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Comparing HMI and WSO Polar Field Data
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WSO: The pole-most aperture measures the line-

of-sight field between about 55° and the poles.
Each 10 days the usable daily polar field
measurements in a centered 30-day window are
averaged. A 20nHz low pass filter eliminates
yearly geometric projection effects.

HMI: The raw (12-hour) data have been averaged
into the same windows as WSQO’s and reduced to
the WSO scale taking saturation (the 1.8) and

projection (the COS(72°)) into account.

HMI: Line-of-sight magnetic observations

(Bl above 60° lat.) at 720s cadence are
converted to radial field (Br), under the
assumption that the actual field vector is
radial. Twice-per-day values are calculated
as the mean weighted by de-projected
Image pixel areas for each latitudinal bin
within +45-deg longitude. A 27.2-day
running average is then performed.

Good agreement ! 2




Prediction of Solar Cycles
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We have argued that the ‘poloidal’ field in the years leading up to solar minimum is
a good proxy for the size of the next cycle (SN, DM [WSO scale uT]). The
successful prediction of Cycle 24 seems to bear that out, as well as the observed
corroboration from previous cycles. As a measure of the poloidal field we used the
average ‘Dipole Moment’, i.e. the difference, DM, between the fields at the North
pole and the South pole. The 20nHz filtered WSO DM matches well the HMI DM
on the WSO scale (linear correlation at right) using the same 30-day window as
WSO. So, we can extend WSO using HMI into the future as needed. This is good!
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20 nHz Filtered WSO Polar Fields
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How Does That
Compare with
Earlier Cycles?

Preliminarily it looks like a repeat of
Cycle 24, or at least not any smaller.

That the new polar fields seem to
grow a little slower could just be that

the old ones were smaller than in
earlier cycles.




Poleward Surges of Magnetic Flux
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Mordvinov et al. 2016:
SOLIS/NSO data

“We studied the Sun’s

j polar field reversal in the
current cycle. It was very
asynchronous due to the
North—South asymmetry

- =g of sunspot activity. We

demonstrate the well-

. defined surges of trailing

~ polarities that reached

the Sun’s poles and led

to the polar field

- reversals. However, the

Latitude

regular polar-field build-
 up was disturbed by
polarities which [maybe]
resulted from violations
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See the article at ADS: http://adsabs.harvard.edu/abs/2016arXiv160202460M S



Fine Structure of HMI Polar Fields

FFT of South Polar Fields
HMI 2010-2016
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FFT of North Polar Fields
HMI 2010-2016
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The recurrence peak is at
34-35 days rather than at
the Carrington synodic
period

Strong rotational signal
especially when the very
pole is best seen
(red=North, in Sept;
blue=South, in March)

The recurrence peak is at
34-35 days rather than at
the Carrington synodic
period



17 GHz Microwave
Chromospheric
Emission

Nobeyama
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Coronal Holes at the limbs are bright in
17GHz emission mapping out magnetic field
elements
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Some More
Examples

The emission is from
optically thin layers
(temperature ~10,000K)
so on the disk we just
see through them. At the
limb we integrate along
the line of sight and pick
up the emission.

Strong at Minimum:
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Polar Emissions wax and wane over the cycle. Note annual variation 9



Signed Excess Tg Above 10,800K
I\/Iatches WSO Polar Magnetic Field

Polar Field Proxy from Nobeyama 17 GHz Brightness Temperature
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Also shows strong rotational modulation 10



Strong Rotational Modulation

K Mobeyama 17 GHz Polar Brightness Temperature
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Rotational Period: a 32-day Signal
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Polar Fields and 17GHz EmISSION  Tsunetaetal.
Show the Same Landscape AR

vertically
Polar landscape kG field oriented
magnetic flux
T e R T e Sai T apmag v TR tubes with
' field strength
as strong as
1~ 1.2kG
are scattered
between 70°
and 90°and
all the fluxes
have the
same sign
consistent
with the
global polar
field.




