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SISTENCE IN GEOPHYSICAL AND COSMICAL
PERIODICITIES

By J. BARTELS

Abstraci—The statistical aspects of the application of harmonic analysis, intro-
duced by A. Schuster in his famous paper on the investigation of hidden periodicities,
are discussed on the basis of recent developments in the theory of probability. Between
the two extreme cases of random fluctuations and persistent waves, hitherto
discussed exclusively, the intermediate case of quasi-persistence is introduced and
recognized as a common phenomenon in the time-functions of meteorology, geophysics,
and cosmical physics. Statistical methods, based on the conception of the harmonic
dial, are given for dealing with quasi-persistence and its effect on tests for persistent
waves, and they are generalized for the case of periodicities of other form than that of
the sine-wave. Typical examples are given illustrating various forms of random fluctua-
tions, quasi-persistence, and persistence, as well as questions related to harmonic
analysis, such as the periodogram, non-cyclic change, curvature-effect, equivalent
length of sequences, effective expectancy, random walk, interference, and the infective
property of quasi-persistence on adjacent periods (see summary at end of paper).

(I) INTRODUCTION

1. The problem—Investigations on periodicities, cycles, recurrence-
tendencies, and similar phenomena in geophysics proceed, in general,
in three stages: (1) Analytical transformations of the observational
data, for instance, harmonic analysis: (2) statistical studies on the results
of these transformations, testing the degree of their significance: (3)
physical explanations of the significant periodicities, for instance, by
rotation-periods of the celestial bodies, by free or forced wave-motions
or oscillations, etc.

These three stages are not in every case of equal importance, nor is
their order invariable. Tidal theory, for instance, starts from the well-
known movements of the celestial bodies and develops a specially
adapted harmonic analysis, and there is hardly a need for the statistical
viewpoint. The situation is, however, different with respect to the great
number of geophysical periodicities in which the length of the period is
given beforehand and only the form of the actual periodic variation in
this interval is wanted, for instance, in the case of the solar and lunar
diurnal variations and the annual variations, which occur in practically
every geophysical phenomenon. Here statistical methods have been
applied successfully, for instance, in the case of the solar diurnal mag-
netic variations, which show a marked day-to-day variability,*? or in
the case of the lunar diurnal variations of terrestrial magnetism or of
atmospheric pressure, where small periodic changes are masked by much
larger time-changes of different character, or in the case of the semi-

1S. Chapman and J. M. Stagg, London, Proc. R. Soc., A, 123, 27-53 (1929); 130, 668-697 (1931).

3], Bartels, Terr. Mag., 37, 201-302 (1932).
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annual variation of magnetic activity. There is a large and promising
field for further use of such methods.

It seems, however, even more urgent to improve the procedure for
testing the significance of such periodicities in which not even the lengths
of the periods or recurrence-intervals are known or suspected from the
outset. A large number of periods and cycles has been claimed in at-
mospheric temperature, rainfall,? solar radiation,* earthquakes, and even
in business-activity,® while only very few of them have been generally
recognized. This strange result has brought about a state of uncertainty
and instinctive distrust which sometimes even affects the attitude
towards perfectly sound periodicities. An attempt is made in this
paper to discuss the elementary principles underlying research of periodic-
ities. The main reasons for the contradictory results will be found in the
lack of adequate combination of harmonic analysis with the theory of
probability in its modern form.®

2. Schuster's periodogram—The “Investigation of hidden periodic-
ities” published in 1898 by A. Schuster in this JOURNAL? has become
farmous because it is the first successful attempt to “introduce a little
more scientific precision into the treatment of problems which involve
hidden periodicities’ by applying the theory of probability. A. Schuster
calculated his “‘periodogram’’ for 25 years of records of magnetic declina-
tion at Greenwich?® and for sunspot-data,® modifying his original method
according to the optical analogy between the periodogram and the
spectrum of a luminous disturbance. A number of periodograms have
been calculated since then: considerable progress in the practical appli-
cation of the Schuster method, speeding up the heavy arithmetical work
connected with it, has been made by K. Stumpff,’? using instrumental
methods, and L. W. Pollak,! who analyzed the international magnetic
character-figure (designated C in this paper) for the years 1906 to 1926
using punched cards and Hollerith tabulating machines.

3. A short review of literature—Since Schuster’s papers were written,
a number of investigations in pure mathematics and theoretical physics
have appeared bearing on subjects which are connected with periodo-
gram-analysis~—though this connection is not expressly mentioned and,
sometimes, not even realized. Since these studies may be utilized for a
revision and development of the periodogram-method, some of them
may be enumerated here. On the analytical side, the theory of “‘almost
periodic functions” created by H. Bohr'*¥ generalizes the ordinary
Fourier series by considering sums of sine-waves with frequencies which

See, for instance, the puzzling list of periods ranging from a few hours to 260 years in Sir Napier
Shaw's Manual of Meteorology, vol. 2, pp. 312-327, Cambridge, 1928.

‘€. G. Abbot, Smithson, Misc. Coll., 87, No. 9 (1932); 87, No. 18 (1933); 89, No. 5 (1933).

tEdwin B. Wilson, Science, 80, 193-199 (1933); Quart. J. Economics, 375-417 (May 1934).

‘R. von Mises, Wahrscheinlichkeitsrechnung, Leipzig und Wien, 1931; E. Kamke, Einfilhrung in die
Wahrscheinlichkeitstheorie, LelpmgB.e 1932; A. Kolmogoroff, Grundbegriffe der Wahracheinlichkeits-
rechnung, Ergebn. Math,, 2, Nr. 3, Berlin (1933); A. Khintchine, Asymptotische Gesetze der Wahrschein-
lichkeitsrechnung, Ergebn., Math., 2, Nr. 4, Berlin (1933).

"Terr. Mag., 3, 13-41 (1898).

Cambridge, Phil. Tranas., 18, 107-135 (1899),

'London, Phil. Trans. R. Soc., A, 206, 69-100 (1906).

19K. Stump#, Analyse periodischer Vorgiinge, Berlin, 1927,

uL, W, Pollak, Prager Geophysikalische Studien, Heft 3 (Cechoslovak, Statistik, Reihe 12, Heft 13),
Prague, 1930.

»Harald Bohr, Fastperiodische Funktionen, Ergebn. Math,, 1, Nr. 5, Berlin (1932).

uA, S, Besicovitch, Almost periodic functions, Cambridge, 1932; N. Wiener, The Fourier integral
and certain of its applications, Cambridge, 1933.
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are no! entire multiples of a fundamental frequency. On the statistical
side, the fundamental problem variously named “random vibrations,”
“random flights,” or “random walk"” (Irrfahrt), has been treated by Lord
Rayleigh,* on whose first paper A. Schuster based his periodogram,
J. C. Kluyver,’s, K. Pearson,’s, G. Pélya,'” and G. 1. Taylor.® Some
relations can also be found to papers on Brownian movement, or eddy-
diffusion in the atmosphere.'*2%2t A part of the optical analogy, the
superposition of light-waves with random phases, has been treated by
M. von Laue* and A. Einstein.® A. Basch’s theory of ‘‘error-tensors’™
developed for geodetical purposes must also be mentioned. A.
Glogowski,® in a dissertation on hidden periodicities, does not sufficiently
emphasize the statistical viewpoint and misconstrues Schuster’s methods.

Of the many papers dealing with geophysical and cosmical periodic-
ities, a few may be selected as containing theoretical discussions of the
periodogram-method. G. U. Yule® discusses the effect of superposed
fluctuations and disturbances on harmonic analysis. Sir Gilbert Walker??
defines criteria for reality of periods. L. Weickmann's discovery of
“symmetry-points’ in the records of atmospheric pressure entailed a
number of studies on periodicity in general.2*?* H. H. Turner® con-
sidered discontinuities in meteorological phenomena. I.eo Kellers
amplifies the mathematical system of periodography in a form suitable
for geophysical applications.

4. Plan of this paper—It is not proposed to give here a bibliograph-
ical account of the contributions of the various authors to the theory of
periodogram-analysis. It seems to be more convenient to derive the
new results directly by using elementary graphical illustrations of
harmonic analysis.

It would have been possible to derive the results of this paper in a
quite general way, discussing mathematical-statistical properties of
‘‘populations” formed by a number of vectors in two or more dimensions.
However, it seemed more appropriate to show the need for these con-
siderations by dealing with time-functions representing actual geo-
physical phenomena. After the introduction of the conception of
persistence and quasi-persistence as contrasted with random fluctuations,

. MLord Rayleigh, Phil, Mag., 18, 73-78 (1880); 36, 429-449 (1918); 37, 321.347, 498-515 (1919). Re.
printed in Scient. Papers I and 6, Cambridge, 1899 and 1920.
uJ. C. Kluyver, Amsterdam, Proc. Akad. Wet., 8, 341-350 (1906).

4K, Pearson, A mathematical theury of random migration (Math. contrib. to the theory of evolution,
15), London, 1906. & ¢ i

"G, Pélya, Ziirich, Mitt. Physik. Ges., 19, 75-86 (1919).

*G. I Taylor, London, Proc. Math. Soc., 20, 196 ff. (1922).

#*0. G. Sutton, London, Proc. R. Soc., A, 135, 143-165 (1932).

*L. F. Richardson and J. A. Gaunt, London, Mem. R. Met. Soc., 3, No. 30 {1930).

10. F. T, Roberts, London, Mem. R. Met. Soc., 4, No. 37 (1933).

#M. von Laue, Ann. Physik, 47, 853-878 (1915); 48, 668 ff. (1915).

#A. Einstein, Ann. Physik, 47, 879-885 (1915).

*Wien, SitzBer. Akad. Wiss., Math.-Nat. Klasse, Abt. Ila, 137, 583-598 (1928).

#A. Glogowski, Beitrige zur Auffindung verborgener Periodizit4ten, Munster i. W., 1929,
*G. U. Yule, London, Phil. Trans., A, 226, 267-298 (1927).

#Sir Gilbert Walker, London, Quart. J. R. Met. Soc., 51, 337-346 (1925); London, Mem. R. Met.
Soe., 1, No. 9 (1927); 3, No. 25 (1930); Mon. Weath. Rev., 59, 277-278 (1931); London, Proc. R. Soc.,
A, 131, 518-532 (1931). See also D. Brunt, Memoirs R. Met. Soc., 2, No. 15 (1928), the discussion in
London, J. R. Met. Soc., 54, 299-303 (1928), and R. A. Fisher, London, Proc. R. Soc., A, 125, 54-59 (1929).

®L. Weickmann, Beitr. Geophys., 34, 244-251 (1931).
»K. Stumpff, Beitr. Geophys., 32, 379-411 (1931); F. Dilger, Beitr. Geophys., 30, 40-95 (1931).

191;';1{. H, Turner, London, Quart. J. R. Met. Soc., 41, 315-336 (1915); 42, 163-173 (1916); 43, 43-60

uL. Keller, Beitr. Physik frei. Atmos., 19, 173-187 (1932).
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if often appeared unnecessary to repeat the definitions in general abstract
formulations. Furthermore, we regard throughout the paper all time-
functions as given by values at equidistant intervals of time. This
assumption clarifies the argument and holds in most geophysical appli-
cations. Continuous functions of time could have been treated in exactly
the same way, replacing the sums by integrals, without introducing a
fundamentally different conception; in fact, continuous recording is
practically represented by wvalues at very short intervals of time.

The standpoint taken in the present paper is the outcome of work
on periods in meteorology and terrestrial magnetism, and has been dis-
cussed during several years in a number of talks at the Department of
Terrestrial Magnetism of the Carnegie Institution of Washington and
in courses of lectures at Berlin University. Exact proofs for some
theorems involving theory of probability are omitted here and will be
given in a later paper, to appear in the series “Ergebnisse der Mathe-
matik” (Berlin, J. Springer).

(II) HarMoNIC ANALYSIS AS A MATHEMATICAL REPRESENTATION OF
THE OBSERVATIONS

5. Principle of harmonic analysis—Records of geophysical phe-
nomena yield functions of time, f(£), which for further research are
mostly transformed into a series of values for equal intervals of time,
for instance, hourly, daily, monthly, annual, etc. The record may cover
the time £=0 to ¢{=7T. For convenience, another time-variable, x=£X
2x/T, is introduced so that the length of the record, as measured by
%, is 2r. The number of values {(or ordinates) given may be r; that is,

}:he times (or abscissae) xi, xi, ... x, divide the time-interval 0 to 2«
into r equal parts, and y, may be the value of the variable for the time
(5.1) x,=p(2w/r)

No attention is paid, at this stage, to the value y, at the time x,=0 (see
section 16).

Consider sine-functions and cosine-functions of frequency v=0,
1,2,...k, that is, completing v cycles in the interval 0 to 2= [lengths of
periods p, =T/v], and their sum
(5.2) ¢r(x) =ao+ (a1 cos x+b; sin x)+(as cos 2x+bs sin 2x)

+. . .+ (ax cos kx+b, sin kx)
Harmonic analysis consists in determining the coefficients ao, ay, b1, . . .
Gy, b so that ¢ (x,) approximates the given ordinates y,, in other words,
that the residuals [y,—ér(x,)] are as small as possible. This problem

is readily solved if it is put into the form that the average of the squared
residuals

(5.3) st=Z, [yp—br (%) ]2/7
shall be made a minimum.

Since ¢; contains (2k-+1) coefficients and shall represent # ordinates,
we consider only values of % so that

(5.4) 2k+1<r
Then it can be shown that the coefficients are given by the equations
(5.5) rae=2Z, 9, (r/2) a,=3; y, cos vx,, and (r/2) b,=3, ¥, sin vx,
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where the sums are taken for p=1,2,...r,and vruns from 1 to 2. @,
is the arithmetic mean of the y,, and (a,, b,) are called the harmonic
coefficients of the set y, of ordinates. If 7 is an even number, the formula
for ays is

(5.6) Gorn=(—1+ye=yst+y—. . .+y)/r

which differs from the formula for v<7/2 in so far as the right-hand
sum is divided by r and not by (r/2).

From the linear form of the equations (5.5), the theorem on super-
possiion of different functions is easily verified, namely: A finite number
of ordinates ¥y, ¥'s, ... ¥ ¥"'1, ¥, ... ¥+ ... may be given, and
(a’y, b',) may be the harmonic coefficients for the set y"1, 3%, ... ¥'s
etc. Then a set of ordinates formed by the linear combination 4y,
A"+ ... (p=1, 2, ... r), with constants 4’, A", ..., has the har-
monic coefficients (4'a’,+A"a",+..., B'b,+B"b",+...). This is
known as the additive property of the harmonic coefficients, or principle
of superposition.

The formulae (5.5) do not contain any reference to k, that is, the
number of terms of the series ¢,(x). Each harmonic coefficient is
therefore determined independently, regardless of the number of addi-
tional harmonic terms involved. This is a consequence of the so-called
orthogonality of sine-waves and cosine-waves with periods which are
submultiples of one and the same main period.

A proof of the formulae (5.5), and a discussion of some other points
such as smoothing, non-cyclic variation, etc., is given in the appendix.

6. The harmonic dial—The sine- and cosine-functions of frequency
v can be combined into a sine-wave with (positive) amplitude ¢, and
phase a,

(6.1) a, cos vx+b, sin vx=¢, sin (vx+a,), with

(6.2) a@»=c sin a,, by=c, cos a, and a?=4,2+4,% tan a,=a,/b,

These relations can be illustrated in the karmonic dial for the frequency
v. In a plane coordinate system, in which @, is measured upward, and
b, to the right (Fig. 1), the expression (6.1) is represented by a point P

FIG. 1-SCHEME FOR HARMONIC DIAL
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having the rectangular coordinates a,, b,, and, because of (6.2), the
polar coordinates (¢, av); or, also, by the vector OP having the pro-
jections a., b, on the axes, the length ¢, and the azimuth a,. This vector
will be called ¢,. The first of the v maxima of the wave (6.1) occurs
when (vx+a,) =90°, that is, at the time %ma:=[{90°—a,] v. Therefore,
a,=90° corresponds t0 Xmee=0, @, =0° t0 Xp.=90%v, etc. It is
therefore possible to indicate, on a circle around the origin, the times
Xmaz (O Imas, expressed in the original time f) for the waves represented
by vectors pointing in that direction. This gave the name to the dia-
gram, because, in a semi-diurnal wave [time interval T from 0" to 12}],
t=1" corresponds to x=2r/12=30°, and the scale for tm,; becomes the
ordinary dial of a clock.

The “blank” for a harmonic dial of a certain frequency contains
the origin O, a linear scale for the amplitudes ¢, [or a number of circles
around the origin designating certain values of ¢,] and a circular scale
at the edge, marked with the occurrence of the maximum and, inci-
dentally, giving the length of the period .. Changes of units for ¢
or of time origin [for instance, from local to Greenwich time in dials for
diurnal waves] are easily indicated by renumbering the respective
scales. Each point P entered, as a dot, in this blank represents, by
the vector OP, a sine-wave of the period p,. Since the blanks for har-
monic dials of the period p, for the intervals i=0to T, T to 2T, 2T to
3T, etc., are identical except for the numbering of the circular scales,
which differ by multiples of T, they can all be combined into that for
the interval t=0 to T, because the various intervals can be indicated
by marking the dots P.

7. Vector-addition in harmonic dials and the average vector—It is
sometimes convenient to ascribe to each vector CD on the harmonic
dial the same meaning as to the parallel vector OP starting at the origin,
so that all parallel vectors of equal length denote the same sine-wave.
Then, the additive property of the harmonic coefficients [section 5] has its
graphical analogy in the usual vector-addition.

A number (say, n) of sine-waves of equal frequency » may be indi-
cated as vectors ¢',, €5, . . . starting at the origin O, and plotted as dots
denoting the ends of the vectors. If these sine-waves are added and
divided by =, the average sine-wave has the harmonic coefficients
[@"v+a" v+ .. .)/n], [(B'v+b'+...)/n] and is therefore represented
by the mass-center of the n dots, or the average vector (¢',+c”,+...)/n.

This remark is often used as follows: Suppose the number 7 of
ordinates is an entire multiple of the frequency », say, r=vr.. Then the
angles vx, (5.1) are vp (2r/vry) = p(2x/r1), so that (apart from irrelevant
multiples of 2x), vx,=wvx, y1=vxy y1=..., etc. The equation (5.5) for
a. (and for b,) can therefore be rearranged as follows

(7.1)  a,=(2/r) Zom1 ¥p cos v, =1/v [(2, 11) ey ¥a cos X (27, 11)
+(2/71) Zhar yrqacos N 2r/r) 4. ..
+(2/r) T Yo—r+a €08 N (2, rul

Comparing the first term in the bracket with (5.5), we realize that it is
the coefficient for frequency 1 of the ordinates y, to y,, and the second

term is the coefficient for frequency 1 of the ordinates y,41 to vy,
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etc., and a, is the average of these v coefficients. In other words, if a
period p comprises an interval represented by 7, ordinates, and » such
intervals are given, then the harmonic analysis of the total of vr; or
dinates gives, for the period p, harmonic coefficients which are the
arithmetic means of the v harmonic coefficients computed from each
single interval of 7, ordinates.

In another arrangement, (7.1) becomes

(7.2)  av=(2. 7)) Z3o1 (1/%) (VatYr Yo pat. o FVe—nn )
cos A (27 ')

This is the basis of many schemes for numerical harmonic analysis,
starting by writing the ordinates in v rows of 7, each, and then analyzing
the averages of the 7; columns.

8. Inmternational magnetic character-figure C and harmonic dial for
27-day period—Examples demonstrating the use of the harmonic dial
for research on solar and lunar diurnal variations and for annual varia-
tions have been given formerly.®? For the purpose of this paper, the
series of the daily international magnetic character-figures C has been
selected, comprising the 10,206 days between January 11, 1906, and
December 20, 1933. C indicates the degree of magnetic activity for
each Greenwich day by one of the figures 0.0 (denoting very quiet con-
ditions), 0.1, 0.2, etc., to 2.0 (denoting very great disturbances). The
rotation-period of the Sun, of about 27 days, is reflected in C in the
recurrence of quiet and disturbed times.® This recurrence is demon-
strated in graphical day-by-day records published in this JOURNAL.%
For these diagrams, the whole series has been divided into 27-day
intervals. For convenience, we shall refer to these intervals as ‘‘rota-
tions”’ numbered 1 (beginning January 11, 1906) to 378 (beginning
November 24, 1933). In each rotation the days are numbered 1 to 27.
The dates of the first days in each rotation can be taken from the diagram
in Volume 39 of this JOURNAL or from the table on Figure 15 of this
paper; the dates are repeated, with a shift of one or two days (after
leap-years), every second year, since 2 X365=27X27+1.

The character-figures C for the years 1906 to 1926 have been used in
Pollak’s publication.!! It may be remarked, however, that it is not
intended here to demonstrate again the 27-day recurrence or to repeat
Pollak’s periodogram-analysis: the series of C is only taken as a suitable
illustration of the general argument, which will gradually lead to other
conclusions than those drawn by Pollak.

For each of the 378 rotations, the harmonic coefficients of the sine-
wave of 27-day period were computed and the results are represented in
the harmonic dial of Figure 2. The dots are distributed in a “cloud”
around the origin without, apparently, preferring any direction: the
average vector, that is, the mass-center of the cloud formed by all dots,
indicated by a cross, falls close to the origin. The largest amplitude
is 0.760 unit of C [or 0.760C] for rotation No. 208, beginning May 1,
1921, and containing the heaviest magnetic disturbances [about May 12

31]. Bartels, Zs. Geophysik, 3, 389-397 (1927); Handbuch d. Experimentalphysik, 25, I. Teil, 167 f.,
631 fl. (Leipzig, 1928); Sci. Mon., 35, 110-130 (1932); Terr. Mag., 37, 22-27, 291-302 (1932).

»C. Chree and J. M. Stagg, London, Phil. Trans. R. Soc., A, 227, 21-62 (1927).

“Terr. Mag., 37, 42 (1932), for the years 1906 to 1930; 39, 201-202 (1934), for the years 1923 to 1933
together with a similar diagram for sunspots.
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to 21] of our series; the maximum of this wave falls near May 16. Ampli-
tudes of less than 0.01C occur in rotations Nos. 61 and 372. The diagram
will be referred to in later discussions.

F1G.2—HARMONIC DIALE INTERNATIONAL MAGNETIC CHARACTER-

FIGURE C, 1906-/933, EACH OF 378 INTERVALS OF 27 DAYS
BEGINNING JANUARY 11, 1906 (=pay /)—
SINE-WAVES OF 27-BAY PERIOD

9. Graphical interpretation of harmonic analysis—While we shall
not go into the much-discussed details of practical harmonic analysis,®
that is, the actual evaluation of the equation (5. 5) for the coefficients,
a graphical interpretation of these equations, using the principle of
superposition (section 5), will be helpful later.

The character-figures C for rotation No. 275, starting April 14, 1926,
have been plotted in the top row of Figure 34. This set of 27 ordinates
can be conceived as a sum of 27 primitive sets, in each of which all
ordinates are zero except one; the first three of these sets are plotted
in Figure 34. Generally speaking, the set of ordinates

9.1) YL Y Y8 o Py
is equivalent to the sum of the primitive sets
M, 0, 0, e
O,yz, 0,...,0
9.2) 0, 0,9, ...,0
0,0 0,...,%

ufor practical harmonic analysis see C. Runge and F. K&nig, Numeriachea Rechnen, pp. 208-231,
Berhn. 1924 also E. T. Whittaker and G. Robmaon. The calculus of observations, London. 1924, For
e schemes used in geophysical applications see C. R. Duvall and C. C. Ennis, Terr. Mag., 32, 151-162
(1927). J. Bartels, Beitr. Geophysik, 28, 1-10 g1930). and the book of K. Stumpﬁ almdy noted under

footnote 10. A great helhn numerical wor ven by L. W. Pollak, Handweiser sur harmonischen
( Geophysl Studien Heft 2). d lov Irhn‘-u Statutik. Reihe
12, Heft 10, e, 1928, while the same author’s echema.feln mr harmoni schen Apalyse,” Leipzig,

1926, can in general be replaced by Crelle's Rechentafeln or by the slide-rule.
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According to (5.5), the harmonic coefficients, multiplied by (r/2),
for each primitive set are given, for the frequency », by 9, cos vx,, ¥,
sin vx, (where p=1, 2, ..., r): the representation in the harmonic dial
(Fig. 3C) is a vector of length y, forming the angle vx, with the direction
OA, because the projections of this vector are equal to the coefficients
(times r/2). The sum of these 7 primitive vectors has, according to
(5.5), the projections (r/2) a,, (#/2) b, and represents therefore the sine-
wave for the original set (9.1). In our example—the set of 27 ordinates
in the top row of Figure 34—r=27, x,=2x/r=13°.3: for a sine-wave
of 27-day period, v==1, the angles vx, for the successive primitive vectors
are 13°.3, 26°.7, 40°.0, ..., 360°.0, and the whole construction of sum-
ming the vectors consists in joining together the ordinates y,, changing
successively the direction clockwise by 13°.3 (Fig. 3D). The vector
between O and the end-point, P, should be divided by (r/2) =27/2 to
obtain the amplitude ¢;: instead, we can measure it in a scale enlarged
(27/2) times (radial scale for OP indicated in Fig. 3D). Thus, we see
from Figure 3D, comparing it with Figure 1, that the orthogonal co-
ordinates of P, in units of C, are a,=40.48, b, =+40.13, and its polar
coordinates ¢;=0.50, a;="76°: the sine-wave, therefore, is

9.3) +0.48 cos x+0.12 sin x=0.50 sin (x+}76°)

Its maximum occurs about the time x=14°, or t=14X(27/360) =1.05
days, or, since the time 1 day designates Greenwich noon of April 14,
1926, about 1 o’clock in the afternoon of that day.

If all the ordinates y,, ¥s, . . . 3, were equal, the construction in Figure
3D would lead to a regular polygon ending at the origin, that is, to
vanishing coefficients, as could be expected. From the principle of
superposition it follows, therefore, that a positive or negative constant
can be added to all ordinates without changing the harmonic coefficients.
For instance, the arithmetic mean @, can be subtracted, which amounts
to measuring the ordinates in positive or negative deviations from the
level ao (Fig. 3B): the construction of Figure 3E, plotting negative
ordinates in the reverse direction, leads, of course, to the same point P
as Figure 3D.

Figures 3F and 3G are analogous to Figure 3D and show the con-
struction of the harmonic coefficients with frequencies »=2 and 3, or
periods of 13.5 and 9 days. The scales for the time of maximum are
entered on scales around Figures 3F and 3G, while the scales for OP are
the same in all diagrams 3D, 3E, 3F, and 3G. The sine-waves of fre-
quencies 2 and 3, in units of C, are

(9.4) +0.16 cos 2x—0.20 sin 2x=0.26 sin (2x+141°) with maxima on
days 11.6 and 25.1

(9.5) —0.06 cos 3x40.46 sin 3x=0.46 sin (3x4+353°) with maxima on
days 2.4, 11.4, and 20.4

10. The harmonic folding process—The constructions in Figures
3D, 3F, and 3G can be interpreted as follows: Imagine a Jolding scale
having links of the lengths of the ordinates y,. If stretched out, as
illustrated in Figure 3H, its entire length is equal to the sum of the
ordinates, in the general case, 7 a,. Suppose now each joint is turned by
the angle 360°/27=13°.3: we then obtain Figure 3D: by turning each
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joint by 2X360°/27 or 3X360°/27, we obtain Figures 3F and 3G. In
general, this bending of the folding scale by the angles » X2« /7 furnishes
(r/2) ay and (r/2) b,, and the distance of the end-point from the origin
is (r/2) ¢c,. This idea of the harmonic folding process, as it can be termed,
will be helpful later.

Usually, only the result of the folding process, P, is retained in the
harmonic dial. Nevertheless, and although for most actual computa-
tions numerical or mechanical harmonic analysis is preferable to graphical
analysis, it is sometimes useful to recall the folding process as producing
the vector OP, because it reveals the contribution of each single ordinate
to the final vector. This contribution is particularly clear in the folding
of the deviations from the arithmetic mean [the folding rule itself having
then positive and negative links]: in Figure 3E, the large positive or-
dinates 1 to 3 and the large negative ordinates 15 to 18 make the largest
strides towards P. For illustration, Figure 4 shows, for an exact cosine-

NN N
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2p/b=35-0ar peroo {°
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27/3=9-DAY PERICD
FREQUENCY 3

2Y/4=6.75-04V PERIOD
FREQUENCY 4
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FIG 4-A PERIOD OF FREQUENCY 3 IN 27 ORDINATES
AND ITS GRAPHICAL HARMONIC ANALYSIS, OR FOLO-
ING PROCESS, FOR PERIQDS OF FREQUENCY 42,38 4
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wave of 9-day periods, the folding process for the frequencies 1 to 4
(periods 27, 13.5, 9, and 6.75 days) of a set of 27 days.

The folding process is also a good illustration of the remark at the end
of section 7.

11. Standard deviations for sime-waves and residuals—An exact
representation of the set of r ordinates vy, is obtained by a series ¢x(x)
of the form (5.2) if it is extended so that the number of coefficients
Qq, 81, by, . . . a3, bx is equal to that of the ordinates; if r is uneven, then
k=(r—1)/2, while for even values of r the last term is aq/g cos (rx/2),
with a4/s) given by (5.6). This procedure to represent a set of ordinates
in the interval 1=0 to T as a sum of sine-waves, as well as the approxima-
tion obtained for smaller values of %, is a purely mathematical affair
and involves in no way the physical nature of the phenomenon described
by these ordinates. Especially the fact that the sum ¢x(x) is periodic,
repeating its values after intervals which are entire multiples of T, does
not imply a similar property of the geophysical phenomenon outside
the range of observation. The question of the physical meaning of the
various sine-waves, and the possibility of ‘‘forecasting’’ by means of
periodicities requires, therefore, additional tests, statistical in nature,
which will be discussed later.

With less than r coefficients, the series ¢x(x) gives only an approxima-
tion, the degree of which can be estimated in the following way: The
deviations of the given ordinates y, from their respective arithmetic
mean g, may be called

(11.1) 2,=%,—a, (for values of p=0,1,2,...7)

The standard deviation ¢ may be defined as usual, that is, {? is the
average of the z,2. It can be easily calculated from the y,2 and a,: for
8.:=y,2~2y,00+a,® and summing over p=1 to r gives Z3i=Zy72—
2a, Zy,+rae®: replacing =y, by ra, and dividing by », we obtain the
well-known formula

(11.2) $=2yt/r—ag

It can be shown (Appendix 1) that the average value of ¢x(x,) is
@, and its standard deviation w; is given by m?={(a.2+b:2+a.?+Dbs?
+. . .+a+5%)/2 or, applying (6.2)

(11.3) m2=(c2ted+. . .+ad)/2

except in the [geophysically irrelevant] case of the exact representation
and 7 even, when thelast term in the bracket is 2 ¢, 2% Furthermore,
the standard deviation s, of the residuals, defined by (5.3), yields, on
evaluation (see Appendix 1), the remarkably simple expression

(11.4) sE=—n?
or
(11.5) s=g—(cl+cl?+. .. +a?)/2=(1/r) Z y2—ad—(c®+cl+. .-
+a?)/2

Each additional harmonic term reduces, therefore, the residuals by
subtracting half of its squared amplitude from {2, the squared standard
deviation of the given ordinates. This applies also if only one or a few
terms of ¢, are selected, for instance, the waves with frequencies 2 and 4.
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In the case of exact representation all residuals and therefore s;2 are
zero so that, from (11.5),

(11.6) (c2+. . .+c?)/24a2=¢2 (with r even, [=7/2)

or (e2+. . .¢?)/2=¢2 (with 7 uneven, [=(r—1)/2)
For convenience, we shall put, for 7 even, a(,/z,\/Z-—c(,/g), so that the
second equation always holds. This equation (for convenience, we shall
only consider the case of r uneven) furnishes an estimate for the upper

limit of the remaining coefficients, if a number of coefficients, up to the
index k, have already been computed; because, from (11.6) and (11.5)

(117) C);+12+Cg+22+. N .+C; =2 3‘2—01’—622 . —Cg 2=2 Sk

The square of the largest coefficient among the coeﬂicxents of the terms
with higher frequency than % can therefore be not larger than the right-
hand side, 2 s;2.
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12. Examples—Figure 5 illustrates the harmonic analyses of the
international magnetic character-figure for the three 27-day rotations
No. 208 (day 1=May 1, 1921), No. 193 (day 1=March 22, 1920),
and No. 175 (day 1= November 22, 1918) which, in this order, have the
greatest amplitude ¢, ¢s, and ¢; for the waves of frequency 1, 2, and 3,
or 27-,13.5-, and 9-day period, found in any of the 378 rotations analyzed.
Rotation 208 was mentioned at the end of section 8 as containing the
heavy disturbances of May 12 to 21, 1921. Figure 5 gives, for each of
the three rotations, in the first row the observed C, and the sum of three
sine-waves, then the three sine-waves separately, and, finally, the
residuals or differences between the observed C and the sum of the
sine-waves. Some numerical values are given in Table 1; day 0 (or 27)
is the origin of time, a=90° means that a maximum of the sine-wave
occurs on day 27. The standard deviation ¢ refers to the observed
values of C, n; to_the sum of the three sine-waves [ns* = (ci*+c2*+-cs?) /2],
and s; to the residuals (ss*=¢2—m?). The unit used is 0.01 unit of C.
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TABLE 1—Harmonic analysis of the three rotations with the Zargest amplitudes ¢, ¢s, and
¢s (unsi for aq, 1, Cs, C3, $, M3, and sy 15 0.01C)

Arith- 27-day 13.5-day 9-day Standard
Rotation | metic period period period deviations
number mean
Qg 1 L2 Ca @ Ca a3 ¢ m S3
208 90 76 | 235 29 32 16 | 318 66 59 29
193 76 42 79 66 40 9 | 121 62 55 27
175 90 20 | 240 17 | 290 60 60 55 46 30

13. Generalized harmonic dial—The equations given in section 11
suggest the conception of a generalized harmonic dial*® consisting of a
rectangular coordinate-system in 2k dimensions, the axes assigned to
ay, by, ... a bp. Our set of r ordinates [or deviations z,] is then repre-
sented by a single point P in this system, or the vector OP, and super-
position is again represented by vector addition. The ordinary harmonic
dials for the various frequencies are two-dimensional projections of the
generalized dial. For the exact representation [if  is even, the last
coordinate entered is not au/s), but cesa=+/2Xauy), the length of
the vector OP is, according to (11.6), equal to {+/2. All sets of ordinates
with the same standard deviation ¢ are therefore exactly represented
by a point on the sphere with radius {+/2. The formulae (11.4) and
(11.5) for approximate representation can also be easily interpreted in
this geometrical illustration. While, of course, actual drawings cannot
be made, the conception of the generalized dial will be found useful in
certain applications, especially for the transition from sine-waves to
periodicities of other form (section 40).

14. The ordinary periodogram—The perwdogram of a function f(z)
in the interval ¢=0 to T is a diagram in which the amplitudes ¢, of the
sine-waves are plotted against their frequencies v or their periods I'/v.
A. Schuster®? himself favored later the use of ¢? (instead of ¢,) as
ordinate in order to simplify the statistical considerations based on the
periodogram [or, as he called it, the periodograph], but for actual plotting
¢y 1s preferred as an illustration.

For the series of the international magnetic character-figure C for
the years 1906-1926 used in Pollak’s!! paper, with a total of »=7670
days, an exact representation would be obtained by the same number of
coeflicients, namely, the average a,=0.62C [C is, as always, used to
denote the unit of character-figures], 3834 amplitudes ¢, and as many
phases a,, and, finally, the coefhcient aasss for a cosine-wave of two-day
period. As in (11.6), we put again cssms=+/2 dsss. The periods p» of
the successive waves of frequencies v=1, 2, 3, ... would be, in days,
P1=7T7670, ps=3835, p;=1917.5, ..., p,n=383.5, $21=365.2 (a year),
.v., P2=182.6 (6 months), ..., P191=40.16, $12=39.95, ..., pas=
30.08, p26=29.96, ..., Pus2=9.002, pess=8.992, ..., pess=8.006, ..
Passe=3.0008, Pus7=2.9996, ..., Dasaa=2.0005, pPiss=2.0000. These
few values indicate that the difference in the length of the successive
periods T/v is very small for the high frequencies, because p,—py41=

(193 ;c)J. Bartels, Pub. Nat. Res. Council, Trans. Amer. Geophys. Union, 12th annual meeting, pp. 126-131
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T/v(v+1) is approximately proportional to 1/ The labor involved
i Pollak selected the
periods 3 to 7 full days and 21 to 40 full days and their halves and thirds,
because they are most easily calculated, the angles »x, in (5.5) repeating

in computing all coefficients would be very great.

themselves after each period.

The fact that most of these peri-
ods selected by Pollak are not entire
submultiples of 7670 must not be
overlooked: however, if we omit a
few days at the end of the series,
they become submultiples of the
slightly reduced number of days [for
instance, 17 goes in 7667], so that
the amplitudes ¢ can still be said to
be derived from practically the whole
series.

Around the periods 9.00 and
30.0 days, waves for the additional
periods of 8.95, 8.96,..., 9.05 days
and 29.7, 29.8, ..., 30.2 days were
inserted by Pollak, using Darwin's
scheme of approximation [section
38]. I have computed, in addition,
the amplitudes for four submultiples
of a year (periods 3, 4, 6, and 12
months). Pollak’s periodogram, with
these additions, is reproduced in
Figure 6: for clearness, the scale for
abscissae is not uniform, spreading
between 8.95 to 9.05 and 29.5 to
30.5 days, and changing as indicated.

The periodogram gives only the
amplitudes ¢,. The phases a, could
be indicated by writing them down,
or making the periodogram three-
dimensional, combining the separate
harmonic dials for each frequency
by aligning them along their origins,
like wheels on a common axis, which
would correspond to the base-line in
the ordinary periodogram. A mixed
two-dimensional dial of all frequen-
cies, indicating ¢, @ by vectors,
seems, however, to be confusing.

. 15. Discussion of Pollak’s pe-
riodogram—We shall apply formulae
(11.3) to the 73 amplitudes ¢, cal-
culated by Pollak. The sum of the
c? is 0.02388C% and therefore the
standard deviation 7 of the sum of
these 73 sine-waves is given by
=0.01194C? or 7,=0.1093C. This
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means that the approximative series ¢, which is the sum of the arith-
metic mean aq=0.621C and of these 73 sine-waves, has values which
deviate from a, only by a few tenths of the unit C. The poor approxi-
mation of ¢; is even better illustrated by applying (11.4). The standard
deviation of the 7670 daily values of C, for the years 1906 to 1926, is
£=0.461C. The standard deviations of the residuals, s, is given by
s3=—2=0.21266—0.01194=0.20072C? or s5,=0.448C. If, there-
fore, the sum ¢, of the 73 sine-waves is subtracted from the given values
of C, the fluctuation of the residuals, measured by s;=0.448C, is practi-
cally the same as the fluctuation of the given values of C, measured by
£=0.461C.

Are, then, the 73 sine-waves of the selected frequencies at least dis-
tinguished by large amplitudes, as compared with the rest of the total
of 3835 amplitudes? The answer is suggested by (11.7). The sum of
¢,? for the remaining 3762 sine-waves is 25,2 =0.40144C? If all amplitudes
except one were zero, this one amplitude would be 0.63 C—a case obviously
ruled out by a mere glance at the original series. If, on the other hand,
all remaining amplitudes should have the same value ¢/, this would be
given by (¢)?=25:2/3762, or ¢'=0.0103C. The sum of the squares of
73 of the remaining amplitudes would then be 73(¢")?=0.0078C% This
is distinctively less than the sum of the squares of the 73 amplitudes for
the actually selected waves, which above was given as 0.0239C% The
answer to our question is therefore affirmative.

We must remember, however, that the 73 selected frequencies are
in no way equally distributed between all frequencies: from the list for
the lengths of all periods given in section 14 it is seen that 958 periods
are longer than 8 days, and the remaining 2877 shorter. Of the selected
periods, 67 belong to the former and only six to the latter group: on the
average, one out of 14 periods has been actually computed in the group
of periods longer than eight days, but only one out of 480 periods in the
group of shorter periods. This remark will be used later (section 32).

16. Non-cyclic variation, selection-, or curvature-effect—Harmonic
analysis can be applied to all functions of time, {(¢), occurring in geo-
physics, and will result in a satisfactory approximation of () by a sum
of sine-waves. It has already been said (section 11) that the significance
of each sine-wave has to be tested, as will be described later. Apart
from these tests, it will be easier to trace the real periodicities if such
parts of f (¢), which are obviously non-periodic, are separated before
the harmonic coefficients are discussed.

A typical case of a non-periodic part is the secular variation in ter-
restrial magnetism, which, in the course of a day or a month, can be
considered as a linear one-sided trend. In computing diurnal variations,
its effect is seen in a systematic difference between the values for suc-
cessive midnights, the midnight-difference, or non-cyclic variation.
Another, and even more efiective, cause for non-cyclic variations in
terrestrial magnetism is the recovery after disturbances. f(f) can be
freed from such effects by subtracting a suitable linear function of time,
either by correcting the ordinates before the harmonic analysis, or by
correcting the coefficients after the analysis. [The formulae deduced
numerically by C. C. Ennis* can be derived in general terms (see ap-

wTerr, Mag., 32, 161-162 (1927).
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pendix 4).] There has been some discussion on the feasibility of such
non-cyclic correciions. They should be applied only if it is certain that
the non-cyclic variation is due to an approximately linear function.
This seems to be the case, for instance, in the average diurnal variations
of magnetic horizontal intensity on quiet days, which show a systematic
increase from midnight to midnight, and of those on disturbed days,
showing a decrease.

More troublesome to eliminate is a systematic (mostly parabolic)
curvature, which appears in selecting certain parts of a function of time.
The classical case is the computation of the average diurnal variation
of atmospheric pressure on clear and cloudy days in extra-tropical
latitudes, which, in effect, amounts to selecting from the barogram and
superposing, intervals of 24 hours between successive midnights, with
high pressure (for clear days) and intervals with low pressure (for
cloudy days). Now the general curvature of each single interval will be
systematic so that, after non-cyclic correction, the average diurnal
variation for clear days will show a pronounced maximum about noon,
and that for cloudy days a pronounced minimum about noon. That
these maxima and minima have nothing to do with an actual diurnal
variation can be proved by selecting intervals of 24 hours between suc-
cessive noons, which will show the maximum in the average clear-day
variation about midnight. The possibility of such an effect, which was
found in various phenomena by the author,® has often been overlooked,
leading to curious misinterpretations. By suitable arrangement, this
effect can be determined separately and corrected for.

(III) StaTisTicAL PRINCIPLEs—RANDOM WALK

17. The random walk with equal stretches—The basis for all statistical
considerations on periodicity is the problem of the ‘“‘random welk,”
formulated, in its simplest case, by K. Pearson® as follows: “A man
starts from a point O and walks a distance / in a straight line: he then
turns through any angle whatever and walks a distance / in a second
straight line. He repeats this process n times. I require the probability
that after these n stretches he is at a distance between r and (r+dr)
from his starting point, 0.” Figure 74 illustrates the case n=27: in
addition, the random azimuths of the successive stretches are marked,
in the upper left corner, by dots on a circle with radius /, in order to
demonstrate (as in section 7) that the mass-center of these dots, as the
average of the n-vectors of length I, is removed from the center of the
circle by exactly 1/% of the distance between the starting and the end-
point of the random walk.

The problem as well as its generalizations—for instance, to the case
of stretches varying in length [section 18}, or to more than two dimen-
sions—has been amply discussed.*? We need here only the following
asymptotic expression for large values of #. Only the main theorems
will be cited and discussed here; as to exact proofs, see the remark at the
end of section 4.

], Bartels, Ann. Hydrogr., 51, 153-160 (1923); Beitr. Physik frei. Atmos., 11, 51-60 (19233; Terr.
(h‘lgai.) 37, 18-20 (1932). See algo S. Chapman and M. Austin, London, Quart. J. R. Met. Soc., 60, 23-28
»K. Pearson, Nature, 72, 294 (1905).
*“Constructed by taking the azimuth’s from L. H. C. Tippett, Random sampling numbers (Tracts
for computers, No. 15, Cambridge, 1927).
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FIG. 7—RANDOM WALK WITH EQUAL STRETCHES

The random walk of »n stretches may be repeated a great number
(N) of times. The distance reached in each case may be called L,(n),

Li(n), ..., Ly(n). Then it can be shown that the average square-
distance, defined by
(17.1) M2(n) =limes [(L2(n)+. . .+ Ly*n))/N]

N—oo

is simply nl2. M(n), called the expeciancy,* is therefore given by
(17.2) M(n)=I/n

and the probability w(r)dr that a distance between r and (r+dr) is
reached is (with ¢ =exp x) given by

(17.3) w(r) =(2/M?) r exp (—1r2/ M?)

This curve, for which examples are given later (Fig. 9), reaches a maxi-
mum for r=M/+/2 and has an inflection-point at r=M+/6/2. As
always, “probability” means distribution of ‘‘relative frequency,” that
is, w(r)dr is the limit, for N—oo, of the ratio of the number of distances
falling between r and (r+dr), to the number N of all distances.

w(r)dr is the probability for the end-point falling between r and
(r+dr), that is, within an area 2xrdr; the probability for the end-point
falling within an infinitesimal area da is therefore (1/xM?) exp
(—r2/M»dae. 1f we plot these probabilities as vertical ordinates on the
plane of the random walk, we obtain a symmetrical bell-shaped surface,

produced by the rotation of a curve which is (1/M \/;) times an orc_l_inary
normal Gaussian frequency-curve for standard deviation M/+/2.

4This definition of the expectancy, as the square-root of the average square-distance, makes the for-
mulae simple. Some authors prefer to call My'x/2 the expectancy for a reason given at the end of gection 17-
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It is convenient to express the distance r as a multiple of the ex-
pectancy M
(17.4) r=xM
Then the probability that a distance between «M and (x+d«)M is
reached, is w(x)d x, with
(17.5) w(x) =2kexp (—«2)
The total probability W(«) that a distance greater than xM is reached,
is obtained by integrating w(«) from « to e, giving
(17.6) W(x)=exp (—«2)

TABLE 2—Probability W (k) =exp (—x?) that o random walk reaches a point
beyond a circle with radius «M

f | we | e |we || o« | wo| < | we

0.0000 | 1.0 0.8326 | 0.5 2.146 | 107 4.015 | 107
0.3246 | 0.9 0.9572 | 0.4 2.628 | 107 4.292 | 10-¢
0.4724| 0.8 1.097 0.3 3.035 | 10 4.552 | 10
0.5972 | 0.7 1.269 0.2 3.393 | 10® 4.799 | 100
0.7147 ]| 0.6 1.517 0.1 3.717 | 10~ 5.257 | 10

The higher values in Table 2 apply, of course, only to large values of #,
because, for instance, with n=16, M =4I, and the greatest possible
distance, with all 16 stretches in line, is 16/=4M, so that W(4)=0 in

this case. For values of « smaller than +/n, however, the formula
(17.6) is a very good approximation, and it is hardly ever necessary
in geophysical applications to use the exact distribution-formulae
worked out by K. Pearson,!® and replacing (17.3) for small values of #;
it is sufficient to note for later use that (17.2) remains valid for small
values of %, including n=2.

In Table 2, the value «=+/log nat 2=0.8326, with W(0.8326) =0.5
is of special interest, because a circle with the radius 0.8326 M (usually
called the probable radius, though this expression is misleading) divides
the plane into two areas in which the end-point of the random walk may
fall with equal probability.

The arithmetic mean of the L,, L, ..., that is, limes (Ly+ZLa+. ..
+Ly)/N, can be shown to be

(17.7) M+/x/2=0.8862M

18. Random walk with unequal stretches—The statistics of a random
walk, for which the successive stretches are unequal, say, I, ls, . .. I,
obey, under certain conditions, the same set of formulae as that in section
17.  The conditions and the proof are fully given by A. Khintchine®; it
is sufficient bere to say that the N sets of n stretches, 'y, I, . .. l'a:
LU B, oL I L, L L9 used for each walk must be taken
at random from a common “supply” of stretches (nN in number); the



20 J. BARTELS [Vor. 40, No. 1]

frequency-distribution of the lengths of the single stretches in this
supply is arbitrary in wide limits*; for instance, it can be itself of the
form of the equation (17.3). We obtain then the solution for the problem
of the l;'andom walk if we simply define the expectancy | of the single
veclors by

SCALE OF 1

FI1G.8—RANDOM WAL K wiTH UNEQUAL
STRETCHES

@This result was not known to K. Stumpff, who in his interesting paper on periodicities in sunspot-
numbers (Prager Geophysikalische Studien, Heft 4—Cechoslovak. Statistik Reibe 12, Heft 14, Pngue.
1030) discusses a special case of frequency-distribution, differing from the normal curve, and finda, of course,
by rather intricate analysis, the general result of Khintchine for this special distribution.
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(18.1)  P=[@+. . @2+ A6+ G/ eN

and apply the equations numbered (17.2) to (17.6); that is, the random
walk leads, with the same probability, to distances between 7 and (r+dr)
from the origin as if it had consisted of n equal stretches of length /,
where [ is given by (18.1).

An example of such a random walk of #»=125 stretches—again con-
structed with the help of Tippett's random numbers**—is given in Figure
8; the amplitudes are distributed around their average value / accord-
ing to a normal Gaussian law with standard deviation 0.39) (derived
from the random numbers in Sir Gilbert Walker’s paper of 1930%7).

19. The expectancy for an average vector, the 1/+/n law—Our formulae
can be readily used for another geometrical problem, which is only a
formal modification of the random walk. If we conceive each stretch of
length l, b, . . . Iyas a vector Ly, 15, . . . L, the line between O and the end-
point of the random walk is the vectorial sum ;414 ... 4+, and 1 /n
of its length is the average vector. If each single vector is plotted with
O as starting point, and its end-point indicated by a dot, then the mass-
center of the dots represents, again, the average vector (l;+l.+...
+1,)/#, much as indicated in section 7. The distribution of the average
vector for a large number (N) of random walks (of # stretches each)
is therefore a reduction of the distribution for the vectorial sum in the
ratio 1: n. For the sum, (17.2) gives the expectancy I4/n: therefore the
probability for the average vector is governed by (17.3) and (18.1),
with the expectancy m (defined by the average square m? of the average
vector) given by

(19.1) m=l//n

Since 1, according to (18.1), is the expectancy of the single vectors,
and m that of the average of n vectors, we can formulate as follows:
Averages for » random vectors have an expectancy which is the orignal

expectancy of the single vectors reduced in the ratio 1/4/7.

20. Comparison of harmonic dial and random walk—The main appli-
cation of the theory of probability to geophysics consists in finding, for
a given set of observed quantities, 2 suitable statistical analogue which
can be accepted as representing the idealized case reached if the number
of observations, under the same conditions, could be infinitely increased.

The random walk, in the modification of section 19, offers itself as
the statistical analogue to such harmonic dials as Figure 2, showing
378 sine-waves of 27-day period (amplitudes ¢, phases a) in the character-
figure C. We shall first ask whether the “‘cloud” of 378 points on the
dial is distributed so that each point can be regarded as the end-point
of a random walk made under the same conditions. This puts N=378
and leaves # arbitrary. As the parameter governing the distribution we
compute the expectancy M, where M2, analogous to (17.1), is defined as
the average of the squares, ¢%, of the amplitudes for the 378 waves, and
find M =0.262C.

In order to find the frequency-distribution, we count out how many
amplitudes ¢ fall in classes between equidistant limits. These limits,
chosen according to the conventional rule that about 20 classes should
be occupied, are 0, 0.036C, 0.072C, etc. The numbers of amplitudes



22 J. BARTELS [Vor. 40, No. 1]

in each class [the limits of which are marked by vertical lines] are en-
tered as ordinates in Figure 9, and are compared with the theoretical
frequency-distribution (probability), that is, with the curve computed,
with the expectancy M =0.262C, from (17.6), the theoretical frequency
between M and k.M being, of course, N[W(«;) — W(«s)]. The observed
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frequencies agree fairly well with the theoretical curve, the differences
appearing to be of accidental nature. Only the isolated highest amplitude
¢=0.760C might need some comment. However, if it is expressed as a
multiple M of M, we obtain x=2.90, for which, after (17.6) W(x) is
about 1/4500, meaning that, on the average, 1 out of 4500 amplitudes
should be even greater than 0.760C; it is therefore not strange that one
occurs already among the first 378 amplitudes observed, that is, in 1/12
of the average number 4500. [The limitation of C to values between
0.0 and 2.0 excludes, of course, amplitudes ¢ of sine-waves over a certain
theoretical limit, which implies a restriction on the use of (17.6) for
higher values of «. The theoretical limit mentioned for ¢ is, by the way,
not 1.00C, as one might guess, but about 4/x=1.27C, furnished, for
instance, by a succession of 14 days with C=2.0 followed by 13 days
with C=0.0.]

From the observations described in section 8, for each ‘‘rotation” of
27-day length, the sine-wave of frequency 2, or 13.5-day period, was also
computed. The 378 amplitudes obtained in this way, applying the same
analysis as in the case of the sine-waves with 27-day period, give the
expectancy M =0.264C, and the frequency-curve in Figure 9. The
highest amplitude is 0.657C, with x=2.49, and W(2.49)~1/500, even
greater than above, and practically not much different from 1/378.
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Another test consists in deriving, from the 378 amplitudes, the
“probable radius” and the ‘“arithmetic mean,” for the cloud, which
should (section 17) theoretically equal 0.8334 and 0.886M, respectively.
The cloud for the 27-day period actually gives for these ratios 0.86 and
0.88, and that for the 13.5-day period gives 0.82 and C.87. The agree-
ment with the theoretical values is satisfactory, because the deviations
of these “observed” ratios from the theoretical values may be expected
to be of the order 1/+/N, or 0.05. The probable radius is also drawn in
Figure 2.

So far as these tests go—and only so far—each of the V=378 vectors
in the harmonic dial can therefore be conceived as the result of a random
walk of # stretches of lengths L/, I/, ... L/ L', L', ... L'y ... LL,0™,
.+« b"™®, where the stretches vary at random around a_mean-square
value /, formed as in (18.1). Only the parameter M =I+/n, the expect-
ancy, is prescribed by the observations, while 7 can be chosen arbitrarily,
with I=M/+/n following. Of course, the equivalent interpretation of
section 19 can also be applied, conceiving each vector in the dial as the
average vector of # random vectors.

21. Harmonic dial and average vector— This interpretation of section
19 can also be applied to our dial in Figure 2 in another way. This time
we put =378, and consider the hypothesis that our dial in Figure 2 is
just a sample of a great number, N, of dials, each representing 378
vectors, with the same (or only slightly different) expectancy /=0.262C
for the single vectors. In each of these hypothetical dials, we consider
the average vector, just as in Figure 2, where its end-point is indicated
by a cross. Then, according to (19.1), the expectancy of this average
vector is m=1/4/n=0.262/+/378 =0.0135C, and the frequency-distribu-
tion around the origin is governed by (17.3), with the expectancy m
put for M. Now, in our dial Figure 2, the average vector is actually
found to be 0.0336C, or 2.49m. According to (17.6), a value exceeding
2.49m should occur only once in about 500 cases. Here it seems doubtful
whether it might be assumed as merely accidental that, in the one and
only dial actually obtained, a large average vector should be obtained
such as might be expected only once in about 500 trials: still, the proba-
bility 1/500 for chance is generally considered not so small as to warrant
a definite claim that the observations considered (in our case, the vectors
plotted in Fig. 2) do not correspond to the statistical analogue (random
walk) with which they are compared. By the way, 1/500 is roughly
the chance, that, in throwing a coin, a predetermined side appears nine
times in succession.

If, in all 378 sets, the 27-day period were perfectly persistent, that
is, would have the same amplitude and the same phase (or time of
maximum) persisting throughout the 28 years, then the average vector
would be exactly equal to the single vectors, that is, the average amplitude
would be M, instead of m=2M/+/378. This would give x=+/378- 20,
and the possibility W(«) for chance would become practically zero. If
the 27-day period should vary at random, we would obtain values of
x around 1. The value x=2.49 actually obtained could be interpreted
as meaning that there is a probability of 500:1 that the 27-day period
contains at least a small persistent part. We shall see later why this
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interpretation—which is commonly used in applications of periodogram-
analysis—is not warranted (section 36).

In the case of the waves with 13.5-day period, we obtain the expect-
ancy of the average vector m =0.0136C, while the average vector actually
computed is 0.0200C =1.47m, and the probability for chance is W(1.47) =
1/9, much higher than in the case of the 27-day period.

22. Remarks on the probability of chance (x-test)— We have followed the
generally adopted convention in calling W(«) the ‘‘probability of chance.”
This 1s, of course, only a short expression for the exact definition of
W(x), which may be repeated for the case of average vectors. From
the amplitudes of # single vectors for the same frequency, we calculate
the expectancy of these single amplitudes analogous to (18.1), divide it
by /7 and thus obtain, according to (19.1), the expectancy for the
amplitude of the average vector of that frequency; this expectancy, our
m of sections 19 and 21, will be called ¢ from now on. It is based on the
assumption of counplete independence of the single vectors. By actual
calculation (vectorial sum, division by n) of the average vector, we find
its amplitude ¢, and calculate k=c/c. W(x) is exactly the probability
that, under random-walk conditions, an amplitude greater than ¢=«e
should be found. In other words, if the random walk is repeated N
times, about NW(«x) times a distance greater than xe should- be reached,
or about once if it 1s repeated (1/W(«x)) times. If W(x) is very small,
that is, [(1/W(«)] is very large, it is reasonable to assume that the con-
ditions of random walk, or pure chance, do not hold because in the one
and only case considered we have obtained a result which skould occur
only very rarely, and the suspicion is justified that some systematic
regularity is contained in the distribution of the single vectors—which
will be seen later.

Ad. Schmidt and Sir Gilbert Walker?” have “called attention to the
following point: If only one frequency is considered, the considerations
regarding W(«) hold. But some authors, having calculated ¢, ¢, and «
for each of a number (say 100) of independent frequencies, picked out
that frequency with largest «, say, x;. Then, of course, we must ask
for the probability that once in 100 independent cases a value greater
than «; times its expectancy should occur, and that is 100 W(x,).

Since the question whether W(«,) is small enough in order to exclude
chance is a matter of opinion anyway—one in a million is often considered
as an upper limit—it is not necessary in most cases to consider the more
accurate formulae introduced by Sir Gilbert Walker. He asks for the
probability that, on random-walk conditions, the 100 independent
values of « should all be smaller than «;, and ﬁnds{l—[l—W(xl)]m};
this, however, is, for small W(«,), practically 100 W(«x,). If the observa-
tional material is large enough, some objections raised by Brunt?’ do
not hold. Much more serious is a common mistake in the choice of
the expectancy ¢, which it is the object of this paper to indicate (section
32 and following).

23. Elliptical distributions—The discussion of the properties of N
sine-waves of the same frequency has, by the harmonic dial, been trans-
formed into the geometrical analysis of the equivalent N vectors plotted
from the origin, or of the “‘cloud” formed by their N end-points. We
have seen that, under random-walk conditions, this cloud approaches
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circular symmetry around the origin for large values of N. In actual
geophysical work, however, especially for diurnal and seasonal variations,
the cloud can have quite different shapes. If, for instance, the phenom-
enon contains a regular sine-wave of the frequency considered, with
constant phase and amplitude, which is superposed by random fluctua-
tions (introduced, for instance, by errors of observation), the cloud of
points will be circular, but centered around the point 4 representing the
regular sine-wave instead of around the origin 0. If the regular sine-
wave has constant phase, but a varying amplitude, the cloud is stretched
into elliptical shape, and this elliptical distribution will be recognized
most easily if the superposed irregular fluctuations are comparatively
small.

Such elliptical distributions, which, in the most general case, have
been discussed from the standpoint of the theory of probability by A.
Khintchine,5 have been found in the diurmal variations of terrestrial
magnetism; statistical methods for computing the ellipses and further
discussion of their physical meaning are given in a former paper in this
JouRrNaL.?

If the center A of the cloud is well outside the origin O, it is sometimes
desirable to consider each single vector c=0P to consist of the regular
vector OA =r (with constant amplitude ) and an irregular part AP =i

(23.1) i=¢~r

The expectancies of ¢ and i—computed in the usual way by summing the
squares of the amplitudes, dividing by the number of vectors, and taking
square root—may be ¢ and . The following relation is convenient for
changing from ¢ to i, or vice versa, namely

(23.2) R=c'—1?

This formula is a two-dimensional generalization of (11.2), because
(23.1) corresponds to (11.1). [The proof is simple: The coefficients
a and b of the vectors i and c follow (11.1) and (11.2) separately, and the
squares of the vector-amplitudes are a?4-58%] If, therefore, we have
calculated, for a cloud of points, the expectancy for distances of these
points from any origin O, we obtain the expectancy for the distances of
the points from their mass-center 4 by subtracting »?, where r is the
distance OA4.

24. The expectancy of sine-wave amplitudes calculated from rare
events occurring at random—In the preceding paragraphs, we have applied
the conception of the random walk to vectors representing sine-waves
in the harmonic dial. It can, however, also be applied to the actual
calculation of the harmonic coefficients, as represented in the folding
process (section 10), and this will establish a statistical relation between
a set of random ordinates and its harmonic coefficients, which was the
starting point of A, Schuster.”

The original conception of the random walk, with stretches of equal
length, is the geometrical expression for the harmonic analysis of a
function of the following type: Consider a long time-interval T, (20
years, say), divided into a large number 7 of equal intervals (about ten
million minutes of time). The ordinates are put equal to 1 for minutes
characterized by a (comparatively rare) event, for instance, the beginning



26 J. BARTELS {Vor. 40, No. 1]

of a magnetic storm with sudden commencement at a given observatory,
and zero for all other minutes. The total number 7; of events, or ordi-
nates 1 will then be small (in our example not more than, say, 500)
compared with the number 7, of ordinates O (r, < <7,) and they will be
scattered over the whole interval T considered. Take, then, a sine-wave
of high frequency, say, «=240, with a period of one month;in the folding
process, this means that the directions of the links describe a full swing
of 360° per month. If, now, the events are scattered at random (like
the atomic disintegrations in radioactive material), the folding process
will lead to a diagram equivalent to a random walk with #n =7, stretches.

In order to introduce the theory of probability, we must again
hypothesize that our interval of observation T is a sample of a large
number N of such time-intervals of length T with the same statistical
properties, the average number of events in each interval being 7.
For a given period, the random walk of the folding process will lead
to distances Li(r;), ... Ly(r1), and their relative frequency, or the
distribution of the end-points, will be governed by the formulae (17.2)
and (17.3), with M =+/r,. Now, according to sections 9 and 10, the
amplitudes ¢, of the sine-waves are obtained by dividing the distance L
by half of the number (7o+7,) of ordinates. If, therefore, we define,
analogous to (17.1), the expectancy ¢, of the amplitude by

(24 1) Cv2 = (Cv12+cv22+- .. +CVN2) /LV
we obtain
(24.2) cv=2+/1/(ro+n)

The remarkable feature of this result is that the expectancy o,
does not depend on the length of the period, or the frequency v.

25. Rondom walk and folding process, equipariition of the variance—
Some caution is necessary in applying the idea of the random walk to
the ordinary case of equidistant ordinates, in which the directions in
the folding process are limited to a few submultiples of 360°, such as in
Figures 3D-3G. The theorem can be formulated most clearly if we use
in the folding process, not the ordinates y, themselves, but their devia-
tions z, from the mean a;, z,=y,—aq (p=1, 2, ... r), as illustrated in
Figure 3E.

A great number NV of sets of r ordinates may be given. The average
of all Nr ordinates shall be zero, and the sum of their squares may be
Nr¢?, so that ¢ is their standard deviation; nothing else will be assumed
except that the ordinates are ‘random numbers,” quite independent
of each other.

Such sets can, for instance, be obtained by drawing ordinates at
random from a great supply of ordinates having normal (Gaussian)
frequency-distribution with standard deviatiorr ¢ and combining them
to sets of r each. In each individual set, the arithmetic mean ao* of the
r ordinates will not be zero, and the standard deviation ¢* will not be
exactly ¢, but, on the average for all N sets, according to well-known
statistical laws,

(25.1) (@*)?=¢*/rand ({*)2=%r—1)/r

This example is, however, by no means the most general case for
which the following theorem holds, because the frequency-distribution
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of the fupply of ordinates may deviate from the normal law in wide
limits.*

Each set of 7 ordinates is subjected to harmonic analysis yielding,
for r uneven, (r—1)/2 amplitudes ¢, and phases a,; for # even we obtain
(r—2)/2 amplitudes ¢, and phases a, and ays,. We form, for each
frequency v separately, the average square amplitude, or expectancy,
¢, for all NV sets, defined by (24.1) and, in the same way, a,/2. Then it
can be shown that

(25.2) cv=2¢ Vrian=¢ Vr

The independence, for random ordinates, of ¢, of frequency v can be
termed the law of the equipartition of the variance (where variance is the
expression introduced by R. E. Fisher* for the square of the standard
deviation). Because, taking the case of r uneven, we know from (11.3)
that each amplitude ¢, contributes ¢,2/2 to the variance 72 of the sum
¢ of sine-waves. If, therefore, we write down (11.3) for each set, sum
up, and divide by N, we obtain

(253) (g'*)z=(c12+cf+. . .+C(,--_1)/22),’2

If we assume*® equipartition, or e2=¢:2=...=¢,-12*=c? we obtain
(£*)2=c*(r—1)/4. Remembering that, because of (25.1), ({*)?=¢?
(r—1),r, we obtain ¢*={? 4/r, that is, (25.2).1¢

The former formula (24.2) appears now as a special case of (25.2),
because, in the example considered in section 24, { =+/ry/r and r =7¢-+r;.

In a single set of 7 ordinates, ¢, can have any (positive) value, but the
frequency-distribution of ¢, in a large number N of sets is governed by
(17.3) to (17.6), with M =¢; the total probability that a single ¢, exceeds
Me, is again W(k) =exp (— «?).

26. Periodogram for random fuctuations—The periodogram, as
defined in section 14, can be plotted for each of the N sets of r ordinates
considered in section 25; each periodogram shows, against the abscissae
v, the individual amplitudes ¢, as ordinates which, if it is desired. can be
connected by a more or less arbitrary line. The mean periodogram,
representing the average of all sets, shows the expectancy c,, defined by
(24.1), as a function of »; according to the law of equipartition (25.2)
the mean periodogram for random ordinates would show a straight line

at the distance 2{/+/7 above the horizontal axis (only declining, for

even, to {/+/r for the highest frequency v=r/2).

It may be noted that the mean periodogram does not only depend on
the standard deviation ¢, but also on r. If, for instance, we divide
100,000 random ordinates into N=1000 sets of r=100 ordinates, the
mean periodogram is only half as large as if we divide the material into
N =4000 sets of r=25 ordinates.

The discussion of this paragraph applies at once to the case that the
ordinates of any given function have accidental and independent ob-

4See section 18.

“R. E. Figher, Statistical methods for research workers, 3rd ed., Edinburgh, 1930.

4The remarks given above are only illustrations, not a proaof of the law of equipartition. For a simple
proof, insert (5.5) into ¢,'=a,1+b,? and add for all N seta.

“In the case considered, it has been nece; to distinguish between r and (r—1), becanse 7, the
number of erdinates in a single set, may be ag emall as 3. But in all cases where the total number of ob-
servations appears in the equations, we shall generally not auestion scrupulously whether (N—1) should
stand for N, because we take N g0 large that this difference should not matter. In other wards, observa-
tional material in which the addition or omission of one or a few observations should alter the conclusions
seriously, is not considered sufficient for a statistical treatment.
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servational errors, with standard error {. Then the periodogram of the

true ordinates is superposed by the periodogram 2{/+/r of the errors,
the superposition, for each separate frequency, following (23.2). The
influence of observational errors on the harmonic coefficients is, however,
mostly negligible in geophysical applications; it has been often mistaken
for the influence of the actual irregular fluctuations of the observed
quantity, which are fundamentally different in nature and will be shown
to have, in each case, a peculiar type of mean periodogram (section 30).

(IV) PERSISTENT PERIODICITIES

27. The expectancy as o function of the length of perioed—The definition
(24.1) of the expectancy ¢, can, of course, at once be extended to the
case that the Nr given ordinates represent a real geophysical phe-
nomenon. The discussion in section 20 can therefore, simply by putting
¢ for M, be expressed in the following way: With N=378 and r=27,
that is, from 378 sets of 27 character-figures C for consecutive days
(rotations), we obtain the expectancy ¢ =0.262C for sine-waves of 27-day
period computed from single rotations.

Since the expectancy ¢, is the basis for all further discussion, it is
necessary to consider the reliability of e, if it is derived from N sets.
It is clear that a single set, that is, a single amplitude ¢, is a bad approxi-
mation for ¢,, because the single values of ¢, vary as expressed by (17.3)
with ¢, for M (see the probability-curves in Fig. 9). We imagine a
very large supply of amplitudes ¢,. If we take, at random, N amplitudes
¢, from this supply, we shall compute an approximate expectancy
™ which differs from ¢,. If we repeat the computation for another
set of N amplitudes, and another, etc., the ¢,*" will be distributed
around ¢,. This scattering, for large values of N over, say, at least 25,
can l:ie expressed by the standard deviation of the ¢,“?, which is approxi-
mately

(27.1) e,/v2N

If N is large, this distribution around ¢, approaches the normal law of
errors; for smaller values of N, the distribution has been calculated by
A. Schuster.s

We now turn to a fundamental consideration. The character-
figures C for consecutive days are certainly not independent, since a
magnetically quiet or disturbed time generally extends over a few days
in succession. A number of statistical considerations are available
for testing the degree of this dependence of consecutive values of C;
for instance, by adding the figures C for two, three, and more consecu-
tive days. If the standard deviation of C is {(1), and the standard
deviations of the sums for 2, 3, etc., days, each divided by /2, /3,
etc., are {(2), £(3), etc., respectively, then, on complete independence,
we should expect {(1)=¢{(2)=¢(3)=..., so that the ratios £(2)/¢(1),
$£(3)/¢(1), ... can be taken as measures of dependence. This test
is mentioned here because its two-dimensional analogue will be used
later for testing quasi-persistent periods.

Although, of course, no harmonic analysis is needed, and, in fact,
would be clumsy for testing independence, we are, on the other hand,
interested in the effect of dependence on the harmonic coefficients,
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especially, on the expectancy ¢,. It should, of course, make the expect-
ancies for periods of a few days smaller than those for longer periods,
instead of equipartition as expressed in (25.2). We shall test this as-
sumption for the 27-day period in the series of international character-
figures C. In this case, with {=0.467C (this value of { for the interval
1906 to 1933 is only slightly higher than that, 0.461C, for the interval
1906 to 1926 used in section 15) and =27, equipartition (obtained, for
instance, by mixing up the daily figures at random) would give, from
(25.2) the expectancy 2X0.467/+/27=0.180C. The actual expectancy
¢, has been obtained for the 27-day period in section 20 (where it was
called M), namely, ¢,=0.262C, and its standard deviation, according
to (27.1), is 0.262//2X378=0.0095C. The actual expectancy 0.262C
exceeds therefore the equipartition value 0.180C by nearly nine times its
standard deviation: the difference between the two values is therefore
significant, not “‘accidental,” and proves that the expectancy as derived
by (24.1) from the actual amplitudes obtained by harmonic analysis
from single rotations depends definitely on the length of the period.

28. Persisient periodicities—A sine-wave of period p is called
persisient if it is repeated with the same amplitude and the same phase
in all intervals of length p. Is it possible to trace such a persistent sine-
wave if it is superposed on other fluctuations? The answer is affirmative,
provided the number N of periods p contained in the interval of observa-
tions is sufficiently large. The procedure is suggested by the preceding
discussion: Each single interval of length p is subjected to harmonic
analysis and yields a sine-wave of period p, which, if represented in the
harmonic dial of period p, is the vector-sum of two sine-waves, namely,
the persistent sine-wave and another “accidental” sine-wave, for which
the average square amplitude, calculated according to (24.1) from the IV
accidental sine-waves for the single intervals, may be ¢. Then the
average sine-wave of period » computed from all Np observations will
be the vector-sum of the persistent wave (of amplitude ¢) and an average
“‘accidental” sine-wave, the amplitude of which, according to section 19,
is of the order ¢/+/N. Therefore, so small as ¢ may be as compared
with ¢, in the average taken over a sufficient number N of periods the
persistent wave will finally overwhelm the ‘‘accidental” waves produced
by the non-persistent fluctuations which mask the hidden periodicity
in the original data.

This process of reducing the average of the accidental wave is best
visualized in the harmonic dial for the period p: The dial showing the
sine-waves obtained from single intervals of length p will be a cloud of
points widely scattered; but the cloud on the dial of the average sine-
waves of period p obtained from a number of intervals of length Np will
be reduced with respect to the end-point A of the persistent sine-wave
vector, in the ratio 1/+/N, till, with N increasing infinitely, the whole
cloud contracts into A.

The determination of the atmospheric tides of lunar origin has been so

far the greatest “triumph” of this 1/4/N law,*” because, at extra-tropical

¢S, Chapman, London, Mon. Not. R. Astron. Soc., 78, 635-638}1918),9eealaoioot-note 50 and the
second and third references in foot-note 32, and J. els. Soc., 51, 173-176 (1926).
?me lt;:ze: themdetermlr;ﬂon of thsn l% gm dxména.l hv::i::.iiaa::d of atmoaphbeertxc tempe.ra;:ure aE Batavia,

866~ wi an am] ud eritl; e, an even t exampie: lm
London, Froc. R. Socy A, 137, 1-24 (1032), o e' P '
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stations, the expectancy ¢ is about (.30 mm mercury, for semidiurnal
waves computed from 24 hourly values of atmospheric pressure, while ¢
is only 0.01 mm, so that 900 days are needed to bring the accidental
waves down to the level of the persistent wave and 100 years to reduce
the accidental part to about ¢/6.

In a wider sense, also such periods can be called persistent (and
traced in the same way), which have a constant period p, a phase fluctuat-
ing a few degrees around an average value, and a variable amplitude.
Most diurnal and annual waves in meteorological or terrestrial-magnetic
phenomena are of this nature. The reduction of the elliptical distribu-

tions discussed in section 23 follows the same 1/+/N law, unless the
averages are taken for systematically selected single intervals (section 16).

29. Example: The semiannual persistent wave in ferresirial-magnetic
activity; the summation-dial—In our 28-year series of international
magnetic character-figure C, only the period of six months can be definitely
considered as persistent. In Figure 10, the harmonic dials have been
plotted for sine-waves of six-month period, at the left computed from
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the 56 half-years, at the right computed from the 28 calendar years: of
course (section 7), each dot in the right-hand diagram is the mass-
center of two dots on the left. The average wave for all 28 years has the
amplitude ¢=0.0675C, and its phase is given by maxima which occur
about the dates March 22 and September 20, very near the equinoxes;
it is represented by the average vector 04 which, of course, is the same
in both diagrams. The expectancy for single waves (vectors reckoned
from origin O and combined according to (24.1)), is ¢=0.111C at the left,
¢=0.096C at the right. For the average of 56 or 28 accidental waves
we should expect therefore Q.111/4/56=0.0148C, and 0.096/+/28
=0.0181C. The actual average vector, 0.0675C, is k=4.6 and 3.6 times
as large. With these values of «, Table 2 for W(«) gives only a proba-
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bility of about 10® or 10 that the waves are
accidental. That the analysis based on the
half-years gives even better results than that
based on full years is easily understood, be-
cause the expectancy 0.096C obtained from
full years is relatively more increased by the
presence of the persistent wave than the ex-
pectancy, 0.111C, obtained from half-years.

For the “accidental’ or ‘‘irregular” vectors,
reckoned from A4, (23.2) gives the expectancy
for single vectors 0.088C or 0.068C, and for
averages of 56 or 28 vectors, 0.0118C or
0.0129C. This makes «=5.7 or 5.2, and W(«)
smaller than 1072

The basis of this discussion has been the
comparison between a random walk and the
gradual vectorial addition of the single vectors
in the harmonic dial represented in Figure 10.
This summation has been represented in Fig-
ure 11 (in a diagram which may be called sum-
mation-dial); the decisive preponderance of the
directions indicating maxima near the equinoxes
excludes all similarity with a “random walk”
and illustrates the ‘“‘reality’’ of the 6-month
wave, which has just been quantitatively
proven by the «x-test.

A more detailed analysis of this persistent
semiannual wave and a discussion of its phys-
ical nature may be found in a former paper.*

30. Mean periodogram for geophysical
phenomena—OQOur procedure of testing the
reality of a periodicity consists in deriving a
value for the expectancy e, which is based ex-
clusively on harmonic analysis for single waves
of the same period. This value represents
therefore, in exactly the right manner, the
combined effect of the standard deviation { of
the given ordinates and the dependence of suc-
cessive ordinates (section 27). The latter is
present in most geophysical cases in so far as
high values and low values of the ordinates
occur in groups.’® If, therefore, we cut the
series of ordinates into sets of r successive
ordinates, the arithmetic mean in each single
set will, in general, differ more from the arith-
metic mean of all ordinates than in the case
of independence; in other words, the stand-

“Terr. Mag., 37, 22-27 (1932).

“The analogy to the Lexis theory of dispersion is obvions; this
theory is described in every textbook on the theory of probability
(for imstance, that of Kamke! or R. E. Figsher*), and has been
applied by F. Baur to meteorological phenomena [Met. Zs., 47, 381-
389 (1930)j. In retation to periodicities, the Lexis theory must be
modified, or specialized, as will be seen later (section 40).
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ard deviation of the arithmetic means for sets of 7 successive or-

dinates will be greater than the random value §/+/r. [Example:
International magnetic character-figure C, 1906 to 1933, has standard
deviation for single daily values { =0.467C; if we form arithmetic means
for each of the 378 rotations (intervals of r=27 days), their standard
deviation is found to be 0.148C; if the values C for successive days were
independent, this value should be only 0.467/4/27 =0.090C(=0.003).]
On the other hand, if, in each single set, the deviations of each of the r
ordinates from the arithmetic mean for that set are formed, their standard
deviation ¢ will be smaller than the standard deviation ¢ of all ordinates,
the ratio {/{ increasing to unity with increasing r (in the case con-
sidered, {gr=0.444C). From (11.6), it follows therefore that the ex-
pectancy for smaller periods (computed from sets of a few ordinates)
will be, in general, smaller than that for longer periods.

] 8 ] Z » %
8 PERIOD IN HOURS PERIGOYIN HOURS
B ..
S INTERWL ONE DAY
g =
{ &
[
a‘ﬁ MEE
I
g ;§
h aizgg
® pernoo'in sours EEv
Los
INTERUL ONE DAY aaa§§
% INTERWL 60 YEARS
£
a‘§ ooe
3
2
] m g I l
“E INTERVAL FIVE DAYS -
¥ 2 NN ) 50 K00 20030
-az§ wwaniirndl see penio wonE
§—r o3|
oz INTERVL ONE MONTH
0z INTERWL ONE YEAR
I___E‘-—r

FIG 12~MEAN PERIOOOGRAM OF ATMOSPHERIC PRESSURE AT POTS0AM SHOW-~
ING MEAN AMPL ITUDES OF SINE-WAVES BASED ON HAWCAQMLYSIS

FIC. 4~MEAN PERIODOGRAM OF MAGNETIC DECLINATION AT GREENWICH,
SHOWING MEAN AMPLITUDES OF SINE- BASED ON HARMONKC
ANALY'SIS FROM SINGLE-YEAR INTERVALS (AFTER SCHUSTER)



GEOPHYSICAL AND COSMICAL PERIODICITIES 33

As an example, consider the hourly values of atmospheric pressure
observed at Potsdam, Germany.® The expectancies for the sine-waves
with 6-, 8-, 12-, and 24-hour periods, computed from single sets of r=24
hourly values, are, in mm of mercury, 0.11, 0.14, 0.30, and 1.11. They
are entered in the mean periodogram of Flgure 12. The free-hand
curve drawn through the four ordinates can reasonably be expected to
represent the actual mean periodogram, that is, the expectancy ¢ as a
function of the period .

We now make the assummption—to be tested by its consequences—
that the harmonic coefficients of period p, computed from different sets
of r observations, are independent and do not contain a persistent part.
Then the ‘“random-walk” theory (19.1) is applicable, and we can at
once obtain the mean periodogram for the amplitudes computed from
the average harmonic coefficients won by harmonic analysis of sets of
2r, 3r, ..., in general, of g ordinates, because (7.1) the vectors for the
average sine-waves derived by the harmonic analysis of gr ordinates are
the averages of the g sine-waves computed from 7 ordinates each. From
(19.1) it follows, therefore, that we obtain the mean periodogram for
sets of gr ordinates simply by reducing the mean periodogram for sets
of r ordinates in the ratio 1/4/¢q. This applies, of course, only to such
periods p which are submultiples of the interval represented by r ordi-
nates. The reduction can, by increasing ¢, in actual computation, be
continued till the whole set, g = N7, of available ordinates is subjected
to harmonic analysis. Persistent waves of amplitudes ¢ greater than
c¢/+/N, where ¢ is the expectanicy for that particular period, will then be
discovered, and the ratic «=¢/(e/+/N) will indicate the degree of
reliability.

Figure 13 shows, in the curves, the mean periodogram for waves
from 6- to 24-hour periods in atmospheric pressure at Potsdam, calcu-
lated from single days (r==24), and the mean periodogram for waves
computed from ¢ =3, 30, 365 days and 22,000 days (60 years), obtained
by reducing the curve for single days in the ratio 1/4/g; for clearness,
Figure 13E has a scale magnified ten times. The persistent waves of
6, 8, 12, and 24 solar hours, of amplitudes 0.011, 0.026, 0.226, and 0.095
mm have been indicated bw vertical lines in each periodogram, and, in
addition, the lunar tidal wawve of period 12 hours 25 minutes, with ampli-
tude 0.011 mm. It isstriking how the persistent waves, with increasing
number ¢ of days, gradually pierce the mean periodogram, which repre-
sents the veil of the non-periodic fluctuations hiding the persistent waves.
One year of observations (Fig. 13D) is sufficient to extract the solar
12- and 24-hourly waves, while 60 years of observations (Fig. 13E) are
necessary to press the level of the mean periodogram in the neighborhood
of 12-hour period down to one-fifth of the amplitude of the actual lunar
tidal wave.

31. A. Schuster’s example of a mean periodogram—The idea of the
mean periodogram as drawn in Figure 12 is the outstanding contribution
of A. Schuster to the study of periodicities. In fact, on page 122 of his
second paper,? he gives an actual mean periodogram showing the same

1] .Bartels, Ueber die atmosphirischen Gezeiten, Berlin, Versff. Preuss. Met Inst., No. 346 (1927).

The values given above are the probibde radii, as they were actuelly calculated; tl he expectancies should
be about 20 per cent higher, but thst does not matter for our purpose here.
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characteristic feature as our Figure 12. In order to show the details
more clearly, logarithmic scales for both periods and amplitudes have
been used in Figure 14, which represents Schuster’s calculations based
on the daily means of magnetic declination at Greenwich, 1871-1895,
corrected for the non-cyclic variation due to secular variation (section
16), and shows the expectancies for sine-waves from 2- to 365-day
periods supposed to be calculated from single years of observations,
that is, the average amplitudes, computed according to (24.1) from the
amplitudes obtained by harmonic analysis of N =25 sets of =365 ordi-
nates each. Figure 14 corresponds to Figure 12; the vertical lines give the
expectancies as calculated, and the smooth line has been drawn to fit
approximately.

A. Schuster used his values for the expectancy to test the presence of
a persistent wave with period between 25.5 and 27.5 days. Since the
whole interval of observation is 9160 days, these periods would represent
the frequencies 9160/25.5 =358 and 9160/27.5=2332, so that about 26
independent sine-waves lie between these limits. The greatest among
them, calculated from all N =25 years, has an amplitude of ¢=0'.0783,
while the chance value, with ¢=0".163 for a single year, is ¢//N=
0.163/5=0°.033. Therefore x=0.0785/0.033=2.4. This value, according
to (17.6), should, if pure chance were working, be exceeded once in about
300 cases, and it cannot be claimed to be unusual if an event, occurring,
on the average, once in 300 cases, occurs already in the 26 cases actually
considered. Schuster considers also periods which are not entire sub-
multiples of 9160 (see section 38), which increase the number of “inde-
pendent’’ periods hetween 25.5 and 27.5 days to 4 times our number 26,
or about 100; this is even more unfavorable for a claitn that the greatest
period found indicates a persistent wave, because the probability for
chance becomes as high as 100/300=1, 3.

32. [Erroneous applications of the periodogram—Unfortunately,
neither the original and powerful method of Schuster, just described,
nor its equivalent in the harmonic dial, as developed since 1922 by the
present author, have been applied in any of the later papers dealing with
the periodogram. This seems to be due partly to an exaggerated con-
ception regarding the amount of labor needed to compute a large number
of harmonic coefhcients, partly to the fact that Schuster himself, in his
paper on sunspots,’ does not use his own method.

Most of the recent papers on periodograms (for instance, those of
Pollak®) and Stumpff**) use the following substitute for the exact
methods: The harmonic coefficients for a number of selected periods
[in Pollak’s case (section 14), 73 periods ranging between 2 and 40 days]
are computed from the whole observational material, without effective
subdivisions (that means, 7 is taken as the number of all observations).
The amplitudes for these “trial periods,” or, in some cases, their squares,
are summed and divided by the number of the trial-periods (in Pollak's
case, 73); with this “expectancy,” which is the substitute for our ¢, VN
of section 30, the amplitudes of the trial periods are compared, and the
ratic x of each amplitude to the “expectancy’’ is used to decide, by means
of (17.6), on the reality of the large amplitudes,

A, Schuster,® in his paper on sunspots, recommends the following
procedure for deducing the expectancy: From the whole of the observa-
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tional material, without subdivisions, he computes the harmonic coeffi-
cients for a number of periods with lengths between 55 days and 24 years
and enters their amplitudes in a periodogram. Then he goes on to say:

“It has been stated that in the absence of definite periods the expectancy of the
intensity of the periodogram must be obtained from the periodogram itsel{ in all cases
where the events to be analyzed are not, as regards their succession, independent of
each other. The expectancy nol depending on the period we may select for the purpose
any portion of the curve in which we have no reason to suspect any periodicities. The
portion most suitable for this purpose in our case is that lying between 54 days and 1.5
years. Shorter periods must be avoided . . . owing to the fact that sunspots as
a rule last several days. . . . Spots persist during more than one solar rotation. This
effect will, however, disappear when the period is well above that of the solar rotation.
When the periods come near to 1.5 years, the sub-periods of well-ascertained periodic-
ities make their presence felt. Hence the limits chosen for calculating the natural
intensity of the periodogram must be confined to about 35 days on the one hand and
1.5 vears on the other.”

It seems strange that Schuster, in the phrase printed here in italics,
renounces his own discovery made in the second paper, and represented
here in Figure 14. In fact, it is quite clear that in the case of sunspots
the expectancy must depend very largely om the period, because of the
general reasons discussed in section 30. This is confirmed by an inde-
pendent calculation® of the expectancies for 6-monthly and 12-
monthly periods in relative sunspot-numbers, 1872-1930; the amplitudes,
calculated from single years, have, in the units of the relative sunspot-
numbers, the expectancies 8.3 and 10.9. This distinct increase of the
expectancy by about one-third of its value if the period lengthens from
6 to 12 months is likely to continue for longer periods.®

Now it seems extremely desirable to ‘“‘clean the slate’’ of all uncertain
periodicities and regard persistent periods as established only after the
severest test. From this standpoint, the danger lies, of course, not so
much in cases where the assumed expectancy for a certain period is
greater than its proper value—though this might occasionally prevent
the detection of an actual persistent wave—but in cases where it is
smaller, because that makes the actually calculated amplitude appear
more significant and entails higher values of «. If, for instance, the
proper value of «is 2.15, indicating a probability for chance W(«x) =1/100,
an underestimated expectancy assumed at half the proper value would
yield x=4.3, with W(«x) =107, which would erroneously appear to justify
a claim for a persistent wave. Table 2 (section 17) illustrates the serious
mistakes possible if the expectancy is assumed too low, and, conse-
quently, « too high, even by as little as one-fourth of the proper value.
And such an underestimate of the expectancy is almost certain if, as
sometimes suggested, the largest amplitudes of the periodogram are
omitted in calculating (in the manner indicated) the expectancy on the
ground that they might indicate persistent waves and raise the expect-
ancy unduly,

‘The periodogram has been discussed here because it has been used
so often in previous work. The author prefers the illustration of per-
sistent waves in the harmonic dial for their period, with the cloud of
points contracting, with increasing number N of periods combined, into
the end-point of the persistent vector (section 28). The harmonic dial

MK. Stumpf in his paper on periodicities in sunspots (see foot-note 42) distinguishes at least between

short and long periods, the division being taken at about 3 years’ length. He follows, however, Schuster
in adopting a common expectancy for the longer periods.
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confines the attention to the period for which the persistence is to be
tested, and avoids the confusion produced by mixing amplitudes for
periods of different length, and, therefore, of different expectancy.

(V) Quasi-PERSISTENCE—EFFECTIVE EXPECTANCY

33. Quast-persistent waves—We call quasi-persistent such periodicities
which are repeated with approximately the same phase and amplitude for
a certain number of periods, forming what may be termed a seguence, each
sequence ending more or less abruptly without any relation to other
sequences. This conception is not restricted to sine-waves; in fact, the
most striking example is offered by the diagrams™ for the 27-day recur-
rences in terrestrial-magnetic activity as described by the international
magnetic character-figure C. This recurrence-phenomenon is expressed
in quasi-persistence of the various sine-waves with periods that are
submultiples of 27 days. Here we shall consider those with periods of
27, 13.5, and 9 days; later (section 40) we shall formulate our results
without reference to harmonic analysis or sine-waves.

Quasi-persistence is best studied in connection with the summation-
dial, introduced in section 29; summation-dials for the periods of 27
and 13.5 days are reproduced in Figures 15 and 162 (In order to get a
better reproduction, the dial in Figure 15 has been turned by 90° from
that in Figure 2, vectors with maxima on day 27 pointing to the right.)
These diagrams illustrate the vector-addition, step by step, of the single
vectors in the harmonic dial for successive rotations; for instance (Fig.
15 for 27-day periods), the vector from the origin O to the point marked
130 in the summation-dial is the sum of all vectors for the single rotations
1 to 130, inclusive; a reduction to 1/130 would give the average vector
for the interval of time covered by these 130 rotations. Of course, the
summation-dial can also be used to form other averages than those
starting at the origin. For instance, the vector connecting the points
marked 130 and 378, divided by (378 —130) =248 would be the average
vector for rotations 131 (because the vector connecting points marked
130 and 131 refers to rotation 131) to 378, inclusive. Where the track
returns to approximately the same point, the average vector for the
intervening rotations is small; for instance, on the summation-dial for
the 13.5-day period, the points 140 and 344 fall so close together that they
are less than 0.05C apart, according to the scale for the single vectors.
This means that the average vector (or amplitude for the 13.5-day
period) for all the 204 rotations 141 to 344 comprising the whole interval
between May 18, 1916, and June 16, 1931, is smaller than 0.05C/204,
or 0.00025C.

On the other hand, we can select, on the same diagram, Figure 16,
long distances traversed in a few rotations. For instance, the points
marked 324 and 349 are 6.38C apart, indicating an average vector, for
the 25 rotations Nos. 325 to 349, of 6.38/25=0.255C. Applying con-
siderations analogous to section 21 we find, for these 25 rotations, the
expectancy for the single vector equal to 0.332C, and the expectancy
for the average of 25 vectors therefore 0.332/4/25=0.0664C; this gives
x=0.255/0.0664=3.84, W(x)=4X10~7. The probability W(«) for

#“Figure 15 re) nts the summation of the single vectors in Figure 2, while Figure 16 represents the
same process for the 13,5-day period, for which the analogue to Figure 2 is not reproduced here.
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chance is so low in this case that even a multiplication by a few powers
of ten (because of ‘'selecting’ this particular stretch from Figure 16, as
mentioned in section 22) might not destroy the strong indication of a
persistent wave of 13.5-day period within that interval of 25 rotations—
vanishing, however, outside that interval.

Quasi-persistence is indicated in the summation-dials by sequences
of vectors of approximately equal directions, for instance, the long
sequences in the 13.5-day diagram between the points marked 216 to
231 (December 1921 to January 1923), or 324 to 338 (December 1929
to January 1931), which both correspond, of course, to distinct sequences
in the former diagrams® for the 27-day recurrences. On the other hand,
no such long sequences can be detected in certain parts of the summation-
dials Figures 15 and 16, for instance, in the year 1926, rotations 272 to
284. These parts resemble closely the random walk pictured in Figure
8. And if we detect, in the random walk, Figure 8, the apparent ‘“‘se-
quence’’ between the points 76 and 85, we are forced to give up the idea
of distinguishing between random walk and quasi-persistence by a
mere inspection of the summation-dial or haphazard considerations. In
fact, the problem is to find a numerical measure for the geometrical
property of the summation-dial which will give a clear distinction be-
tween random-walk conditions (Fig. 8), quasi-persistence (Figs. 15 and
16), and persistence (Fig. 11).

34. Quasi-persistence measured by equivalent length ¢ of sequences—
In order to find such a measure, we consider a random walk, with the
expectancy ¢ of the single vectors. If we form the vectorial sum of
every two successive vectors and divide it by 2, that is, if we form
averages of every two successive vectors, we obtain a new set of vectors
which has the expectancy ¢,/+/2: in general, if we average % successive
vectors, these averages will have the expectancy ¢/+/k according to
(19.1). If, however, we have a perfectly persistent wave without any
superposed fluctuations, that is, if we have vectors of equal direction,
the expectancy for the average of & successive vectors would be, of course,
obtained as c.

We can express these conditions in another way. Suppose we com-
pute, from N successive vectors given, the expectancies for the single
vectors, for the averages of two vectors, etc., in general, for the averages
of k successive vectors. [In arder to be able to obtain a satisfactory
approximation to the expectancy (section 27), the number of inde-
pendent averages, roughly N /A, must not be too small; because of formula
(27.1), & must not be much greater than about N/50, if we want the
expectancy correct within 10 per cent] We multiply the expectancy
for the averages of h vectors by +/% [or, what amounts to the same,
divide the expectancy for the sums of & vectors by +/k], and obtain a
value which we shall call e(k). In the casc of the random walk, ¢(k) is
always the same value ¢ =e(1), the expectancy for single vectors; but
for persistent vectors, we obtain the ever-increasing value e(h) =e¢+/h.
In the case of quasi-persistence, ¢(2) will be greater than ¢(1), and ¢(3)
will be greater than ¢(2), etc., but this increase will not continue pro-
portionally to 4/k, as in the case of persistence, but will, in general,
asymptotically approach an upper limit, limes ¢(k), for A=, say, ¢(oo).
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If we now put e(«)/e(1) =+/o, we may call ¢ (which need not be an
entire number), the equivalent length of the sequences of the quasi-per-
sistent wave.

This designation of ¢ is justified as follows: In order to compute the
expectancy for our quasi-persistent wave for large values of 7, we can
proceed as if the average of & single vectors, showing quasi-persistence,
1s the same as the average of (/o) random vectors of expectancy ¢(1);
in other words, as if, of the % vectors, every o successive vectors are
equal, and only k/o vectors are independent. In fact, the average of
(%/s) random vectors has the expectancy ¢(1)/+/k/e, and multiplication
with 1/k gives e¢(1)+/e, that is, the same value ¢(%) as actually computed.

Perhaps ¢ is the exact expression for what H. H. Turner® designated
as a “chapter.”

35. Quasi-persisience in lerresirial-magnetic activity—The actual
computation for testing quasi-persistence was based on the summation-
dials for the periods of 27, 13.5 and 9 days, the first two of which are
reproduced in Figures 15 and 16. % was chosen equal to 4, 9, 16, and 25.
Because of (17.7) the arithmetic mean of the amplitudes of a number
of vectors, (¢'+¢”"+. . .)/n, distributed according to (17.3), is a constant
fraction (0.8862) of the expectancy, defined as the square root of
[(c)2+4(c")2+. . .]/n. Now, as the law (17.3) can safely be taken as
governing the distribution of the single vectors (Fig. 9) as well as their
sums, we'can be sure to make no systematic error in considering the ratios
of the corresponding arithmetic means (which are somewhat easier to
ce(t}st;la(te)) as sufficient approximations for the ratios of the expectancies
e(h)/e(l).

For instance, ¢(4)/e(1) for the 13.5-day period was calculated as
follows: The amplitudes of sums of four consecutive single vectors,
namely, distances of the points marked O and 4, 4and 8, ... 372 and 376,
as well as of the points 2 and 6, 6 and 10, . . ., 374 and 378, were measured
on Figure 16. The sum of these 188 distances is 127.06 units of C, and
the average distance therefore 127.06/188=0.6759C. In order to deal
with averages, and not sums, for four successive vectors, this value must
be divided by 4, and then, in order to obtain the equivalent of ¢(4) multi-
plied by +/4=2. This gives 0.3380C. This should, under random-walk
conditions, be equal to the arithmetic mean of the lengths of +he single
vectors, that is, equal to the arithmetic mean of the 188X4=752 dis-
tances 0 to 1,1t02,2t0 3,...,375to 376 and 2t0 3,3to4,...,
377 to 378 (in this arithmetic mean, all single vectors appear twice
except those for the rotations 1, 2, 377, and 378). On actual calculation,
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LENT LENGTH OF SEQUENCES: /. 74%=30 ROTATIONS
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this mean of these 752 distances is found to be only 0.2298C. Conse-~
quently, our ratio ¢(4)/c(1) is 0.3380/0.2298=1.470. In the case of a
perfectly persistent wave, we should have obtained for this ratio\/4=2,
and in the other extreme, the random case, ratio 1.

Table 3 shows the results of the calculations. The average ratios
have been entered against +/k as abscissae, in Figure 17, and fit well into
an exponential curve which approaches asymptotically e(e)/e(1) =1.74.
Therefore, the equivalent length of sequences is 5=1.74*=3.0 rotations.

TABLE 3—Quasi-persistence in the internalional magnetic characier-figure C,

1906 to 1933
Ratio ¢(k)/c(1) for k=
Period c(l)
1 4 9 16 25
days
27 0.262C 1.000 1.410 1.561 1.632 1.766

13.5 | 0.264C 1.000 1.470 1.729 1.713 1.738
9 0.236C 1.000 1.322 1.478 1.611 1.608

Average 1.000 1.401 1.589 1.652 1.704

In addition, for the periods of 27 and 13.5 days, the ratios have been
computed for £ =2, for individual years. Only for the two years 1916
and 1917 (rotations 136 to 162), in the 27-day period, the ratio ¢(2)/e(1)
is smaller than 1, namely, 0.89 and 0.95; this is expressed in the summa-
tion-dial Figure 15, where the trace between the points marked 135
and 162 appears very irregular. For the 13.5-day period, the ratios
for the same years are 1.20 and 1.12. Particularly high values of
¢(2)/c(1), approaching the theoretical maximum of /2=1.41 for per-
sistence, are found, in the 27-day period, for the years 1911 (1.38),
1913 (1.39), and 1933 (1.38); for the 13.5-day period, for the years
1922 (1.37) and 1930 (1.40). The average ratio for all rotations (years
1906 to 1933) are ¢(2)/c(1) =1.196 for the 27-day period, and 1.226 for
the 13.5-day period; the average value 1.211 has been entered in
Figure 17.

For A=4, the ratios e(4)/c(1) were computed for 14 pairs of years
1906 and 1907, etc. All ratios are greater than 1, the lowest being, of
course, 1.04, in the 27-day period for the two years 1916 and 1917, which
already gave the lowest ratios ¢(2)/c(1). Particularly high values of
e(4)/e(1), approaching the value v/4=2 for persistency, are found, in
the 27-day period, 1912 to 1913 (1.64), and in the years 1924 to 1925
(1.68), and, in the 13.5-day period, in the years 1930 to 1931 (1.80) and
1932 to 1933 (1.71).

In order to test the strong quasi-persistence noticeable in the former
27-day recurrence-diagram for the years 1928 to 1933, the ratios
Z(h) /g(l).were also computed for these years alone; they are, for A=2,

,and 9
For the 27-day period: k=2, 1.252; k=4, 1.436; k=9, 1.661
For the 13.5 day period: 2=2, 1.308; h=4, 1.698; =9, 2.151
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The highest value, 2.151, would already correspond to an equivalent
length of the sequences of more than ¢=2.1512=4.6 rotations.

A diagram equivalent to Figure 17 may be called the characteristic
for the period p in the observational material.

36. Influence of quasi-persisience on lests for persistence: Effective
expectancy—The vectorial average of N vectors which have the expect-
ancy ¢(1), and quasi-persistence characterized by the equivalent length
o of the sequences | (N great compared with ¢), has an expectancy which,
multiplied by /N, we have called, in section 34, ¢(N); it is therefore
¢(N)/+/N, and if N is great enough so that ¢(V)/c(1) has the limiting
value /o, we can write ¢(1)+/c for ¢(N) and obtain for the expectancy
of the average of N vectors

(36.1) c()ve/v/N

T'his value differs from the random value c¢(1) '+/N, obtained by assuming
successive vectors € independent, by the facior v/o. If, in quasi-persistent
waves, we search for persistent waves as described in sections 28-32,
this value (36.1) must be taken as the expectancy with which the ampli-
tudes actually found by vector-addition must be compared. The crucial
ratio « of the amplitudes actually found to their expectancy is therefore
reduced in the ratio 1/+/c against the ratio calculated on the assumpiion of
random-walk conditions, or of independence of successive single vectors,
without regard to quasi-persistence. The consequences for the considera-
tions on the probability for chance W(«) are sometimes decisive, because
even a small decrease in x may mean a large increase of W{(«), according
to Table 2 (section 16). c¢(1)y/¢ may appropriately be called effective
expectancy, as contrasted to the ordinary expectancy c(1).

The decisive influence (36.1) of quasi-persistence on tests for per-
sistence as well as on the uncertainty of average sine-waves derived
from a large material can also be expressed in another way: Against
random conditions, the effective number (N/¢) of the available obser-
vations is reduced to 1/¢ of its apparent number N,

We can now adjust our considerations in section 21. There, assuming
random-walk conditions and starting from the ordinary expectancy ¢(1),
we obtained, for the average vectors of the 27-day and 13.5-day periods
for the 378 rotations 1906 to 1933, the values k=2.49 and 1.47, with
W(2.49)=1/500 and W(1.47)=1/9. Taking +/¢=1.74 (which is cer-
tainly not too high, judged from Table 3), the consideration of quasi-
persistence, as expressed in the effective expectancy, reduces x to 1.43
and 0.84, raising W(«) to W(1.43)=1/8 and W(0.84)=1/2. These
‘‘probabilities for chance’ are so bigh that there can be absolutely no
doubt about the absence of a noticeable persistence in these periods of
27 and 13.5 days; or, expressed more accurately, if persistent waves of
these periods existed, the material at hand is not sufficient to trace them.

In the same way, we can dispose of the persistent wave of 9.00-day
period which Pollak! believed to have traced in the international
magnetic character-figure C for the years 1906 to 1926. He obtained
for this wave an average amplitude of 0.0412C, and, with his expectancy,
disregarding quasi-persistence, a value W(2.76)=1/2000, which he
considered sufficiently low to exclude pure chance. Qur own calculation
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for the 9-day period gives, for the 284 rotations in the years 1906 to
1926, ¢(1) =0.232C (only slightly different from the value 0.236C given,

for all years 1906 to 1933, in Table 3); for v/a, we make, from Table 3,
the conservative estimate 1.62 giving the effective expectancy 0.376C.

The expectancy for an average of 284 rotations is. therefore, 0.376C/+/284
=0.0224C, and «£=0.0412/0.0224=1.84, with W(1.84)=1/30, which
is not at all suspiciously low. The full series 1906 to 1933 gives, by the
way, about the same indication.

37. Infection of adjacent periods by quasi-persistence—We have seen
that the 27-day sine-wave period in the international magnetic character-
figure C shows quasi-persistence with ¢=3.0 rotations. It is easy to see
that, for instance, the 28-day period must be affected by this quasi-
persistence. Suppose, namely, the series of character-figures C to be
divided into intervals of 28 days, beginning January 11, 1906. These
single intervals would, on harmonic analysis, give amplitudes of 28-day
sine-waves which are only little different from those of the 27-day sine-
waves computed from the first 27 days in each 28-day interval; this is
easily recognized by considering the folding process (section 10, and
Fig. 3), in which the turning angles for the 27-day and 28-day periods,
respectively, are (360°/27)=13°33 and (360°/28)=12°.86, so that the
successive links in the 28-day folding-process are only 0°.47, 0°.94, etc.,
less inclined against the vertical than the same links in the 27-day folding-
process. Therefore, the ordinary expectancy ¢(1) for the 28-day sine-
waves will not differ greatly from that for the 27-day sine-waves. How-
ever, successive 28-day intervals begin always one day later than the
successive 27-day rotation; if, in the summation-dial for sine-waves of
27-day period, the vectors for successive rotations have nearly the
same phase, because of quasi-persistence, then, in the summation-dial
for the 28-day sine-waves, because of the relative shift of 27-day and
28-day intervals, the vectors should have phases increasing about
(360°,27) =13° from one 28-day interval to the next [the maxima ap-
pearing to occur one day earlier in successive 28-day intervals]. There-
fore, the general aspect of the summation-dial for 28-day sine-waves
would be about the same as that for the 27-day sine-waves (Figure 15),
except that successive vectors were turned by about 13° anti-clock-
wise. This would not greatly affect the values of ¢(2)/¢(1) and even
¢(3) ‘e(1) (sections 34, 35); only for higher values of %, ¢(k)/c(1) for the
28-day period may not increase to the same values as given in Table 3,
so that the equivalent length & of sequences for the 28-day period may
be smaller than 3.0. In other words, the 28-day period will show quasi-
persistence because it is “infected’ by the quasi-persistence of the 27-day
period. This makes it, apart from other reasons,’ difficult to determine
the exact length of the 27-day recurrence-interval, which might differ
from 27 days by a few tenths of a day, and could be recognized as yielding
the highest value of ¢.

This kind of infection will diminish the greater the difference of the
periods. For periods of 30 days, for instance, the infection by the 27-day
period will be small. Actual calculation of 27-day periods and 30-day
periods for the character-figure C for the two years 1924 and 1925 gave
the following results—-the values for 27-day period and 30-day period

8], M. Stagg, Meteorological Office, Geophysical Mem. No. 40, London (1927).
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being, in each case, printed after each other: Number of full intervals
cousidered 27, 24; expectancy for single interval e(1) =0.258C, 0.248C;
e(2)/e(1)=1.26, 1.22; ¢(4)/e(1)=1.68, 1.21. This sample calculation
allows one to assume, for the 30-day period for all years 1906 to 1926
used by Pollak, v/ about 1.2, and the ordinary expectancy e(1) =0.252C,
namely, 0.010C less than ¢(1) =0.262C for the 27-day period in the same
years 1906 to 1926, so that the effective expectancy becomes ¢(1)
v/e=0.302C.

The expectancy for the average wave of Pollak’s 255 intervals of
30 days is therefore 0.302C/+/255 =0.0189C, and the same value will hold,
with high approximation, for a wave of 29.9 days. The actually cal-
culated sine-wave of Pollak for 29.9 days from his material has an
amplitude of 0.0511C. Therefore, x=(0.0511/0.0189)=2.70, with
W(2.70) =1/1460. This value might look suspiciously small, though
not so small as the value of 1/110,000 which Pollak himself derives
using a too low expectancy. But, since the 29.9-day period is picked,
because of its high amplitude, out of 73 amplitudes actually calculated,
the “probability for chance,” according to section 22, is (73/1460) =1,/20,
and this is not small enough to warrant the definite assumption of per-
sistence. There remains the possibility of long-range quasi-persistence,
corresponding to Ad. Schmidt’s idea of deep-seated long-lived foci in
the Sun’s surface-layers, with a rotation of about 30-day period.

38. Interference—The infectiousness of quasi-persistence, as de-
scribed in section 37, is related to the general interference-phenomenon
leading to the ‘‘spurious periodicities’” which A. Schuster® discovered
as complete analogues to the secondary maxima obtained in analyzing
homogeneous light by a spectroscope of finite resolving power. His
exact formula will be illustrated here by a straightforward application
of the summation-dial which will yield an approximation sufficient for
practical use.

Consider the persistent sine-wave of half-year period (section 29)
in the international magnetic character-figure C, of amplitude 0.0675C,
and constant phase. The summation-dial of this period for the 56 half-
yvears 1906 to 1933, freed from the irregular fluctuations exhibited in
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Figure 11, would be a succession of 56 perfectly aligned single vectors
leading from the center O of the dial to the point Q (Fig. 184).

What should we obtain if we would analyze the train of these 56
sine-waves of exactly p =0.500-year period for a slightly different period
of length, say, p’=0.502 year? Fifty-six complete waves of period p’
would cover an interval of 56.112 half-years. The harmonic dial for the
56 single waves of period p’ in that interval would show amplitudes
practically equal to that of the actual half-year period, but the maxima
of each wave of period p’ would shift gradually and occur earlier. Since
250 p’ =251 p, the phases of two periods would agree again after 250
intervals of length p’; consequently, the phase of the period »’ shifts
from one interval of length ' to the next by (360°/250) =1°.44. After
56 intervals, the phase-shift would be about 81°. We will call this angle
25. The summation-dial for the period p'=0.502 year is therefore
approximately part of a circle (Fig. 18B), the length of the arc 0'Q’
being equal to 0Q, and the tangent of the circle drawn in Q' forming an
angle of 25 =81° with the tangent drawn in 0.

Now the vectorial sum of the 56 sine-waves with period p’ is repre-
sented by the straight line O’Q’, while the vectorial sum of the 56 sine-
waves with period p is represented by OQ, which, as we have seen, is
equal to the length of the arc O’'Q'. The amplitudes of the average
vectors of periods p and p’ are obtained by dividing the vectorial sums by
56. Therefore, the ratio of the amplitudes of the average sine-waves
with periods ' and p is equal to the ratio of the lengths of the chord
and the arc 0'Q’, or sin 3§/, as the auxiliary construction in Figure 18B
indicates.

In general, consider a train of waves with a persistent period of
length p, and suppose it to be analyzed for a period of slightly different
length, p’'=p4Ap, where Ap/p is small. Putting m=p/Ap, we find
mp’=(m+1)p, and since m is large, this will hold also if, instead of the
exact value m=p/Ap, we take the nearest integer for m. Then our
equation means that the interval covered by 7 periods p’ is covered by
(m--1) periods . This means that, in the summation-dial for period
#’, the shift of phase between a certain vector to the vector for an interval
occurring mp’ later is 2x, and therefore the phase-shift for successive
vectors is 2r/m. If the interval considered contains only # waves of
period p, the angle 25 of Figure 188 becomes 28=2rn/m=2xn Ap/p,
and the ratio of the average amplitude of the ‘‘spurious’” period 2’ to
the average amplitude of the persistent wave with period p becomes

(38.1) sin 8/8 with d=mn Ap/p

where p is the length of the exact period, (p+Ap) the length of the
spurious period, and ## the length of the whole interval analyzed. Be-
cause of the slight idealization assumed at the end of the summation-
dial, this formula gives the correct value within the limit 1/#, which is
practically sufficient since #» must be large enough anyway (see foot-
note 46).

The function sin 8/ has been plotted in Figure 194. The “spurious”
amplitude vanishes for § ==, 2, etc., that is, Ap=p/n, 2p/n, etc. This
is only another expression for the independence of the harmonic coeffi-
cients in the series (5.2), because the length of the whole interval is 7p,
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so that the period p has the frequency # (supposed to be high), and the
frequencies (n—1), (z—2), ... have the periods [zp/(n—1)], [np/
(n—=2)], ..., or, nearly, [p+(p/n)], [p+(2p/n)], etc. Of course, our
discussion applies equally to periods (p»— Ap), etc., so that Figure 19
may be extended symmetrically to §=0. The negative sign of sin §/5
between == and 27, 3= and 4w, etc., is, in our case, not significant
and can be disregarded, as in Figure 19B.

If the observational material contains a persistent wave, the period $
of which is no entire submultiple of the total interval T of observation,
ordinary harmonic analysis would, in the series (5.2), not indicate the
full amplitude ¢ of this wave, but only a part of it in spurious periodicities.
For instance, if (#4+0.5)p=T, where » is an integer, we have Ap/p=
0.5/n, and 8=x/2, so that the waves with frequencies 7 and (n-+1)
would show amplitudes with 0.637¢. It is therefore necessary to search
the neighborhood of periods with suspiciously high amplitudes for the
exact period of a possibly persistent period. This is done by Darwin's
method of approximation, first used for the calculation of tides, and de-
scribed by Stumpff and Pollak (foot-notes 10 and 11). The summation-
dial, Figures 184 and 18B, is a reliable guide in applying this method,
which approximates the arc 0'Q’ in Figure 18B by a number of smaller
chords: in other words, partial average vectors for the period p are calcu-
lated for a small number of groups—for instance, 16 groups of 4 half-years
in our case—and these partial averages are combined in different ways,
namely, without phase-shift to obtain the average vector for period p,
and with appropriate phase shifts to obtain the average vector for adja-
cent periods (p+ Ap).

For another aspect of interference, see appendix section AS.

39. Special kinds of quasi-persisience—The interference-phenomenon
described in section 38 can be conceived as some regular kind of quasi-
persistence caused, by a persistent wave of period p, in waves with adja-
cent periods (p+ Ap). The diagram of Figure 17 for such an adjacent
period would begin with interference ‘‘beats’ similar to those of Figure
19B, but these oscillations would gradually be damped and end in the
value ¢(k)/e(1) for the actual quasi-persistence. A lunar wave derived
from material with larger solar waves, for instance, in atmospheric
pressure, or in the terrestrial-magnetic force, is a typical example.

A more general kind of quasi-persistence would be given by a case
where, in the summation-dial, not the successive intervals, but perhaps
the first, fourth, seventh, etc., exhibit a tendency to have the same phase.
We obtain exactly this case, if we break up our 378 rotations of 27 days
in the international magnetic character-figure C into (3X378)=1134
intervals of 9 days. We shall designate each of these 9-day intervals
by the rotation-number and distinguish the three thirds of each rotation
by the letters L, M, R (left, middle, right). Figures 20 and 21 show,
in different arrangement, the summation-dials for these sine-waves
with 9-day periods for the years 1931 and 1932, comprising the 27 rota-
tions Nos. 339 to 365, or 81 intervals of 9 days. Figure 21 shows the
81 vectors for the 9-day intervals as they follow each other in time, that
is, for interval 339L, 339\, 339R, etc., up to 365R. The vectors for
intervals L, M, R have been distinguished by drawing them in full,
dashed, and dotted, respectively. In Figure 21 the number of each
rotation is entered against the end (marked more boldly) of the last
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vector R for each rotation. (It is to be remarked that should we retain
only these points marked in Figure 21 and omit the points for the ends of
vectors L and M, we should obtain the summation-dial, on a three-fold
magnified scale, for the 9-day periods calculated from whole rotations
of 27 days, analogous to Figures 15 and 16, and discussed in section 35.)
The time of maximum is indicated by the scales around the borders of
the dials, by days 1 to 9 for L, 10 to 18 for M, 19 to 27 for R, according
to the numbering of the days in the rotations.

Calculations similar to those in section 35, based on Figure 21, lead
to the expectancy, for single vectors, e(1) =0.540C, and for the ratios
c(h)/e(1), we obtain 1.109 for A=3, 1.369 for k=6, and 1.669 for k=9.

On inspection of Figure 21, we find the feature indicated above,
namely, practical independence for vectors immediately following each
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other, but every third vector—for instance, those tor M-intervals indi-
cated by dashed lines—has a tendency to keep its phase. This is brought
out more clearly in Figures 20L, 20M, and 20R, where the vectors for
the L-, M-, and R-intervals are added separately and show considerable
quasi-persistence. If we calculate e(h)/e(1) for these three summation-
dials of Figure 20, we obtain, on the average, 1.241 for A=2 and 1.395
for k=3. The contrast between the values of c(k)/e(1) for k=3,
namely, 1.109 for Figure 21, 1.395 for Figures 20L, 20M, and 20R,
is the numerical expression for this particular kind of quasi-persistence,
which could be called éntermitteni: The three thirds L, M, R of each
rotation give nearly independent 9-day sine-waves, but corresponding
thirds, for instance, the L-intervals alone, show strong quasi-persistence.
This proves incidentally that the 9-day period has no self-existence, but
is only a sub-period of the 27-day period, which is the actual periodicity.

The value ¢(3)/c(1) =1.109 for Figure 21, small as it is, is neverthe-
less greater than unity and reveals a weak degree of quasi-persistence,
which, however, seems to be a general phenomenon in many cases in
which dependent ordinates are divided into sets, because, for instance,
a group of high ordinates, divided up by a limit between two sets, adds
likewise, in both sets, to the cosine-coefficient a, of the successive sets.

The most general definition of quasi-persistence as distinguished
from random conditions leads, of course, to the same fundamental diffi-
culties encountered in a satisfactory definition of the term “accidental”
in the theory of probability. In this respect, we refer to the books of
Mises and Kamke®, especially to the defnition of the ‘“fields of proba-
bilities”” discussed by Kamke.

From our much-used example of the 378 rotations in C, we can easily
construct an illustration of these remarks. Imagine our 378 rotations
divided into seven groups comprising rotations Nos. 1 to 54, 55 to 108,
109 to 162, ..., and 325 to 378. In each group, mix the numbers of the
rotaticns at random. Then draw the summation-dial for the 27-day
period which, in the points 54, 108, ..., 378 would be identical with
that in Figure 15, and test for quasi-persistence. Obviously we should
obtain a different curve from Figure 17, namely, ¢(k)/e(1) would remain
near unity for low values of %, because the mixing has produced random
conditions for these, but with % approaching 54, ¢(k)/e(1) will rise to
the limiting value indicated in Figure 17.

If a persistent wave of amplitude c is present, ¢(k) in Figure 17, with
abscissa +/h, would finally approach the line ¢~+/k, or ¢+/N, if we write
N for large values of 2. The x-test for persistent waves (section 36)
can easily be applied to this characteristic, because cv/N/c(1)v/o=¢/(e(1)
+/a/+/N), and this is x because of (36.1). We can therefore enter a
uniform scale of «, where x=1 corresponds to the effective expectancy
e(1)v/o (see section 41).

40. Periodicities of other form than sine-waves—The application of
harmonic analysis to research on geophysical periodicities is sometimes
criticized because the form of the periodicity—for instance, an average
diurnal variation of magnetic declination—is said to be in no way con-
nected with sine-waves, which are forced upon it by the purely mathe-
matical process of harmonic analysis. In fact, a physical reason for
expecting periodicities having the form of sine-waves is given only in a
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few cases, for example, if the phenomenon is due to resonance in an
oscillating system (semidiurnal wave of atmospheric pressure), or if it
is caused by forces changing like sine-waves (tides), or wherever a
differential equation of the type y'' = —ky may hold. But a mathematical
reason for applying harmonic analysis is always given, because it fur-
nishes an adequate approximation, replacing the given ordinates by a
few harmonic coefficients.

In order to meet the criticisrn mentioned, the 27-day recurrence-
phenomenon in magnetic activity has been treated here as an example
just because the harmonic analysis is, in this case, 2 mere mathematical
affair, with no simple physical meaning ascribable to each of the separate
sine-waves of 27-, 13.5-, and 9-day periods. Yet we have been able to
develop the ideas of persistence and quasi-persistence in this material.
There can be therefore no doubt that the same methods can be success-
fully applied in dealing with other geophysical and meteorological
phenomena.

However, the following outline of a test for persistence, quasi-
persistence, or random fluctuations will show how our methods can be
generalized so that they do no more imply an explicit reference to har-
monic analysis. Consider the international magnetic character-figure
C, 1906 to 1933, arranged in 378 rotations, that is, written in 27 columns
with 378 rows. Form, for each rotation, the standard deviation, take
its square, sum up for all rows, divide by 378, take square root: the value
obtained is called {(1). Add each two successive rows of C and divide
by two, thus obtaining average 27-day variations for two rotations each.
For these new average rows, form standard deviation, take its square,
sum up, divide by number of average rows, take square root, multiply
with +/2; the value obtained is called {(2). In general, form average
rows of k successive rotations, compute standard deviation for each
row, square, sum up, divide by number of average rows, take square
root, multiply by +/k, so obtaining values called {(2). With random
fluctuations, {(h)=¢(1); with persistent periodicities {(%)={(1)v/h;
with quasi-persistent periodicities of 27 days, {(h)—{(1)4/c, where
¢ is the equivalent length of sequences.*

Remembering formula (11.6), and the conception of the generalized
harmonic dial (section 13), in which the vector is proportional to {, it is
easily verified that this method corresponds exactly to the generalization
of the two-dimensional summation-dial to the generalized harmonic
dial. Instead of Figures 15 and 16, we should consider a track of vectors,
a summation-dial, in 26 dimensions. In the case of the character-
figure C, the value for ¢ obtained will be not far from that of ¢=3.0
rotations obtained from the three sine-waves of 27-, 13.5-, and 9-day
periods, since the amplitudes of these waves contribute most of {(1).

In general, rows of r ordinates would be written down, and averages
of % such rows formed. In particular, for =1, we should obtain some
form of Lexis test of independence of successive ordinates, suitable for
geophysical applications.

41, General statistical test for periodicity in geophysical phenomena —

WA to persistent waves, the method given above is materially the same as that given in 1924 by

E. T. Whittaker and G. Robinson (see foot-note 35). It had been independently found and applied in
the author’s doctor thesis, Gbittingen, 1922.
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In short, the full test of a period p for quasi-persistence and persistence
is obtained as follows: Divide, in a suitable way as shown in section 35,
the whole interval T of observations into intervals of equal length ip.
Compute the amplitudes of the sine-wave of period p for each interval
and from these amplitudes compute their expectancy according to (24.1).

Multiply this expectancy by +/k and obtain e(k).

Derive e¢(k) for

various values of %, beginning with k=1, and ending with a value of 4
so that Ap is still only about 1/20 of T, so that the function c(#), repre-
sented as ordinate against the abscissa /%, is properly determined.
From this characteristic, the nature of the fluctuations can be judged. In-
stead of the amplitudes of sine-waves, standard deviations can be used
as indicated in section 40.

In Figure 22, five typical cases are shown. They will be enumerated
below, and we add tentatively a few more examples for each type of the

characteristic:
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HARMONIC ANALYSIS OF INTERVALS OF LENGTH hp AS FUNCTIONS OF Yir —FIVE TYPICAL CASES

(4) Random fluctuations—c(h) equal to the ardinary expectancy ¢(1)—
Disintegrations of radioactive substances; artificial examples obtained
by random sampling (summation-dials resembling Figs. 7 and 8).

(B) Random fluctuations plus quasi-persistence—c(1) increases asymp-
totically from the ordinary expectancy c¢(1) to a limiting value, the
effective expectancy e(1)4/¢ (summation-dials resembling Figs. 15 and

16).

27-day period in terrestrial-magnetic activity (section 35),

aurora, and in solar phenomena, due to solar rotation ; many meteorologi-
cal phenomena, for instance, the periods of from 20 to 40 days in at-



GEOPHYSICAL AND COSMICAL PERIODICITIES 51

mospheric pressure (Weickmann), the waves of periods of a few days
in rainfall (Defant), the period of 3.5 years in atmospheric pressure in
the Indian Ocean, the cycles of Briickner, A. E. Douglass (tree-rings),
and many others.

(C) Inmtermittent quasi-persisience—c(h) increases slowly for e(1)
up to ¢(ky), from there follows example B (summation-dials resembling
Fig. 21). Period p is submultiple of actual period of length A¢p. Nine-
day sine-waves in international magnetic character-figure C (section 39),
and all cases of subperiods.

(D) Random fluctuations plus persistence—c(h) increases from e(1),
approaching asymptotically the straight line ¢n/k, where ¢ is the ampli-
tude of the persistent wave. Probability of chance for persistent wave
judged by W(«x), (17.6), with x=ratio of ¢(k) to ordinary expectancy
¢(1) (summation-dials resembling Fig. 11). Six-monthly wave in
terrestrial-magnetic activity (section 29); the period of about 11 years
in sunspots (?) and its effects in geophysical phenomena; most annual
variations in meteorology; cyclic variations in the radiation of variable
stars.

(E) Random fluctuations plus quasi-persisience and persistence—
Combination of B or C with D. Probability of chance for persistent
wave judged by W(«), (17.6), with x=ratio of ¢(#) to effective expectancy
¢(1)+/o. All waves of 24 solar- and lunar-hour period, and their sub-
periods, in terrestrial magnetism, atmospheric electricity, meteorology,
etc. Periods in sunspots other than 11 years. Biological and economical
cycles. Quasi-persistence exhibited in the vectorial differences between
the waves for single intervals and the persistent wave.

The illustration of these five cases in the summation-dial may finally
be indicated: A—Random-walk; B—Modified random walk, so that
each successive direction has a preference for the direction of the last
vector; C—Like B, but the preferred direction is, for instance, that of
the third vector before; D—Modified random walk preferring a fixed
direction ; E—Combination of B, or C, with D.

42. Acknowledgmenis—The numerical and graphical examples given
in this paper were worked out with assistance given by C. C. Ennis
and W. C. Hendrix at Washington, D. C., and by W. Zick at Ebers-
walde, Germany.

APPENDIX

Al. Harmonic analysis of equidistant ordinates: Theorem I—The
interval x =0 to 2r is divided into r equal intervals, of length 2x/r, by
the abscissae 0, x1, x3, . . . %, where x,=p 2z/r. A function f(x) is given
by the ordinates y,=1(x,) for p=1, 2,. . .r. Thearithmetic mean of the y,
may be fo= Zv,/r; their standard deviation may be {, defined by {2=3
(¥s—fo)¥/r. Consider a sum of sine- and cosine-functions of frequency
v=0,1,..., k. with k<r/2

(41.1) oi(x) =ao+ Z:_l (a» cos vx+b, sin vx)

The coefficients aq, a», b» (v=1, 2, ... k) of ¢x(x) must be determined so
that ¢,(x) approximates the given ordinates y, of f(x) in the meaning of
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lea_st-square adjustment, that is, so that the mean square s of the
residuals y,—¢y(x,), that is

(A41.2) =2, [y,—du(x,)}/r

has the minimum value possible. The solution is
r ]

(41.3) a= D elr=Fo

av= z , Yo cOS vx,’ (r.'2),

r
p=
=T .
bv= 1 Vo S1I pr.-,(r,/Z)
Z,-

a., b, are called harmonic coefficients. If 7 is an even number, a final
term Gq/z cos (r/2)x can be added to ¢i(x), for which the minimum
condition (41.2) gives

(A13a) A/ = ( —nt+yr—yit+vi—. .. +3'r)/r

Furthermore, the ordinates $:(x,) of the approximating function have
the average value

(41.4) ap= z:.-x r(x0) /7

and their standard deviation =, is given by

(41.5) wi= > (@i b2

or, for r even and k=r/2

(41.5a) Nesa) = Zi'f:-l (a?+b2)/2+au/n
Finally for & <r/2

(A1.6) se=gtomt=pim O (@i +bA)2

If the number of coefficients aq, @, bv in ¢; equals the number r of
ordinates [for r even, k=7/2, for r uneven, k= (r—1)/2], the ordinates
v, are represented exactly by the ordinates of ¢.

Proogf—The proof is based on the fact that the system of functions 1,
cos vx, sin vx (v=1 to k) are orthogonal® in the interval x=0 to 2x.
This fundamental property is expressed in the following formulae, in
which the sums are extended from p=1 to r and the indices v and &
range between 1 and (r—1)/2, for r uneven, and between 1 and r/2 for
r even, unless the index »/2, for r even, is expressly indicated by a sep-
arate formula.

A4L7 Z cos v, =0 (v<7), T sin vx,=0 (v<7r)
(41.8) = cos?vx,=7/2, T sin? vx,=r/2 (v<r/2), T cos? (r/2) x,=r
“Developments of arbi functions into series of orthogonal functions, such as sine-waves, spherical

harmogics, etc., are discussed, for instance, in R. Courant and D. Hilbert, Methoden der mathematischen
Physik, 2nd ed, Berlin, 1931.
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(41.9) = cosvx,cos ux,=0, 2 sin vx, sin ux,=0 (vs=£p)
Z cos vx, sin ux,=0 (v=p or v>¢p)

We first prove (41.7) by Moivre's theorem, namely, (writing exp 2 for &%)
cos vx,+1 sin vx,=exp ¢ vx,=exp ¢ vp2xr/r=(exp 1 v 2r/r)? =g, putting
g=exp ¢ v 2r/r. Summing these equations from p=1 to r, we obtain
on the left hand Z cos vx,+1¢sin »x,, and on the right hand the geometrical
series

(41.10) gté+g+.. . +g=q(@—1)/(g—1)

But this is zero, for the denominator (g—1)#0, since 1<v<r and ¢'=

exp iv2r=1. The real and the imaginary part of the left-hand side
must therefore also vanish, proving (41.7).

The well-known formulae for cos (v+u)x, cos (v—u)x, etc., give at
once for all values of v and x

2 cos vx, cos px,=cos (v+u)x,+cos (v—u)x,
(41.11) 2 sin wx, sin px,=cos (v—pu)x,—cos (v+u)x,
2 cos vx, sin px,=sin (v+u)x,—sin (v—u)x,

Summing from p=1 to 7, the right-hand sums vanish because of (41.7),
except 2 cos (v—u)x,=r for v=y, because cos 0=1, and 2 cos (v+up)x,=r
for v=p=r/2, r even, because cos r x,=cos 2r=1. That proves (41.8)
and (41.9)s.

We can now prove our theorem. First, (41.4) follows from (41.7),
and if we form (¢x(x,) —ag)?=(a1 cos x,+b, sin x,+...4a; cos kx,+
by sin kx,)? and sum from p=1 to r, (41.5) follows from (A41.8) and
(A41.9). We consider now a function ¢,'(x) of the same form as ¢;(x),
but with arbitrary coefficients a,’, a,’, b,", while for ¢:(x) we take the
coefficients defined by (41.3). We consider the sum ¢.(x)+¢;'(x) and
shall find that this approximation to v, is worse than that given by
¢r(x) alone, unless all coefficients of ¢x (x) disappear. We form the
square of the residual (omitting the index & in ¢;(x,) and ¢:'(x,) where
it is not necessary)

[ve— ($(x,) + ¢°(x,)) = 3,2+ $(x,) + ¢°(x,) — 2 ¥,8(x,) —2 y,9°(x,)
+2 ‘#(xp)d’.(xp)

Inserting the series (4 1.1) for ¢ and its equivalent for ¢°, and adding

MAIl these formulae can easily be transformed into simple geometrical problems by means of the
harmonic dial or our folding process (aectxpn 10). (A 1.7) is, for instance, only the expression for the closing
of a regular polygon, if star-shaped polygons are admitted. (AI 8) and (41.9) refer to some kind of epi-
cydic motion, described by a ?omt on the circumference of a circle revolving with frequency (v<-u),
while its center revolves with {»—u) on another circle of the same radius and fixed center.
This explains the regularity of Fizum 4. With k& circles with radli ¢,, each center moving with frequency »
onthedrcum.fennoeoftheprmdlngcirde with beginning of the movement given by the phases a,,
the movement of a point on the circumference of the outermost circle, projected on a vertical line, repro-
duces the fu.nct.ion ¢x(x); t.hh is the prim:iple of tidal computing machines.

the harmonic dial is a}uivdent to the ordinary geometrical representation of complex
numbun. because ¢y 8in (vx+a,) is the imaginery part of ¢, exp i (»x+a,); our vector in the harmonic

dial rep s the “ lex amplitude’’ ¢, exp ia,, the factor exp ivx being common to all waves of

c¥ v ‘l‘hls ia the connection to the electrotechnical diagrams used for describing alternating currents

(aee. for X part 1, of the Handbuch der Expenmentalphy:ik Leipzig, 1934). For geophysical
tin lpeclal form of diagram described as harmonic dial ia clearer.
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up for p=1 to 7, the terms on the right hand yield successively (the
formulae applied being cited in brackets in each row)

z:-l ot =ri*trag After (11.2)
> b =radt(r/2) Y, (@b After (A1.7) to (419)
> =re+ (/2) Z:ﬂ [(&,")*+(8,")?] After (41.7) to (41.9)
-2 2 y,p(x,)=—2rag—r ZLI (a:*+0.») After (41.3)

—23y,8'(x) =~ 2708 —7 > (@ +bb) After (413)

22 ¢()¢"(x) =2racas’+r > (@aS+bh)  After (417) to (41.9)

Therefore, the average square residual is, if we use (41.5)
(41.12) D7 I, — (8(ma) + 8" @DP/r = P—nid+(as)+
Sl + @2

The mmxmum value of the right-hand side is (41. 6),if ag’'=a,"=b,"=..
=g; =by =0. The case of a,s, for r even, is adequately covered by
the proof.

Incidentally, (41.12) proves a corollary to our main theorem. Thus
if we require to approximate f(x) by a sum of sine- and cosine-functions
of frequency v<r/2, in which some of the frequencies are omitted (for
example, if =12, and we require approximation by a,+a; cos 3x+
by sin 3x-+b;5 sin 5x) the formulae (41.3) remain valid, and (41.6) also,
if only the coecfhients actually used are inserted (m our example,
st=¢2—(as?+b2+b?)/2). This may be proved by putting the co-
efficients of ¢* equal to the negative coefficients (41.3) of the terms
omitted, and applying (41.12).

The proof given here does not make use of differential calculus, at
the same time furnishing the corollary mentioned.

A2. Fourier series for continuous function, and harmonic coefficients
for equidisiani ordinates: Theorem II—A continuous function f(x)
between x=0 and 2r may be developed into an infinite Fourier series

(42.1) f(x) = Ao+ Z‘” (A, cos vx-+B, sin vx)

implying that f(x) complies with the conditions necessary for this develop-
ment. Furthermore, the r equidistant ordinates f(x,) =y, may, by
(41.3), be represented by the finite series ¢(x) (41.1), with harmonic
coefficients a,, b, (v<#/2). Then

(AZ.Z) ao=Ao+A,-+Az,+A3,+. .o
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v=A,+ A, +A4, o+ Ayt Api+. ..
(42.3) {G + + w—rt+ At

bv=Bv'_Br—v+Br+v_B2r—v+-Bzr+v— “ee

and, for r even,
(A2.4) ar/g=Af/z+Aar/2+A5r/2+- .-

Proof—In order to avoid excessive use of indices, the general proof
may be abstracted from the following example: Put r=12, v=35: then
x1=30°, x,=p30° cos (r—v)x,=cos (12—5)p30°=cos (p360°—p150°)
=cos pl50°=cos Sx,=cos vx,. Similarly, sin (r—v)x,= —sin vx,,
sin (r+v)x,=sin vx,. Therefore, the finite series ¢(x), with coefficients
given by (42.2) to (42.4), has, for x=x,, ordinates equal to those of {(x).

Take asan exampler=3andv=1. Then a1=4,+4d:+4:+4:4....
In the analysis of annual values, a wave A, of frequency 2 in 3 years,
that is, of period 1.5 years, can be mistaken for a wave 4, of frequency
1 in 3 years, that is, of period 3 years. The reason is obvious since cos %
and cos 2x have, for x=0°, 120°, and 240°, the same numerical values,
namely, 1, —0.5, and —0.5.

A3. Smoothing—From a continuous function f(x) with the period
2z, that is, f(x) =f(x+2x), a smoothed function g(x) may be derived
by ascribing to each abscissa x the average of f(x) for the interval

(x—B) to (x+B), that is, g(x) = I:ﬂ f(x+£)dé/28. Then the Fourier
series of g(x) is

(43.1) g)=Aot D (4, cos v+B, sin vx)(sin v8/v8)

If we plot a harmonic dial (section 6) for the vectors of sine-waves of
period 2r/v, that is for frequency v, this equation means that the vector
for g(x) has the same direction, or the same phase, as that for f(x), but
the amplitude in g(x) is reduced in the ratio sin v8/v8. This function
has been plotted (with 8=v8) in Figure 194. Negative sign of sin
v8/vB means here reversal of phase, for instance: Average of f(x) =
sin x for 8=3x/2, that is, when smoothed over intervals of length 3,
g(x) =—(2/3x) sin x.

Proof—Integrate each term of f(x) in (42.1): for instance, the integral
of cos v(x+§& over é=—B to +Bis (1/¥) (sin v (x+ ) —sin v (x—8))
=(1/¥) 2 sin v8 cos vx, and division by 28 gives the average (sin v8/v8)
cos vx,

Application—Hourly means in terrestrial magnetism (day=360°,
8=17.5°), monthly means (year=360°, 8=15°), etc. In practice, for
instance, the hourly means are submitted to harmonic analysis as if
they were equidistant values observed at the half-hours, and then the
harmonic amplitudes are corrected to “instantaneous values” by multi-
plication with »8/sin v8. This procedure neglects the possibility of
higher frequencies in f{x) than r/2, discussed in section A2: this is,
however, generally not serious because, if 7 is not too small, the waves
with frequencies above 7/2 are very much reduced by smoothing.

A4. Non-cyclic correction—The values of the ordinates for x=0
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and 2r may be yoand y,. For r ordinates, our form of harmonic analysis
(section 5 and section A1) considers only the ordinates y,; to ¥, giving
of course, ¢(0) =7y, instead of y,. If

(44.1) ¥ —¥o=d (non-cyclic change)

we can apply a non-cyclic correction by adding, before harmonic analysis,
an appropriate linear function, namely, adding to y, (p=0,1, ..., 7)
the value

(44.2) (d/2) —(dp/7)

If we submit these corrections to harmonic analysis, entering them for
¥, in (A1.3), we obtain harmonic coefficients which we may call Aa,
and Ab,. Actual calculation gives the value of Aao=—d/2r. In order
to obtain Aa, and Ab,, we can, because of (41.7), omit the constant
part (d/2) and consider only (—dp/r). Inserting this value in (41.3),
we obtain for Ab,, putting e=2xv/r

Ab=(2/r) D" (~d/r) psin pe
Ab, (—*/d) sin (¢/2)= D" _ 2psin pesin (¢/2)=
> 1p cos (p—1/2)e=p cos (a+1/2)¢}

= > i(e=1/2) cos (p=1/2)e—(p+1/2) cos (p+1/Det
[cos (p—1/2)€)/2+[cos (p+1/2)e]/2}

= 2:=1 $(p—1/2) cos (p—1/2) e—(p-+1/2) cos (p+1/2)e} +
cos (¢/2) 2:_1COS pe

By this rearrangement (known as ‘‘partial summation”), we can find
the sum. The last sum vanishes because of (41.7), and if we write out
the successive terms for p=1, 2, ..., r in the first sum we see that the
positive and negative parts cancel, and only two remain from the terms
with p=1 and p=r, namely, cos (¢/2)}/2—(r+1/2) cos (r+1/2)¢, or
—r cos (¢/2) [since re=2xv, and therefore cos (r+1/2)e=cos (e/2)].
Therefore, Ab,=(d/r) cot (¢/2). Aa, can in the same way, by multi-
plying by sin (¢/2), be found as —d/r.

The non-cyclic correction can therefore be applied in the following
simple way: Compute ay, ay, b, from the given ordinates y; to y, accord-
ing to (41.3), find the non-cyclic change d=2y,—y, add to aq, @, by the
corrections

(44.3) Aay=—d/2r, Aa,=—d/r, Ab,=-+(d/r) cot (zxv/r)

Then (ao+Aag) is the arithmetic mean (yo/2+y1+y2+...+¥r—1
+9,/2)/r, and (a,+ Aa,) and (b,+ Ab,) are the harmonic coefficients
of corrected ordinates obtained by adding to the given ordinates a linear
function which makes the ordinates for x=0 and x=2r equal.
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The general formulae (44.3) give, for r=24 and =12, the correc-
tions computed numerically by C. C. Ennis®” (whose C=yy,—y,= —d).

If the number r of the ordinates becomes infinite, the formulae (44.3)
become Aay= Aa,=0, and, because x/sin x becomes 1 for x==v/r
decreasing to 0, Ab,=d/xv. This is of course nothing but the coefficient
of the Fourier series for the continuous linear function (d/2r) (x—x),
into \lavhich the non-cyclic correction (44.2) is transformed by r=oo,
namely

(44.4) @/2x) (x—x)=(d/x) {sin x/1+sin 2x/2-4sin 3x/3+...
sin vx/v+. ..

This function is, by the way, discontinuous at x=0 and 2=, changing
suddenly by the amount d. Finite partial sums of (44.4) up to frequency
v exhibit therefore, near the discontinuity, the systematic lack of approxi-
mation known as Gibbs' phenomenons This is of little importance in
geophysical applications, except as a warning that abrupt changes in
the given function f(x) can only be represented by including sine-waves
of high frequency in the approximating series ¢(x).

A5. Harmonic analysis and correlation—The correlation-coefficients
between the given ordinates y, (or their deviations s,=(y,—a,) from
their arithmetic mean a,) and the ordinates of the cosine-wave cos vx,

or the sine-wave sin vx, are, respectively, a./(f+/2) and 5,/(¢{v2),
where ¢ is the standard deviation of the y, or z,. [Indeed, the numerator
of the correlation-coefficient is 2z, cos vx,, or because of (41.7) and
(A1.3}, 2y, cos vx,=(r/2)a,, and the denominator is the square root
of the product 22,2 (=r{?) times = cos? vx, (=7/2, because of (41.8)).]
Harmonic analysis can therefore be conceived as computation of correla-
tion-coefficients.

Another relation to correlation can be seen in the formulae used in
deriving (41.12), because they can be interpreted for the calculation of
the correlation-coefficient of two sets of ordinates ¢(x,) and ¢*(x,) from
the respective harmonic coefficients.

A6. The method of exhaustion—From (A43.1), it follows that the
smoothed function g(x) does not contain any periods p for which sin
v8=0, that is, »8 is an entire multiple mx of =, or, since the length of the
period p =2x/v, no periods of lengths p=28/m, for which the smoothing
interval 28 is an entire multiple mp; adjacent periods are weakened.
If, therefore, we form the difference d(x)=f(x) —g(x), it contains the
sine-waves of these periods in full intensity, and adjacent periods in
nearly full intensity. That is, in d(x), the periods with longer periods
than 28 are suppressed in favor of the shorter periods, This process
and several similar processes like differentiation or integration, have been
recommended therefore in order to help finding periodicities. However,
though they may be useful for reconnaissance work and illustrative
purposes,” they do not lend themselves readily to the application of the
statistical tests for persistence, etc.

d(x) may again be smoothed for a longer interval 85, and this succes-
sive smoothing and difference-formation—a process which could be
150 e e B T0L (10391, Sobuinia bmd. Congr. o Sotits Sevantce, 468

471 (1933); C.-R. Assemblée Lisbonne 1933, Union G&od. Géophys. Internat., Ass. Mag. Electr. Terr.
Bull. No. 9, 292-295 (1934).



58 J. BARTELS [Vot. 40, No. 1]

called method of exhaustion—has often been used as a substitute for
harmonic analysis, not only because of the apparent saving of computing-
labor but also because it has been thought to be independent of sine-
waves (section 40). The method leads, however, in a roundabout way,
to practically the same results as harmonic analysis, only obscuring
its statistical aspect. The criticism® directed by H. H. Turner against
an analysis of the sunspot-numbers, made by H. Kimura using the
exhaustion-method, applies to a number of other papers.

A7. Refined computation of a persisient wave—As soon as the length
of the period of a persistent wave is definitely known, its amplitude and
phase can be obtained with an accuracy determined by the effective
expectancy (section 36) and the number N of periods contained in the
interval T of observation. Since, in general, NV cannot be enlarged at
will, the only possibility of increasing the accuracy is to lower the
effective expectancy, for instance, by selecting, out of the whole interval
T, suitable partial intervals with relatively smaller unperiodic variations.
This has been done successfully in the computation of the lunar semi-
diurnal waves in atmospheric pressure# ®; fortunately, the error-esti-
mates in the former paper* are based on monthly averages of the diurnal
variation and need therefore not be revised after the effect of quasi-
persistence has been detected. Of course, the selection of ‘‘quiet inter-
vals’’ opens pitfalls which must be recognized, for instance, the curvature-
effect (section 16). Particularly erroneous would be an attempt to
compute an average vector from the single vectors with smaller ampli-
tudes alone, for instance, from those in Figure 2 falling within the
probable-error circle, because that would certainly lead to a systematic
underestimate of the amplitude. But it would probably be admissible
to compute the lunar 12-hour wave in pressure only from those days
which have a small 24-hour wave. S. Chapman has proposed a scheme
for a systematic reduction of the expectancy,® aiming at a corresponding
increase of the accuracy with which the average sine-wave is obtained.

AS8. Persisient waves with pertodically changing amplitudes—The
following formula is easily proved by applying (41.11)

(48.1) (¢c+2k cos px) sin vx= ¢ sin vx+k sin (v+p) x+k& sin (v—p)x

A wave with periodically changing amplitude is therefore equivalent to
the sum of three persistent waves of different frequencies. This formula
is much used in tidal theory, and can easily be demonstrated in the
harmonic dial for frequency v (two vectors of amplitude %, revolving
with frequency p in opposite directions around the end-point of the
amplitude ¢).

Example—Terrestrial-magnetic activity, wu;-measure, 6-monthly
wave,® amplitude varying in 11i-year sunspot-cycle. Time £, origin at
the beginning of a sunspot-year, increasing by 2z during one year. Then
the 6-monthly wave is expressed by

[6.5+2.6 cos (¢/11)] sin (26+261°) =6.5 sin (2+261°)
+1.3 sin (264 (/1) +261°)+1.3 sin (26— (¢/11)+261°)

uLondon, Mon. Not. R. Astr. Soc., 73, 543-552 (1913).
#Zs. Geophysik, 6, 396-420 (1930).



GEOPHYSICAL AND COSMICAL PERIODICITIES 59

The frequencies (per year) of these terms are 2, 23/11, and 21/11, with
periods 6.00, 5.74, and 6.29 months, respectively. Ordinary periodogram-
analysis of a series of many years would therefore yield, besides the main
6-monthly wave, two waves of about one-fifth of its amplitude, and
periods of 5.74 and 6.29 months; but this result differs only in form, not
in physical content, from the statement of a 6-monthly wave of con-
stant phase but variable amplitude.

Other examples are given by the case of solar diurnal waves with
seasonally changing amplitudes (for instance, atmospheric temperature);
the frequency of the solar diurnal wave is 365 per year and the frequency
of the change of amplitude is 1 per year, so that the additional terms in
(A48.1) have the frequencies 366 and 364 per year. The former has the
period of a sidereal day, and this purely formal result has often been
mistaken as a proof for influences of stars, etc.

SuMMARY

(a) Every discussion of the physical causes of periodicities in geo-
physical and cosmical phenomena must be preceded by statistical
studies testing the significance and reliability of these periodicities.
This statistical viewpoint in the application of harmonic analysis was
introduced by A. Schuster. The present paper gives, on the basis of the
theory of probability, a new aspect and an improvement of these methods,
generally called periodogram-analysis, or investigation of hidden perio-
dicities. The scope of these results is not restricted to sine-waves.

() Following an introductory review of literature, harmonic analysis
is discussed as a mathematical representation of time-functions, using
vector-representation of sine-waves in the harmonic dial and the folding
process as a graphical illustration of harmonic analysis. The degree of
approximation between the given function and the sum of sine-waves is
determined by the standard deviation of the residuals. The ordinary
periodogram is introduced, and Pollak’s periodogram for the inter-
national magnetic character-figure C is discussed.

(¢) The generalized harmonic dial is introduced in order to prepare
the transition from sine-waves to periodicities of other form. The nature
of the non-cyclic variation and the selection- or curvature-eftect, which
is often misinterpreted, are discussed.

(d) The statistical laws for the random walk are described and
applied, in various forms, to the harmonic dial and the folding process,
using the conception of the summation-dial, expectancy ¢, and probability
of chance (« test, 1/4/n law). For random fluctuations, the expectancy
does)not depend on the length of the period (equipartition of the vari-
ance).

(¢) For geophysical phenomena, the expectancy depends definitely
on the length of the period. This fact, often overlooked, is of decisive
influence on tests for the reality of persistent periodicities, as demon-
strated in several cases.

(f) Quasi-persistence, exhibited in limited sequences of successive
waves, is described as a common phenomenon in geophysics and is
measured by an index o, the equivalent length of sequences. It affects
the x-test for persistent waves in so far as not the ordinary expectancy ¢

but the effective expectancy ¢1/¢ must be used. Because of interference,
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adjacent periods are infected by quasi-persistence. Intermittent quasi-
persistence indicates sub-periods of longer periods. In comparison with
random conditions, and with respect to tests for persistence as well as
the uncertainty of average sine-waves derived from a large material,
quasi-persistence acts like a reduction of the number N of available ob-
servations to the effective number N/g.

(g) The methods for testing geophysical phenomena with respect
to periodicities are generalized for waves of other form than sine-waves.
Typical examples are given for the characteristic, a diagram demon-
strating, for an assumed length of period, in which way this period is
contained in the observational material.

(#) In the appendix, the formulae for harmonic analysis of equidistant
ordinates are derived, including the effects of smoothing and a new
general formula for non-cyclic correction. The relations to correlation,
the methods of exhaustion, and persistent waves with periodically
changing amplitudes are discussed.
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