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The Diurnal Variation of the
Dlrectlon of the Magnetic Needle
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7401 1 George Graham [London]
=L 1 discovered [1722] that the
| | geomagnetic field varied
660 | 1 during the day in a regular
e#0f ... 1 manner
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Olof Petrus Hjorter
was married to Anders

LW ot * i Celsius’ sister and
+ “—t ' made more than
9 WRETRY [ 5804 4 2 i ' 10,000 observations
TI | ' | | ' of the magnetic
‘ . . declination in the
8 9 10 1 12 13 |

days, April 1741 | 1740s.

. ——— — - — -

Hjorter's measurements of the magnetic declination at Uppsala during April 8-
12, 1741 (old style). The curve shows the average variation of the magnetic
declination during April 1997 at nearby Lovo (Sweden).



Even Rather Simple Instruments
Could Readily Show the Variation

John Canton [1759] made
~4000 observations of the
Declination on 603 days

Coulomb
1776
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Schematic of an Eschenhagen Variometer ________Magnetogram
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Balfour Stewart, 1882,
Encyclopedia Britannica, 9" Ed.

“The various speculations on the cause of
these phenomena [dally variation of the
geomagnetic field have ranged over the
whole field of likely explanations. (1) [...],
(2) It has been imagined that convection
currents established by the sun’s heating
iInfluence in the upper regions of the
atmosphere are to be regarded as
conductors moving across lines of
magnetic force, and are thus the
vehicle of electric currents which act
upon the magnet, (3)[...], (4) [...].

Balfour Stewart
1828-1887

“there seems to be
grounds for
imagining that their
conductivity may
be much greater
than has hitherto
been supposed.” -



We all Know about Marconi’'s Long-
Distance Radio Transmissions
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uglielmurtbni sends message
from England to Newfoundland

Dec 12. The Italian physicist
Guglielmo Marconi, who sent wire-
less telegraphic messages across the
English Channel from Dover, Eng-
land, to Boulogne, France, on
March 29, 1899, repeated his experi-
ment today over the Atlantic
Ocean, a distance of 2,232 miles.

In order to carry out this experi-
ment, Marconi set up a 164-foot-

Guglielmo Marconi and his first
wireless.

high antenna in Poldhu, Cornwall,
England. Then, he erected a receiv-
er in St. John's, Newfoundland,
Canada. In spite of the earth’s curv-
ature, he received a Morse signal
corresponding to the letter **S” from
the Poldhu station across the ocean.

‘When Marconi realized the im-
portance of his first discoveries in
1895, he asked the Italian Minister
of Telecommunication to help him.
But the minister found that Mar-
coni’s experiments were too extrava-
gant. That’s why Marconi went to
England, where he won the support
of Sir William Peace, the Postmast-
er General, whoimmediately under-
stood the significance of the young
Marconi’s work, Thanks to Peace’s
perspicacity and the help of Profes-
sor Adolf Slaby, Marconi could hit
his target today (— 2/22/03).

Dec. 12, 1901




Kennelly Suggested a Wave Guide

On the Elevation of the Electrically-Conducting Strata
of the Earth’s Atmosphere.

By A. E. KENNELLY.

There is well-known evidence that the waves of wireless telegraphy,
propagated through the ether and atmosphere over the surface of the
ocean, are reflected by that electrically-conducting surface. On
waves that are transmitted but a few miles the upper conducting
strata of the atmosphere may have but little influence. On waves
that are transmitted, however, to distances that are large by compari-
son with 50 miles, it seems likely that the waves mal_:' also ﬁng an Arthur E. Kennelly
upper reflecting surface in the conducting rarefied strata of the air. 1861-1939
It seems reasonable to infer that electromagnetic disturbances emit-
ted from a wireless sending antenna spread horizontally outwards, 10"40_5.'—'1530&
and also upwards, until the conducting strata of the atmosphere are AT
encountered, after which the waves will move horizontally outwards,
in a s0-mile layer between the electrically-reflecting surface of the
ocean beneath, and an electrically-reflecting surface, or successive

1 f { 1 ' p"ﬁ/ Whation,
series of surfaces, in the rarefied air above. sty Wasis oy i

\asert 15 1002 ELECTRICAL  WORLD anxp ENGINEER. 473 9



Oliver Heaviside Got the Same Idea

Marconi himself speculated that this might be the result of what he called the **disclectrifica- 3

tion"' of the antenna by daylight which prevented ‘‘the electrical oscillations [in the antenna]
from acquiring so great an amplitude as they attain during darkness.”’
Heaviside proposed another possibility.
The actual correspondence is not available, but an account™ has been given by Eccles™:
In the spring of 1902 I was writing from time to time on wireless telegraphy in the pages of
The Electrician, and one day Mr. Tremlett Carter, the editor, showed me a letter from Mr,
Oliver Heaviside which, while discussing other things, asked if the recent success of Mr.

" various friends of the editor, but I think it was not published [indeed, it was not].

Whatever the reason for|the rejection of this letter for publication (I have been unable to find
any reference to it in the surviving Heaviside editorial correspondence ™ with The Electrician),
it merely made Oliver look for an alternative outlet. He found this outlet in the form of an
invited contribution* to the new (10th) edition of the Encyclopedia Britannica.

And then comes the most famous part of the article. **There is another consideration.
may possibly be a sufficiently conducting layer in the upper air. If so, the waves will, so to
speak, catch on to it more or less. Then the guidance will be by the sea on one side and the
upper la)'cr on the other.”’ Top of atmospheric duct

POV A VAL N

Ground surface

Wawves trapped in duct
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»\g A Reflection Problem

skY wave ffajatior
— e

Total internal reflection happens when a wave hits a medium boundary at an
angle larger than the so-called critical angle. If the refractive index is lower on
the outer side of the boundary and the incident angle is greater than the critical
angle the wave is reflected back. The refractive index, n, of a medium is the
ratio between the speed of light in vacuum, c, and the speed of light, v, in the
medium: n = c/v. To get total internal reflection from the ionosphere, the speed
of light there must be significantly greater than that in air [which to 5 decimal
places is the same as in vacuum], not to speak about the lower boundary...
The solution to this problem was only found around 1910 by realizing that for
the velocity in the medium we should use the phase velocity (red dot
overtaking the green dot below), which does not transmit information and can
easily be greater than c.




It Took These Gentlemen to Convincingly
Establish the lonosphere in the 1920s

Edward V. Appleton Merle Antony Tuve Grigory Breit
1892-1965 1901-1982 1899-1981
Discove_red the Used pulsed radio transmissions to determine the
F-layer higher up height of the ionosphere from timing the echoes

Nobel Prize 1947
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North Pole

The E-layer Current System N

Equaé —

North X
rY

< > South Pole
; Morning /‘

\\\\ H \‘\ F) .

DN\ R
\\\ ‘\\D STL?N
_ EastY

Y = H sin(D)

_ A current system in the ionosphere is created
dY =H cos(D) dD Forsmalldd g maintained by solar EUV radiation

The magnetic effect of this system was what George Graham discovered
14



The Earth Rotates Under the Current
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Electron Density due to EUV

<102.7 nm The conductivity at a given height is proportional
F, to the electron number density Ne. In the dynamo
IDE + hv — 0OF + &~ region the ionospheric plasma is largely in
< photochemical equilibrium. The dominant plasma
i species is O*,, which is produced by photo
D;_T +e =04+0 ionization at a rate J (s™') and lost through
recombination with electrons at a rate a (s™),
producing the Airglow.

The rate of change of the number of ions N;, dN/dt and in the number of electrons
N., dN_/dt are given by dN/dt = J cos(x) - a N; N, and dN_./dt = J cos(x) - a N N.,.
Because the process is slow (the Zenith angle ¥ changes slowly) we have a quasi
steady-state, in which there is no net electric charge, so N, = N, = N. In a steady-
state dN/dt = 0, so the equations can be written 0 = J cos(x) - a N2, and so finally

N =V a? cos(x))

Since the conductivity, 2, depends on the number of electrons N, we expect that 2
scales with the square root V(J) of the overhead EUV flux with A < 102.7 nm. 16




Zenith Angle Dependence Confirmed

arc min  Diurnal Variation of Declination Year 1759 Modern European Stations
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Solar Cycle and Zenith Angle Control

Diurnal Variation, rY, of Geomagnetic East Component
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The Diurnal Variation of the Declination for
Low, Medium, and High Solar Activity
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Normalization for Eskdalemuir
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Mormalization for Tucson
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Normalization for Prague
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Normalization for Helsinki . — o
60 E3
. Master y = 1.175x Ad d I n g wlfkil:!
R* = 0.8992 o Jarvenpaa
] o Viht Nurmijarvi 7
40 ja
H e I S I n kl ) Tuusulac cKerava
30 Nummela
V S Vantaa Soder‘kull
el ’ o -
back to R 5 o
o-Helsinki
10 A Helsinki 1 845 Kirkko?umm ®
D T T T T
0 10 20 30 40 50
MNormalized Range rY for Helsinki
70
ryY
50 1 nT
50 -
40 +
30 -
Helsinki Master Composite
20 4
10
D T T T T T T
1840 1850 1860 18670 18680 1830 13900 1910

26




Normalization for Nurmijarvi
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And So On: For 107 Geomagnetic
Observatories with Good Data
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Mormalization Factor for r¥Y

The Magnetic Signal |
at Midlatitudes .

|Latitude|
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The effect in the Y-component is rather uniform for latitudes between 20O and 602‘:9



Normalized Ranges rY of the East Component for 107 Observatories
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Composite rY Series 1840-2014
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From the Standard Deviation and the Number of Station in each Year we can

compute the Standard Error of the Mean and plot the £1-sigma envelope
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The Effect of Solar EUV

Solar

| Solar

Visual
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The EUV causes an
observable variation of the
geomagnetic field at the
surface through a complex
chain of physical connections.

The physics of each link in
the chain is well-understood
In quantitative detail and can
be successfully modeled.

We’ll use this chain in reverse
to deduce the EUV flux from
the geomagnetic variation.
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EUV Bands and Solar Spectrum

Most of the Energetic Photons are in the 0.1-50 nm Band

Solar Spectrum
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Composite F2500 MHz Solar Nicrowave Flux

F10.7 EUV and its proxy:
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rY and F10.7Y2 and EUVY?

Range rY as a Function of SQRT(F10.7)
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Reconstructed F10.7 [an EUV Proxy]
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Reconstructed EUV Flux 1840-2014
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This Is, | believe, an accurate depiction
of true solar activity since 1840
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Sunspot Number as a Function of rY

We can compare
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How About the Group Sunspot Number?

2

Ratio Group Sunspot Number to Calculated SSN from rY
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The main issue with
the GSN is a change
relative to the ZSN
during 1880-1900. This
IS mainly caused by a
drift in the reference
count of the standard
(Royal Greenwich
Observatory)

The ratio between the
Group Sunspot Number
reveals two major
problem areas. We can
now identify the cause
of each
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The Tale of Two Sunspot Numbers
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The ‘official’ sunspot number =——>
[maintained by SIDC in Brussels] also
shows a clear ‘Modern Maximum’ in
the last half of the 20" century.

The official record is artificially
inflated after 1945 when Max
Waldmeier became director of the
Zurich Observatory

4 } Sunspot Number (Official SIDC View)
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And suggest that there likely was
no Modern Grand Maximum




The Sunspot Workshops I-1V

Figure 5: Participants at the 4th SN Workshop, Locarno, Switzerland, 19-23 May 2014.
Left to right: R. Ramelli, F. Marenzi, C. Kiess, D. Supriya, L. Belluzzi, G. Travaglini, R.
Howe, C. Fréhlich, T. Dudok de Wit, J. Vaquero, P. Hejda, J. Beer, R. Arlt, J. Stenflo,
M. Bianda, L. Svalgaard, S. Cortesi, D. Willis, E. Cliver, O. Hérent, L. Lefevre, A. Kilcik,
A. Bulling, J. Alvestad, F. Clette, J. Javaraiah.

A revised Sunspot Number to be announced at IAU Assembly in August, 2015
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Abstract

When Marconi in 1902 demonstrated that radio communication across the Atlantic Ocean at a
distance of 2000 miles it became clear that an electric 'mirror' existed high in the atmosphere to guide
the radio waves around the curvature of the Earth. Kennelly and Heaviside independently suggested
that a layer of ionized gas, the 'ionosphere’ at an altitude of 60-100 miles was responsible for the
effect, but it was only more than two decades later that the existence of such a layer was firmly
established by the British scientist Appelton for which he received the 1947 Nobel Prize in Physics.
Physicists long resisted the idea of the reflecting layer because it would require total internal reflection,
which in turn would require that the speed of light in the ionosphere would be greater than in the
atmosphere below it. It was an example of where the more physics you knew, the surer you were that
it couldn't happen. However, there are two velocities of light to consider: the phase velocity and the
group velocity. The phase velocity for radio waves in the ionosphere is indeed greater than the Special
Relativity speed limit making total internal reflection possible, enabling the ionosphere to reflect radio
waves. Within a conducting layer electric currents can flow. The existence of such currents was
postulated as early as 1882 by Balfour Stewart to explain a the diurnal variation [discovered in 1722]
of the Earth's magnetic field as due to the magnetic effect of electric currents flowing in the high
atmosphere, such currents arising from electromotive forces generated by periodic (daily) movements
of an electrically conducting layer across the Earth’s permanent magnetic field. Today, we know that
solar Extreme Ultraviolet radiation is responsible for ionizing the air and that therefore the ionospheric
conductivity varies with the solar cycle [e.g. as expressed by the number of sunspots]; so,
observations of the Sun are vital in monitoring and predicting radio communications for Amateurs and
Professional alike. Conversely, centuries-long monitoring of variations of the Earth's magnetic field can
be used to determine long-term variations of solar activity. The talk weaves these various threads from
multiple scientific and engineering disciplines together to show the unity of scientific endeavor and its
importance for our technological civilization.
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