions around the end-point of the 
amplitude c). 

Example--Terrestrial-magnetic activity, u•-measure, 6-monthly 
wave, 48 amplitude varying in l 1-year sunspot-cycle. Time t, origin at 
the beginning of a sunspot-year, increasing by 2•r during one year. Then 
the 6-monthly wave is expressed by 

[6.5+2.6 cos (t/11)] sin (2tq-261 ø) =6.5 sin (2t+261 ø) 
+1.3 sin (2t+(t/ll)q-26!ø)-b l.3 sin (2t-(t/ll)q-261 ø) 

•London, Mon. Not. R. Astr. Soc., 73, 545-552 (1913). 
•Zs. Geophysik, 6, 396-420 (1930). 
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The frequencies (per year) of these terms are 2, 23/11, and 21/11, with 
periods 6.00, 5.74, and 6.29 months, respectively. Ordinary periodogram- 
analysis of a series of many years would therefore yield, besides the main 
6-monthly wave, two waves of about one-fifth of its amplitude, and 
periods of 5.74 and 6.29 months; but this result differs only in form, not 
in physical content, from the statement of a 6-monthly wave of con- 
stant phase but variable amplitude. 

Other examples are given by the case of solar diurnal waves with 
seasonally changing amplitudes (for instance, atmospheric temperature); 
the frequency of the solar diurnal wave is 365 per year and the frequenc. y 
of the change of amplitude is 1 per year, so that the additional terms in 
(AS. 1) have the frequencies 366 and 364 per year. The former has the 
period of a sidereal day, and this purely formal result has often been 
mistaken as a proof for influences of stars, etc. 

SUMAiARY 

(a) Every discussion of the physical causes of periodicities in geo- 
physical and cosmical phenomena must be preceded by statistical 
studies testing the significance and reliability of these periodicities. 
This statistical viewpoint in the application of harmonic analysis was 
introduced by A. Schuster. The present paper gives, on the basis of the 
theory of probability, a new aspect and an improvement of these methods, 
generally called periodogram-analysis, or investigation of hidden perio- 
dicities. The scope of these results is not restricted to sine-waves. 

(b) Following an introductory review of literature, harmonic analy. sis 
is discussed as a mathematical representation of time-functions, using 
vector-representation of sine-waves in the harmonic dial and the folding 
process as a graphical illustration of harmonic analysis. The degree of 
approximation between the given function and the sum of sine-waves is 
determined by the standard deviation of the residuals. The ordinary 
periodogram is introduced, and Pollak's periodogram for the inter- 
national magnetic character-figure C is discussed. 

(c) The generalized harmonic dial is introduced in order to prepare 
the transition from sine-waves to periodicities of other form. The nature 
of the non-cyclic variation and the selection- or curvature-effect, which 
is often misinterpreted, are discussed. 

(d) The statistical laws for the random walk are described and 
applied, in various forms, to the harmonic dial and the folding process, 
using the conception of the summation-dial, expectancy e, and probability 
of chance (g test, 1/x/'n law). For random fluctuations, the expectancy 
does not depend on the length of the period (equipartition of the vari- 
ance). 

(½) For •eophysical phenomena, the expectancy depends definitely 
on the length of the period. This fact, often overlooked, is of decisive 
influence on tests for the reality of persistent period/cities, as demon- 
strated in several cases. 

(f) Quasi-persistence, exhibited in limited sequences of successive 
waves, is described as a common phenomenon in geophysics and is 
measured by an index •, the equivalent length of sequences. It affects 
the •-test for persistent waves in so far as not the ordinary expectancy c 
but the effective expectancy cl/• must be used. Because of interference, 
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adjacent periods are infected by quasi-persistence. Intermittent quasi- 
persistence indicates sub-periods of longer periods. In comparison with 
random conditions, and with respect to tests for persistence as well as 
the uncertainty of average sine-waves derived from a large material, 
quasi-persistence acts like a reduction of the number N of available ob- 
servations to the effective number Ar/tr. 

(g) The methods for testing geophysical phenomena with respect 
to periodicities are generalized for waves of other form than sine-waves. 
Typical examples are given for the characteristic, a diagram demon- 
strating, for an assumed length of period, in which way this period is 
contained in the observational material. 

(h) In the appendix, the formulae for harmonic analysis of equidistant 
ordinates are derived, including the effects of smoothing and a new 
general formula for non-cyclic correction. The relations to correlation, 
the methods of exhaustion, and persistent waves with periodically 
changing amplitudes are discussed. 
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