Variation of EUV Matches thafmgf

Y
>\

the Solar Magnetic Field and the
Implication for Climate Research

2016-11-15

Leif Svalgaard, Xudong Sun

Stanford University

15 Nov. 2016
HAO, Boulder, CO




Outline

Recent EUV, Magnetic Flux, and Solar
Microwave flux records

Deriving EUV [etc] from Geomagnetic
Variations

Deriving Solar Wind Magnetic Field from
Geomagnetism and Sunspots

Total Solar Irradiance, Magnetic Fields,
and the Climate Data Record

Calibration of TSI records



Instrument Response (A/W/m2)

Sources of EUV Data: SEM, SEE, EVE
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This reaction creates and maintains

the conducting E-region of the
lonosphere (at ~105 km altitude)

Integrated EUV Flux below 103 nm

EUV
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The detectors on the TIMED and SDO
satellites agree well until the failure of
the high-energy detector on EVE in
2014. We can still scale to earlier levels
[open symbols]. 2016 not yet correctedl.



Creating an EUV (<103 nm) Composite

Analysis of EUV (below 103 nm) Measurements
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SEE and EVE agree nicely and we can form a composite (SEE,EVE) of them.

SEM is on a different scale, but we can convert that scale to the scale of
(SEE,EVE). The scale factor [green line] shows what to scale SEM with to

match (SEE,EVE) [SEM*, upper green curve], to get a composite of all three

(SEM*,SEE,EVE) covering 1996-2016, in particular the two minima in 1996
and 2008.
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Magnetic Flux from MDI and HMI
Match F10.7 Microwave Flux

F10.7 Microwave Flux Matches Unsigned LOS Magnetic Flux on Solar Disk
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2002 2009
Disk Total Magnetic Flux vs. EUV
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There is a ‘basal’ level at solar minima. Is this the case at every minimum?

6



EUV Composite Matches F10.7
and Sunspot Numbers

EUV from F10.7 Flux o EUV from SSN S | | t th
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The Microwave Flux Record
Extends 70 years In the Past

Microwave Flux (1951 Nov. - 2013 June) & Sunspot Number
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The microwave flux comes from the Transition Region



The Japanese and Canadian
Microwave Records agree
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F10.7 Microwave Flux at 1 AU (Canadian Observations)
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Even Ground-based Observations
[SOLIS] Match F10.7 Nicely, but ...

Disk Average Unsigned Magnetic Field from SOLIS and MDI-HMI vs. F10.7 Flux
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Magnetic Flux from MWO Tracks
MDI-HMI and the F10.7 Flux
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MWO magnetic flux from digital magnetograms can be put on the MDI-HMI
scale and, just as MDI-HMI, tracks the F10.7 flux very well.




Magnetic Flux back to 1976

Disk Total Unsigned Magnetic Flux (LOS)
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What do we have so far? #1

We can construct an observed EUV composite
back to 1996

We can construct an observed Magnetic Flux
composite back to 1976

The EUV matches the Magnetic Flux

The Microwave Flux [1-10 GHz] matches the
EUV, Magnetic Flux, and Sunspot Number

There Is no good evidence of activity at solar
minima being different between minima the past
/0 years, except for tiny residual sunspot-effects
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The Diurnal Variation of the
Dlrectlon of the Magnetic Needle

onal Geomagnetic Service, BGS, Edinburgh
GDAS 1 g- e Data Hartland lat: 50.995N lon: 355.516E
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7401 1 George Graham [London]
=L 1 discovered [1722] that the
| | geomagnetic field varied
660 | 1 during the day in a regular
e#0f ... 1 manner
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Even Rather Simple Instruments
Could Readily Show the Variation

John Canton [1759] made
~4000 observations of the
Declination on 603 days

Coulomb

1776
Replicas
show that it
was possible
to measure
the variation

John Canton
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Zenith Angle Dependence Confirmed
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Solar Cycle and Zenith Angle Control

Diurnal Variation, rY, of Geomagnetic East Component nT
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The Diurnal Variation of Declination
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Balfour Stewart, 1882,
Encyclopedia Britannica, 9" Ed.

“The various speculations on the cause of
these phenomena [dally variation of the
geomagnetic field have ranged over the
whole field of likely explanations. (1) [...],
(2) It has been imagined that convection
currents established by the sun’s heating
iInfluence in the upper regions of the
atmosphere are to be regarded as
conductors moving across lines of
magnetic force, and are thus the
vehicle of electric currents which act
upon the magnet, (3)[...], (4) [...].

Balfour Stewart
1828-1887

“there seems to be
grounds for imagining
that their conductivity
may be much greater
than has hitherto
been supposed.”
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Solar Solar
wind [€| Mmagnetism : Number
* |
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Magnetic Field N
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Observations

Microwave
Observations
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Determining
EUV Flux
from the
magnetic
effect of
dynamo

currents in

the E-region
of the
lonosphere

The physics
of the boxes
is generally
well-known

We shall
determine
the EUV
from the
magnetic
effects
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North Pole

Equaé —

Geomagnetic
North X
rY
< > / South Pole
\ Morning /‘
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_ EastY
Y = H sin(D)

_ A current system in the ionosphere is created
dY =H cos(D) dD Forsmalldd g maintained by solar EUV radiation

The magnetic effect of this system was what George Graham discovered
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Mormalization Factor for r¥Y

The Magnetic Signal |
at Midlatitudes .
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The effect in the Y-component is rather uniform for latitudes between 20O and 602‘;



Observed Diurnal Ranges of the Geomagnetic East Component since 1840

Range of Diurnal Variation of East Component for all Stations 129 of them
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We plot the yearly average range to remove the effect of changing solar zenith
angle through the seasons. A slight normalization for latitude and underground
conductivity has been performed. The blue curve shows the number of stations
24



Electron Density due to EUV

<102.7 nm The conductivity at a given height is proportional
F, to the electron number density Ne. In the dynamo
IDE + hv — 0OF + &~ region the ionospheric plasma is largely in
< photochemical equilibrium. The dominant plasma
i species is O*,, which is produced by photo
D;_T +e =04+0 ionization at a rate J (s™') and lost through
recombination with electrons at a rate a (s™),
producing the Airglow.

The rate of change of the number of ions N,, dN/dt and in the number of electrons
N., dN_/dt are given by dN/dt = J cos(x) - a N; N, and dN_./dt = J cos(x) - a N N.,.
Because the Zenith angle y changes slowly we have a quasi steady-state, in
which there is no net electric charge, so N, = N, = N. In a steady-state dN/dt = O,
so the equations can be written 0 = J cos(x) - a N2, and so finally

N =V a? cos(x))

Since the conductivity, 2, depends on the number of electrons N, we expect that 2
scales with the square root V(J) of the overhead EUV flux with A < 102.7 nm. 25




Theory tells us that the conductivity [and thus rY] should vary
as the square root of the EUV [and F10.7] flux, and so it does:

—
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Reconstructions of EUV and F10.7

Reconstruction of F10.7 Flux and EUV < 103 nm Flux
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Note the constant basal level at every solar minimum




Lyman Alpha, Mg Il, and Ca Il also
Follow the Magnetic Field and EUV

Lyman Alpha and EUV < 103 nm
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The Ca Il Index Shows the Same

Basal Floor at Minima as

and EUV

Call Index (393 nm) and Range of Diurnal Variation of Geomagnetic Y

0.098 70
Call 2 ry
0.093 4 - v ; L deo
a- i o,
0.088 - .. ‘:_.- .n.“ o ¥ '-I:‘ Ei Y I " 50
. wi 1 S S .. nd N T 40
0083 4 _____ o LA . S S . 0 A A . e S
+ 30
0.078 - 1 50
0.073 - 1
Year 10
0.068 . | . | . | . ; , , 0
1900 1920 1940 1960 1980 2000 2020
The long-term Ca Il Index is constructed from Kodaikanal, Sacramento Peak,
and SOLIS/ISS data [Luca Bertello, NSO]. Data from Mount Wilson | ] has

been scaled to the Kodaikanal series. Calibration of the old spectroheliograms

is a difficult and on-going task.

Bottom Line: All our solar indices show that solar activity [magnetic field] is

29

constant at every solar minimum. [except for tiny SSN residual variation]




This Observational Fact is Not New

THE AMERICAN JOURNAL OF SCIENCE AND ARTS. Second Series

ART. XVI.-Comparison of the mean daily range of the Magnetic Declination,
with the number of Auroras observed each year, and the extent of the black
Spots on the surface of the Sun, by ELIAS LOOMIS, Professor of Natural
Philosophy in Yale College. Vol. L, N0.149. Sept. , pg 160.

This comparison seems to warrant the following propositions :

1. A diurnal inequality of the magnetic declination, amount-
ing at Prague to about six minutes, i1s independent of the
changes in the sun’s surface from year to year.

2. The excess of the diurnal inequalityabove six minutes as
observed at Prague, is almost exactly proportional to the amount
of spotted surface upon the sun, and may therefore be inferred

to be produced by this disturbance of the sun’s surface, or
both disturbances may be ascribed to a common cause.

19t century ‘Inequality’ = deviation from [i.e. ‘not equal to’] the mean 30



What do we have so far? #2

The Regular Diurnal Variation of the Geomagnetic Field depends on
the Solar Zenith angle and Solar Activity, e.g. as given by the
Sunspot Number (Wolf, Gautier, 1852) and has been widely
observed at many geomagnetic observatories since its discovery in
1722

The Amplitude of the Diurnal Variation is strictly proportional to the
of the EUV [and F10.7] Flux

We can reconstruct EUV and F10.7 [and similar indices like Mg Il &
Ca ll] back to the 1740s, and thus also the Total Magnetic Flux
http://www.leif.org/research/Reconstruction-of-Solar-EUV-Flux-1740-2015.pdf

All our solar indices show that solar activity [magnetic field] is nearly
constant at every solar minimum [apart from tiny residuals] for the
past 275 years

The solar cycle variations ride on top of this constant background
[as already Loomis knew in 1870]

31
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Electric Current Systems in Geospace

Different Current Systems&= Different Magnetic Effects _~ - MAGNETOSPHERIC FIELD |
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We can now invert the Solar Wind — Oppositely charged particles trapped in the

Magnetosphere relationships... Vap Allgn Belts drift in opposi“te .directions 33
giving rise to a net westward ‘Ring Current’.



‘Different Strokes for Different Folks’

* The key to using geomagnetism to say
something about the sun is the realization
that geomagnetic ‘indices’ can be constructed
that

, SO can be used to
disentangle the various causes and effects

* |n the last decade of research this insight
(e.g. Svalgaard et al. 2003) has been put to
extensive use and a consensus has emerged
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The IDV Geomagnetic Index

Since the daily variation is fairly regular from day to
day we can eliminate it by considering the difference
between the fields on consecutive days

Further suppression of the daily variation can be
achieved by working only with the field during night
hours or the average over a whole day

That led to the definition of the Interdiurnal Variability
Index [IDV] as the

IDV [from several stations] is a Global index
IDV is a modern version of the u-measure (Bartels)

35



Examples of High Solar Wind B
and Geomagnetic Activity A
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Relationship between HMF B and IDV

1BT HMF B and Interdiurnal Variability 1DV 0 0 HMF B as a Function of IDV
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Also holds on timescales shorter than one year 37




Applying the relationship we can reconstruct

HMF magnetic field B with Confidence:

InterDiurnal Variability Index IDV and Reconstructed Heliospheric Magnetic Field B
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Puttlng it All Together (Real Progress')

| Lockwood et al. 2015  ‘Open’ solar flux |
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Very good agreement between different reconstructions.
Full Disclosure: There is still a rear-guard debate about the early record®®



The Debate about ‘Doubling’
(Independent of sunspot number?)
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Lockwood, M., R. Stamper, and M. N. Wild (1999), A doubling of the Sun’s coronal
magnetic field during the past 100 years, Nature, 399(6735), 437, doi:10.1038/20867 40



HMF B related to Sunspot Number

1:}4MF Strength B as a Function of SQRT(Sunspot Number) | The main sources of the equatoria|

components of the Sun’s large-scale
magnetic field are large active regions.
If these emerge at random longitudes,
their net equatorial dipole moment will
scale as the square root of their

B nT

“3‘ : v S number. Thus their contribution to the
. Obsenved Inferred average HMF strength will tend to
1963-2013 16845-2013 . SSN]'/Z . W d
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0 — | —  |Sheeley [2003]; Wang et al. [2005]).
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Interchange

Opening Reconnection

Disconnection

Magnetic Flux Balance in the Heliosphere
Schwadron et al. ApJ 722, L132, 2010

Time
A set of parameters describe the time scales and magnetic fluxes involved 42

Closed loop CMEs
connecting with
polar flux reduces
the latter, moving it
to lower latitudes

CMEs eject loops
that open up and

increase the HMF
flux and increase

polar holes

Disconnection leads
to removal of HMF
flux and shrinkage
of polar holes



Comparing Theory with Observations

The theory posits two components of the HMF: the CME associated magnetic
flux ¢cme from the ejecta and the open magnetic flux @y of the steady solar
wind. The time derivative of the CME-associated fluxd,; is written as

€j

dt

Black is Official Sunspot
Number SSN from SIDC

Red is B calculated from

-  their theory. Green is B
. = deduced from 1°Be data
3
. 2 — by McCracken 2007
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Comparison of HMF Reconstructions

BnT

Brotal (Schwadron et al. theory)
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Schwadron
et al. HMF B
Model (2010)
with my set of
parameters:
good fit back

to 1750

von Neumann: “with
four parameters | can
fit an elephant, and
with five | can make
him wiggle his trunk”

This model has about
eight parameters...

http://www.leif.org/
research/Goelzer-
Paper-2014.pdf 44



Network Field and Solar Wind Field

Range rY and HMF B at 1 AU
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The magnetic field in the solar wind (the Heliosphere) ultimately arises from the magnetic field
on the solar surface filtered through the corona, and one would expect an approximate
relationship between the network field (EUV and rY) and the Heliospheric field, as observed.

For both proxies we see that there is a constant ‘floor’ upon which
the magnetic flux ‘rides’. | see no good reason that the same floor

should not be present at all times, even during a Grand Minimum.
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Red Flash => ‘Burning Prairie’ =>
Network Magnetism

Figure 1 An early drawing of the “burning prairie” appearance of the Sun’s limb made by C.A. Young, on
25 July 1872. All but the few longest individual radial structures are spicules.

It 1s now well known (see, e.g., the overview in Foukal, 2004) that the spicule jets move
upward along magnetic field lines rooted in the photosphere outside of sunspots. Thus the
observation of the red flash produced by the spicules requires the presence of widespread
solar magnetic fields. Historical records of solar eclipse observations provide the first known
iii:l of the red flash, observed by Stannyan at Bern, Switzerland, during the eclipse of

foung, 1883). The second observation, at the 1715 eclipse in England, was made by,
among others, Edmund Halley —the Astronomer Royal. These first observations of the red

flash imply that a significant level of solar magnetism must have existed even when very few
spots were observed, during the latter part of the Maunder Minimum.

Foukal & Eddy, Solar Phys. 2007, 245, 247-249
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What do we have so far? #3

Consensus reconstruction of Heliospheric magnetic field
B for centuries past

HMF B also has a ‘floor’ at every solar minimum,
probably including the Maunder Minimum, and certainly
the Dalton and modern Minima.

The solar cycle variation of B above the floor is probably
controlled by the CME rate [varying with Square Root of
the sunspot number]

There is a good relationship between HMF B and the
Network Magnetic Field [EUV from diurnal geomagnetic
variation, rY]

In particular, there is no clear secular increase in solar
activity the past 300 years

a7



Outline

Recent EUV, Magnetic Flux, and Solar
Microwave flux records

Deriving EUV [etc] from Geomagnetic
Variations

Deriving Solar Wind Magnetic Field from
Geomagnetism and Sunspots

Total Solar Irradiance, Magnetic Fields,
and the Climate Data Record

Calibration of TSI records
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The Official TSI Climate Data Record (CDR)

Yearly Average TSI from NRL2 Solar Irradiance Model (Coddington et al. 2016)
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“The data record, which is part of the National Oceanic and Atmospheric
Administration’s (NOAA) Climate Data Record (CDR) program, provides a
robust, sustainable, and scientifically defensible record of solar irradiance
that is of sufficient length, consistency, and continuity for use in studies of
climate variability and climate change on multiple time scales and for user
groups spanning climate modeling, remote sensing, and natural resource and

renewable energy industries.” [LASP, NRL: http://dx.doi.org/10.1175/BAMS-D-14-00265.1] 49




Shaky Justification for Using a
‘Background’ Component in TSI

1361 8 The "Official' NOAA CDR Builds on the Obsolete Hoyt & Schatten Group Sunspot Number

1361.6 { T H&S

1361.4 { Wim? TSI =1360 +0.0052 GSN + 0.0083 <GSN:>,,

1361.2 A NOAA 2016 Climate Data Record ]
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“A third component of irradiance variability is an assumed long-term facular contribution that is speculated
(Solanki et al. 2013) to produce the secular irradiance change underlying the solar activity cycle on historical
time scales (Obsolete H&S prior to 1978). According to simulations from a magnetic flux transport model
(with variable meridional flow) of eruption, transport, and accumulation of magnetic flux on the sun’s surface
since 1617, a small accumulation of total magnetic flux and possibly the rate of emergence of small bipolar
magnetic regions on the quiet sun (called ephemeral regions) produce a net increase in facular brightness.”

It seems to me that all that advanced [?] physics and sophisticated [?] modeling only
added a bit of noise to a simple linear combination of H&S’s GSN and <GSN>,,,
even failing for modeling the recent instrumental spacecraft record.
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TSI [Wm™2]

Variation of the Photospheric Magnetic Field
Causes the Variation of TSI [Total Solar Irradiance]

K. L. Yeo et al.: Reconstruction of total and spectral solar irradiance (1974-2013)
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“The results of this work strengthen support for the hypothesis that variation in
solar irradiance on timescales greater than a day is driven by photospheric

magnetic activity”. Yeo et al., A&A 570, A85 (2014)
51



Solar Indices Mapped Linearly to TSI

Solar Indices Mapped to TSI
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The TSI record is that by the Belgian Meteorological Institute [RMIB]
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The Basal EUV and Magnetic Flux Records Do
Not Support the NOAA Climate Data Record, CDR

Failure of the Latest (Aug. 2016) NOAA Climate Data TSI Record

1361.8
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, With Basal - 13617
PEE Floor
: (This Talk)
- 1361.2
\
1360.8 1 'Official' . | - 1360.7
Climate u -
10 Data i
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T Background = 1360 + 0.0083 * <GSN 314,
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1. One can fit EUV to the instrumental part of NOAA’s Climate Data Record
2: There is no support for a variable ‘Background’ (pink curve) and surely not

3: if constructed from the obsolete Hoyt & Schatten Group Sunspot Number

4: which the CDR didn’t even use during the ‘instrumental era’
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Claus Frohlich Lined up TSIs as a Function
of the Square Root of the Sunspot Number
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Using Frohlich’s Relationship

Reconstructions of TSI
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What do we have so far? #4

There is no support for a variable TSI
‘Background’

The current Climate Data Record [CDR] is not
helpful to Climate Research

The CDR should not be based on obsolete solar
activity data

| expect strong ‘push-back’ from entrenched
‘settled science’, but urge [at least] the solar
community to be honest about the issue
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Outline

Recent EUV, Magnetic Flux, and Solar
Microwave flux records

Deriving EUV [etc] from Geomagnetic
Variations

Deriving Solar Wind Magnetic Field from
Geomagnetism and Sunspots

Total Solar Irradiance, Magnetic Fields,
and the Climate Data Record

Problematic Calibration of TSI records
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TSI [Wm™?]

Obs-Model

The Yeo Model et al. (2014)
Compared to Observations

1362.0¢
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0.4}
0.2F

0.0

—0.27

Yeo et al.,

P~

A&A 570, A85 (2014)

The Yeo et al. model reconstructs TSI (
magnetograms. TIM has the least noise but seems to be drifting (upwards)

) from MDI and HMI
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SORCE TIM Compared to Our
Other Solar Indicators

Solar Indices Mapped to TSI

SORCE/TIM TSI Drifting
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DeWitte and Nevens suggest a
Similar Drift of SORCE/TIM

Difference of TIM/SORCE with independent composite
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Figure 3. Difference of TIM/SORCE to independent composite (average) of
DIARAD/VIRGO, PMO6B/VIRGO, and ACRIM3, and linear fit to this

difference.
DeWitte, S. & Nevens, S.: ApJ, 830, 25 (2016)
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T8I no longer following the sunspot number? TS I
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How Stable are the TSI Measurements?

FFT of TSI Difference SORCE/TIM and TCTE

Since 2015.5
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Conclusion(s)

We can reconstruct with some confidence the
EUV flux [and its proxy F10.7] back to the 1740s

The fluxes follow the total magnetic flux over the
solar disk, which means that the latter can also
be derived since then

The solar wind magnetic flux can also be
Inferred and matches well the solar surface
magnetic flux

There is no ‘Background’ variation of TSI and the
current NOAA [and NASA] Climate Data
Records are not correct

Possible problems with the calibration of TSI

records he End 63



Abstract

A composite record of the total unsigned magnetic (line-of-sight) flux over the solar disk can be
constructed from spacecraft measurements by SOHO-MDI and SDO-HMI complemented by
ground-based measurements by SOLIS covering the period 1996-2016, covering the two solar
mimina in 1996 and 2009 and the two solar maxima in 2001 and 2014. A composite record of
solar EUV from SOHO-SEM, TIMED-SEE, and SDO-EVE covering the same period is very well
correlated with the magnetic record (R2=0.96), both for monthly means. The magnetic flux and
EUV [and the sunspot number] are extremely well correlated with the F10.7 microwave flux,
even on a daily basis. The tight correlations extend to other solar indices (Mg Il, Ca Il) reaching
further back in time. Solar EUV creates and maintains the ionosphere. The conducting E-region
[at ~105 km altitude] supports an electric current by a dynamo process due to thermal winds
moving the conducting region across the Earth’s magnetic field. The resulting current has an
easily observable magnetic effect at ground level, maintaining a diurnal variation of the
geomagnetic field [discovered by Graham in 1722]. Data on this variation go back to the 1740s
[with good coverage back to 1840] and permit reconstruction of EUV [and proxies, e.g. F10.7]
back that far. We confirm that the EUV [and hence the solar magnetic field] relaxes to the same
[apart from tiny residuals] level at every solar minimum. Since the variation of Total Solar
Irradiance [TSI] is controlled by the magnetic field, the reconstruction of EUV does not support
a varying ‘background’ on which the solar cycle variation of TSI rides, strongly suggesting that
the Climate Data Records advocated by NOAA and NASA are not correct before the space
age. Similarly, the reconstruction does not support the constancy of the calibration of the
SORCE/TIM TSl-record since 2003, but rather indicates an upward drift, suggesting an over-
correction for sensor degradations. 64



