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We all Know about Marconi’'s Long-
Distance Radio Transmissions

uglielmhlurtbni sends message
from England to Newfoundland

Dec 12. The Italian physicist
Guglielmo Marconi, who sent wire-
less telegraphic messages across the
English Channel from Dover, Eng-
land, to Boulogne, France, on
March 29, 1899, repeated his experi-
ment today over the Atlantic
Ocean, a distance of 2,232 miles.

In order to carry out this experi-
ment, Marconi set up a 164-foot-

Guglielmo Marconi and his first
wireless.

high antenna in Poldhu, Cornwall,
England. Then, he erected a receiv-
er in St. John's, Newfoundland,
Canada. In spite of the earth’s curv-
ature, he received a Morse signal
corresponding to the letter **S” from
the Poldhu station across the ocean.

‘When Marconi realized the im-
portance of his first discoveries in
1895, he asked the Italian Minister
of Telecommunication to help him.
But the minister found that Mar-
coni’s experiments were too extrava-
gant. That’s why Marconi went to
England, where he won the support
of Sir William Peace, the Postmast-
er General, who immediately under-
stood the significance of the young
Marconi’s work. Thanks to Peace’s
perspicacity and the help of Profes-
sor Adolf Slaby, Marconi could hit
his target today (— 2/22/03).

Dec. 12, 1901
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Later he managed to send a message from US
president Theodore Roosevelt to the King of the UK
via his Glace Bay station in Nova Scotia, Canada,
across the Atlantic on 18 January 1903.



Kennelly Suggested a Wave Guide

On the Elevation of the Electrically-Conducting Strata
of the Earth’s Atmosphere.

By A. E. KENNELLY.

There is well-known evidence that the waves of wireless telegraphy,
propagated through the ether and atmosphere over the surface of the
ocean, are reflected by that electrically-conducting surface. On
waves that are transmitted but a few miles the upper conducting
strata of the atmosphere may have but little influence. On waves
that are transmitted, however, to distances that are large by compari-
son with 50 miles, it seems likely that the waves may also find an
upper reflecting surface in the conducting rarefied strata of the air.
It seems reasonable to infer that electromagnetic disturbances emit-
ted from a wireless sending antenna spread horizontally outwards, o S
and also upwards, until the conducting strata ot the atmosphere are &=
encountered, after which the waves will move horizontally outwards,
in a s0-mile layer between the electrically-reflecting surface of the
ocean beneath, and an electrically-reflecting surface, or successive
series of surfaces, in the rarefied air above. sl el Didtien

MaRCH] 5. 02 ELECTRICAL WORLD axo ENGINEER. 473 3

Arthur E. Kennelly
1861-1939




Oliver Heaviside Got the Same |ldea

Marconi himself speculated that this might be the result of what he called the **diselectrifica-
tion"' of the antenna by daylight which prevented ‘“‘the electrical oscillations [in the antenna]
from acquiring so great an amplitude as they attain during darkness.”’
Heaviside proposed another possibility.
The actual correspondence is not available, but an account™ has been given by Eccles™:
In the spring of 1902 | was writing from time to time on wireless telegraphy in the pages of
The Electrician, and onc day Mr. Tremlett Carter, the editor, showed me a letter from Mr,
Oliver Heaviside which, while discussing other things, asked if the recent success of Mr.

: various friends of the editor, but I think it was not published [indeed, it was not).

Whatever the reason for|the rejection of this letter for publication (I have been unable to find
any reference to it in the surviving Heaviside editorial correspondence ™ with The Electrician),
it merely made Oliver look for an alternative outlet. He found this outlet in the form of an
invited contribution* to the new (10th) edition of the Encyclopedia Britannica.

/ :

And then comes the most famous part of the article. *“There is another consideration. There

may possibly be a sufficiently conducting layer in the upper air. If so, the waves will, so to
speak, catch on to it more or less. Then the guidance will be by the sea on one side and the
upper layer on the other.™

Top of atmospheric duct

Amateur radio operators
(HAMSs) began to use this
effect in the 1920s at 200
meters 4

Ground surface

Waves trapped in duct



The Diurnal Variation of the
Direction of the Magnetic Needle
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Zenith Angle Dependence Confirmed
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400-year Sunspot Cycle Record

Mar. 2001

Jan. 2005

SOHO Spacecraft
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Balfour Stewart, 1882,
Encyclopedia Britannica, 9" Ed.

“The various speculations on the cause of
these phenomena [daily variations of the
geomagnetic field] have ranged over the
whole field of likely explanations. (1) [...],
(2) It has been imagined that convection
currents established by the sun’s heating
Influence in the upper regions of the
atmosphere are to be regarded as
conductors moving across lines of
magnetic force, and are thus the
vehicle of electric currents which act
upon the magnet...

Hertz, radio waves 1886....

Balfour Stewart
1828-1887

“there seems to be
grounds for imagining
that their conductivity
may be much greater
than has hitherto
been supposed.”



It Took These Gentlemen to Convincingly
Establish the lonosphere in the 1920s

Edward V. Appleton Merle Anthony Tuve Grigory Breit
1892-1965 1901-1982 1899-1981
Discove_red the Used pulsed radio transmissions to determine the
F-layer higher up height of the ionosphere from timing the echoes

Nobel Prize 1947



The Source of the

Extreme Ultraviolet
(EUV), wavelengths
17.1-21.1-30.4 nm
from chromosphere
and corona with
temperatures from
50,000 K to 2
million K
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lonospheric Conducting Layers
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We need 1) something to produce the charges and
2) something to move them across the magnetic field
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An effective dynamo
process takes place in
the dayside E-layer
where the density,
both of the neutral
atmosphere and of the
electrons are high
enough.

We thus expect a

geomagnetic response
due to electric currents
induced in the E-layer.
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Date: 22-06-2004

The E-layer Electric @@@ @

Current System

Geomagnelic
North X Activity
rY g

A
v

Y = H sin(D) Eastyg

dY = H cos(D) dD For small db A current system in the |onospher_e IS created
and maintained by solar EUV radiation

The magnetic effect of this system was what George Graham discovered
12
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The Magnetic Signal [
at Mid-latitudes
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The effect in the Y-component is rather uniform for latitudes between 20° and 60°
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Observed Diurnal Ranges of the Geomagnetic East Component since 1840

129 of them

Range of Diurnal Variation of East Component for all Stations
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We plot the yearly average range to remove the effect of changing solar zenith

angle through the seasons. What remains is the solar cycle modulation.
The blue curve shows the number of stations
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The Effect of Solar EUV
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The EUV causes an
observable variation of the
geomagnetic field at the
surface through a complex
chain of physical connections.

The physics of each link in
the chain is well-understood
In quantitative detail and can
be successfully modeled.

We use this chain in reverse
to deduce the EUV flux from
the geomagnetic variation.
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Composite F2500 Wz Solar Microwave Flux

F10.7

The Microwave Flux Record Extends

EUV and its proxy:
F10.7 Microwave
Flux
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Reconstructions of EUV and F10.7

Reconstruction of F10.7 Flux and EUV < 103 nm Flux
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Olof Petrus Hjorter
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during April 1997 at nearby Lové (Sweden). E A, ¢
Left: Variation during strong Northern Light on March 27, ' lr_
Also observed by Graham in London, showing that the ‘2?'
aurorae and magnetic field are connected on a large scale (&
and not just local meteorological phenomena. 2% 7"?&
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foF2

F2-layer critical frequency. This is the
maximum radio frequency that can be
reflected by the F2-region of the
lonosphere at vertical incidence (that
IS, when the signal is transmitted
straight up into the ionosphere). And
has been found to have a profound
solar cycle dependence.

The curves for cycle 18 [1945-] and
cycle 17 [-1944] are displaced.

The shift in sunspot numbers to bring
the curves to overlap is ~20%

One of the first signs that perhaps the
sunspot number record was not quite

correct...
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Counting Sunspot Groups

Locarno 2002/03/28 S.C. '

Sunspots occur in Groups. It is sometimes hard to figure out which spots

belong to which groups. The ‘sunspot number’ is defined as the number
of groups times ten plus the number of spots: W=10*G + S

- One group or
three groups?

SR

Feb. 13, 1760

27
0 280

260

Some people thought it was easier (better?) to count just the groups instead of
the much smaller and harder to see single spots



A Problem: Discordant Sunspot Numbers

GSN =12 GN WSN = 0.6(10 * GN + SN)
Group and Wolf Sunspot Numbers
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The Problem: Discordant Series

International Sunspot Number (R)) vs. Group Sunspot Number (Rg)
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Rg: The Group Sunspot Number: the average number of sunspot groups per day
multiplied by a scale factor (12.08) to match R, for the interval of the RGO counts
(Greenwich, 1874-1976)

R,: The International Relative Sunspot Number introduced by Rudolf Wolf and now
maintained by SILSO in Brussels (version 1)
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The SSN Workshops. The Work
and Thoughts of I\/IanyPeopIe

A revised Sunspot Number was announced at IAU Assembly in August, 2015 24



The Tale of Two Sunspot Numbers

GSN =12 * Groups

Group Sunspot Number
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WSN = 10 * Groups + Spots

Corrected Wolf Sunspot Number
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The old ‘official’ sunspot number

Sunspot Number (Official SIDC View)
200

[maintained by SIDC in Brussels] o, SIDCSSN ‘Joden o
showed a clear ‘Modern Maximum’ in | ] F20% el | |2
the last half of the 20™ century. =—>r1 [\ “'ﬁ’ il o
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Correct WSN by -20% after 1946,
because of weighting of the count
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introduced then (the Waldmeier
Jump)

The new SSN series suggest that there
likely was no Modern Grand Maximum?®




Checking the Calibration for the 18" Century:
Build Replicas with the Same Optical Flaws

. Chromatic
_ aberration
Bunmmmmmmnsnmssininind

Spherical
aberration

Comparing Sunspot Relative Numbers Observed by ATS and 'Modern’ Observers
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Modern observers see three times as many sunspots than our 18t century repli¢as
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Wilcox &

The Solar Wind

“Blows” all the time and is the
expansion of the extremely hot
atmosphere into space, visible
near the Sun as the ‘Corona’:

Geomagnetic Tail

Gene Parker

N Q 1958
B Expansion
TN is radially
\ outwards

olar

Wind
Flow =

6

Magnetic Field
Lines are tied to
the expanding
atmosphere and
therefore ‘rooted’ in
the Rotating Sun

Ness, 1964
Interplanetary The pattern of the magnetic ‘spiral’

Magnetic

Field rotates with the Sun once in 25 days 21



Solar Wind Stealing a Comet Tall

Sector Boundary Reconnection Fragile: Comet

’ . < . < < ion tail (M inside

Comet Encke, 2007/04/20 Comet Morehouse, 1908
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Electric Current Systems in Geospace

Different Current Systems & Different Magnetic Effects .~

FIELD ALIGNED -~ -y
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We can now invert the Solar Wind — Oppositely charged particles trapped in the
Magnetosphere relationships Van Allen Belts drift in opposite directions

giving rise to a net westward ‘Ring Currenf”



Applying the relationship we can reconstruct

HMF magnetic field B with Confidence:

InterDiurnal Variability Index IDV and Reconstructed Heliospheric Magnetic Field B
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TSI is the combined effect of sunspot
dimming and facular brightening (2x)

Solar Irradiance Variability Models: Total

& Solar Cycle
R *+PMOD composite
3 A — Model

€

=

= Faculae are
5 areas with

£ significant

magnetic fields
near sunspots

1980 1985 1990 1995 2000 2005

Solar Minimum

SUNSPDla
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TSI

Variation of the Photospheric Magnetic Field
Causes the Variation of TSI [Total Solar Irradiance]

Tetal Sulur Irradiance Data Record
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Building a Composite from Different Spacecraft Datasets



Climate Data Records

Reconstructions of TSI
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But there is no slowly varying Background acting as Climate Forcing.

G. Kopp, 4 Feb. 2013
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North - South Solar Polar fields [microTesla]
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Polar Fields Predict Sunspot Cycle
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Abstract. On physical grounds it is suggested
that the sun's polar field strength near a solar

minimum is closely related to the following
cycle's solar activity,
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We predicted back
iIn 2004 SC24 to
be about half of
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SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2017 March 1

Currently, the polar fields are at least
as strong as before cycle 24, so cycle
25 will be at least as strong as 24.
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Polar Fields from WSO, MDI, and HMI

from Radial Super-Synoptic Maps

Solar Radial Polar Fields from Super-Synoptic Maps

Average Flux Density above 55° Latitudes
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The Prediction (At Last)

400

350

300

250

200

150

100

50

0

Inferred Solar Dipole Momentin Time

19

GN*

A?g SH”

Year of Minimum

1750 1775

1800

1825

1850 1875 1900 1925 1950 1975 2000 2025 2050

SC25 will be somewhere between SC24 and SC20,

provided the Polar Field Precursor Relationship holds.
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Abstract

When Marconi in laye 1901 demonstrated that radio communication across the Atlantic Ocean at a
distance of 2000 miles it became clear that an electric 'mirror' existed high in the atmosphere to guide
the radio waves around the curvature of the Earth. Kennelly and Heaviside independently suggested
that a layer of ionized gas, the 'ionosphere’ at an altitude of 60-100 miles was responsible for the
effect, but it was only more than two decades later that the existence of such a layer was firmly
established by the British scientist Appelton for which he received the 1947 Nobel Prize in Physics.
Physicists long resisted the idea of the reflecting layer because it would require total internal reflection,
which in turn would require that the speed of light in the ionosphere would be greater than in the
atmosphere below it. It was an example of where the more physics you knew, the surer you were that
it couldn't happen. However, there are two velocities of light to consider: the phase velocity and the
group velocity. The phase velocity for radio waves in the ionosphere is indeed greater than the Special
Relativity speed limit making total internal reflection possible, enabling the ionosphere to reflect radio
waves. Within a conducting layer electric currents can flow. The existence of such currents was
postulated as early as 1882 by Balfour Stewart to explain the diurnal variation [discovered in 1722] of
the Earth's magnetic field as due to the magnetic effect of electric currents flowing in the high
atmosphere; such currents arising from electromotive forces generated by periodic (daily) movements
of an electrically conducting layer across the Earth’s permanent magnetic field. Today, we know that
solar Extreme Ultraviolet radiation is responsible for ionizing the air and that therefore the ionospheric
conductivity varies with the solar cycle [e.g. as expressed by the number of sunspots]; so,
observations of the Sun are vital in monitoring and predicting radio communications for Amateurs and
Professional alike. Conversely, centuries-long monitoring of variations of the Earth's magnetic field can
be used to determine long-term variations of solar activity. The talk weaves these various threads from
multiple scientific and engineering disciplines together to show the unity of scientific endeavor and its
importance for our technological civilization.
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