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Instrument Response (A/W/m2)

Sources of EUV Data: SEM, SEE, EVE
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This reaction creates and maintains

the conducting E-region of the
lonosphere (at ~105 km altitude)

Integrated EUV Flux below 103 nm
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The detectors on the TIMED and SDO
satellites agree well until the failure of
the high-energy detector on EVE in
2014. We can still scale to earlier levels
[open symbols] 2



Creating an EUV (<103 nm) Composite

Analysis of EUV (below 103 nm) Measurements
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SEE and EVE agree nicely and we can form a composite (SEE,EVE) of them.

SEM is on a different scale, but we can convert that scale to the scale of
(SEE,EVE). The scale factor [green line] shows what to scale SEM with to
match (SEE,EVE) [SEM*. upper green curve], to get a composite of all three
(SEM*,SEE,EVE) covering 1996-2016, in particular the two minima in 1996
and 2008.
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EUV Composite Matches F10.7
and Sunspot Numbers
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Magnetic Flux from MDI and HMI
Match F10.7 Microwave Flux

F10.7 Microwave Flux Matches Unsigned LOS Magnetic Flux on Solar Disk
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Even Ground-based Observations
[SOLIS] Match F10.7 Nicely, but ...

Disk Average Unsigned Magnetic Field from SOLIS and MDI-HMI vs. F10.7 Flux
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2002 2009
Disk Total Magnetic Flux vs. EUV
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There is a ‘basal’ level at solar minima. Is this the case at every minimum?
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Determining EUV Flux from |
Geomagnetism (Graham, 1722)
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The Diurnal Variation [rY=H cos(D) rD]
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Observed Diurnal Ranges of the Geomagnetic East Component since 1840

129 of them

Range of Diurnal Variation of East Component for all Stations
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We plot the yearly average range to remove the effect of changing solar zenith

angle through the seasons. A slight normalization for latitude and underground

conductivity has been performed. The blue curve shows the number of stations
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Theory tells us that the conductivity [and thus rY] should vary
as the square root of the EUV [and F10.7] flux, and so it does:

—

Range rY as a Function of SQRT(F10.7) < o Range rY as a Function of SQRT(EUV)
7a
&0 - rY Yearly Means go 4 TY Yearly Means
nT 1996-2014 nT 1996-2014
50 A 50
071 Since 1996 “71  Since 1996
30 A 30 4
1 y = 3.9702x | y = 21.542x
20 =2 = 0.9629 20 R? = 0.9503
10 1 SQRT(F10.7) 10 1 SQRT(EUV mW/m?)
U T T T T T T T U T T T T T
0 2 4 B 8 10 12 14 16 0.0 0.5 1.0 1.5 2.0 25 3.0
o Range rY as a Function of SQRT{F10.7) J Group Number vs. SQRT(EUV)
10
Yearhy Means 1947-2014 /
60 r:_r 9 1 Group Yearly Means
50 7 -
A0 Since 1947 6 1
2o 5 - y = 9.08 (x - 1.478)

30 iz 4 R®=0.987

rY = (4.00+0.07) F10.7 "= 3
20 R®=0.98

2 e >
10 1 - SQRT(EUV mW/m?)
SQRT(F10.7 sfu) 0
U T T T T T T T T T T
2 4 5 5 10 12 14 16 18 0.0 05 1.0 15 20 25 3.0

11




Reconstructions of EUV and F10.7

Reconstruction of F10.7 Flux and EUV < 103 nm Flux
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Note the constant basal level at every solar minimum




Lyman Alpha, Mg Il, and Ca Il also
Follow the Magnetic Field and EUV

Lyman Alpha and EUV < 103 nm
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The Ca |l Index Shows the Same
Basal Floor at Minima as '/ and EUV

Call Index (393 nm) and Range of Diurnal Variation of Geomagnetic Y
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The long-term Ca Il Index is constructed from Kodaikanal, Sacramento Peak,
and SOLIS/ISS data [Luca Bertello]. Data from Mount Wilson | ] has been
scaled to the Kodaikanal series. Calibration of the old spectroheliograms is a
difficult and on-going task.

Bottom Line: All our solar indices show that solar activity [magnetic field] is

. : : o 14
constant at every solar minimum. [except for tiny residual variation]




The Official TSI Climate Data Record (CDR)

Yearly Average TSI from NRL2 Solar Irradiance Model (Coddington et al. 2016)
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“The data record, which is part of the National Oceanic and Atmospheric
Administration’s (NOAA) Climate Data Record (CDR) program, provides a
robust, sustainable, and scientifically defensible record of solar irradiance
that is of sufficient length, consistency, and continuity for use in studies of
climate variability and climate change on multiple time scales and for user
groups spanning climate modeling, remote sensing, and natural resource and

renewable energy industries.” [LASP, NRL: http://dx.doi.org/10.1175/BAMS-D-14-00265.1] 15




Shaky Justification for Using a
‘Background’ Component in TSI

1361.8

The "Official' NOAA CDR Builds on the Obsolete Hoyt & Schatten Group Sunspot Number
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“A third component of irradiance variability is an assumed long-term facular contribution that is speculated
(Solanki et al. 2013) to produce the secular irradiance change underlying the solar activity cycle on historical
time scales (Obsolete H&S prior to 1978). According to simulations from a magnetic flux transport model
(with variable meridional flow) of eruption, transport, and accumulation of magnetic flux on the sun’s surface
since 1617, a small accumulation of total magnetic flux and possibly the rate of emergence of small bipolar
magnetic regions on the quiet sun (called ephemeral regions) produce a net increase in facular brightness.”

It seems to me that all that advanced [?] physics and sophisticated modeling only
added a bit of noise to a simple linear combination of H&S’s GSN and <GSN>,,,
even failing for modeling the recent instrumental spacecraft record.

16



Yet Another Climate Model Input

Global Radiative Solar Forcing (Relative to 1850)
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GISS 5% Coupled Model Intercomparison Project includes simulations for the historic
period, future simulations out to 2300, and past simulations for the last 1000 years,
the last glacial maximum and the mid-Holocene, and also uses (Miller, 2014) the
same ‘background’ idea, based on the same [H&S] obsolete Group Sunspot Number,
and also failing for the modern instrumental record where the background has been
dropped. 17



The Basal EUV and Magnetic Flux Records Do
Not Support the NOAA Climate Data Record, CDR

Failure of the Latest (Aug. 2016) NOAA Climate Data TSI Record
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1. One can fit EUV to the instrumental part of NOAA’s Climate Data Record

2: There is no support for a variable ‘Background’ (pink curve) and surely not

3: if constructed from the obsolete Hoyt & Schatten Group Sunspot Number

4: which the CDR didn’t even use during the ‘instrumental era’ (SORCE)

5: The current CDR is not helpful to Climate Research and to “climate modeling,
remote sensing, and natural resource and renewable energy industries”

6. The analysis reported in this talk invalidates the TSI CDR before ~1978 18

The End




Extra Slides for Q/A



Solar Indices Mapped to TSI

Solar Indices Mapped to TSI
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Network Field and Solar Wind Field

Range rY and HMF B at 1 AU
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The magnetic field in the solar wind (the Heliosphere) ultimately arises from the magnetic field
on the solar surface filtered through the corona, and one would expect an approximate
relationship between the network field (EUV and rY) and the Heliospheric field, as observed.

The flux transport model simulates the eruption, transport, and accumulation of magnetic flux on the
Sun’s surface from the Maunder Minimum to the present in strengths and numbers proportional to the
[group?] sunspot number. The model estimated variations in both open and total flux. The open flux is
claimed to compare reasonably well with the geomagnetic and cosmogenic isotopes, which gives
confidence that the approach is plausible. It actually does not, as the reconstruction of the magnetic
field B since 1840 shows. 21



Reconstruction of Hemispheric Magnetic Field

HMF B from Three Different Sources
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Electron Density due to EUV

<102.7 nm The conductivity at a given height is proportional
F, to the electron number density Ne. In the dynamo
IDE + hv — 0OF + &~ region the ionospheric plasma is largely in
< photochemical equilibrium. The dominant plasma
i species is O*,, which is produced by photo
D;_T +e =04+0 ionization at a rate J (s™') and lost through
recombination with electrons at a rate a (s™),
producing the Airglow.

The rate of change of the number of ions N,, dN/dt and in the number of electrons
N., dN_/dt are given by dN/dt = J cos(x) - a N; N, and dN_./dt = J cos(x) - a N N.,.
Because the Zenith angle y changes slowly we have a quasi steady-state, in
which there is no net electric charge, so N, = N, = N. In a steady-state dN/dt = O,
so the equations can be written 0 = J cos(x) - a N2, and so finally

N =V a? cos(x))

Since the conductivity, 2, depends on the number of electrons N, we expect that 2
scales with the square root V(J) of the overhead EUV flux with A < 102.7 nm. 23




