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The Effect of Solar EUV
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The EUV causes an
observable variation of the
geomagnetic field at the
surface through a complex
chain of physical connections.

The physics of each link in
the chain is well-understood
In quantitative detail and can
be successfully modeled.

We’ll use this chain in reverse
to deduce the EUV flux from
the geomagnetic variation.
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An effective dynamo
process takes place in
the dayside E-layer
where the density,
both of the neutral
atmosphere and of the
electrons are high
enough.

The geomagnetic
response is thus due
to electric currents
induced in the E-layer.



Electron Density due to EUV

<102.7 nm The conductivity at a given height is proportional
F, to the electron number density Ne. In the dynamo
IDE + hv — OF 4+ &~ region the ionospheric plasma is largely in
< photochemical equilibrium. The dominant plasma
i species is O*,, which is produced by photo
DE +e” =040 ionization at a rate J (s™') and lost through
recombination with electrons at a rate a (s™),
producing the Airglow.

The rate of change of the number of ions N;, dN/dt and in the number of electrons
N., dN_/dt are given by dN/dt = J cos(x) - a N; N, and dN_./dt = J cos(x) - a N N.,.

Because the process is slow (the Zenith angle ¥ changes slowly) we have a quasi
steady-state, in which there is no net electric charge, so N, = N, = N. In a steady-

state dN/dt = 0, so the equations can be written 0 = J cos(x) - a N2, and so finally

N = V(J a® cos(y)), (the Chapman Function, first derived by Sidney Chapman).

Since the conductivity, 2, depends on the number of electrons N, we expect that 2
scales with the square root V(J) of the overhead EUV flux with A < 102.7 nm. 4




Magnitude of Magnetic Effect

The magnitude, A, of the variation of the East Component due to the dynamo
process is given by A = % u, 2 U B, where y, is the permeability of the vacuum
(41rx 107), 2 is the effective ionospheric conductivity (S), U is zonal neutral wind
speed (m s™1), and B, is the vertical geomagnetic field strength (nT).

Pedersen Conductivity
12

In the E-layer the conductivity is a tensor and
highly anisotropic. To first approximation 2
depends on N and inversely on B: 2 ~ N/B,
such that the magnitude A only depends on
the electron density and the zonal neutral wind
speed. The cancellation of B is not perfect,
though, depending on the precise geometry of
the field. In addition, the ratio between internal
and external current intensity varies with
location. The net result is that A can vary
somewhat from location to location even for
given N and U. Thus a normalization of the
response to a reference location is necessary

10_7=150.0

Hall Conductivity Tit= 0.0
12

Kp= 3.0




The E-layer Current System

North X
rY

A
v

EastY

Y = H sin(D)
dY = H cos(D) dD For small dD

A current system in the ionosphere is created
and maintained by solar EUV radiation

The magnetic effect of this system was discovered by George Graham in 1752



Mormalization Factor for rY
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The effect in the Y-component is rather uniform for Iatltudes between 20° and 60°
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The Diurnal Variation of the Declination for
Low, Medium, and High Solar Activity
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Normalization for Prague
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MNormalization for Helsinki
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Normalization for Nurmijarvi
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Variometer Invented by Gauss, 1833

Helsinki 1844-1912
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Magnetogram

Schematic of an Eschenhagen Variometer
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Normalization for Eskdalemuir
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Mormalization for Tucson
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And So On: For 107 Geomagnetic
Observatories with Good Data
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Next slide shows all [normalized] stations in a combined graph
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Normalized Ranges rY of the East Component for 107 Observatories
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Composite rY Series 1840-2014
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From the Standard Deviation and the Number of Station in each Year we can

compute the Standard Error of the Mean and plot the £1-sigma envelope
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The Effect of Solar EUV
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The EUV causes an
observable variation of the
geomagnetic field at the
surface through a complex
chain of physical connections.

The physics of each link in
the chain is well-understood
in quantitative detail and can
be successfully modeled.

We'll use this chain in reverse
to deduce the EUV flux from
the geomagnetic variation.
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EUV Bands and Solar Spectrum

Most of the Energetic Photons are in the 0.1-50 nm Band
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We Correct the SEM-series for Degradation
Comparing with F10.7 and Mg Il Indices
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rY and F10.7Y2 and EUVY?
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Reconstructed F10.7 [an EUV Proxy]
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Reconstructed EUV Flux 1840-2014

Reconstructed EUV Flux 0.1-50 nm
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This Is, | believe, an accurate depiction
of true solar activity since 1840
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Sunspot Number as a Function of rY

We can compare
that with the Zurich
Sunspot Number
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Recent Drift of International
Sunspot Number k-values
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Effect is under way to re-examine the International Sunspot Number:

Clette et al., Space Science Reviews, 2014
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How About the Group Sunspot Number?

2

Ratio Group Sunspot Number to Calculated SSN from rY
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The main issue with
the GSN is a change
relative to the ZSN
during 1880-1900. This
IS mainly caused by a
drift in the reference
count of the standard
(Royal Greenwich
Observatory)

The ratio between the
Group Sunspot Number
reveals two major
problem areas. We can
now identify the cause
of each
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RGO Groups/Sunspot Groups

Greenwich Group Count Not Stable with Respect to Sunspot Groups
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Early on RGO counts fewer groups than Sunspot Observers
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Rudolf Wolf Discovered the Effect In
1852. Today We Know the Cause
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A.C. Young: The Sun (revised edition, 1897).




Olof Petrus Hjorter was
maurried to Anders
Celsius’ sister and made
more than 10,000

' observations of the

' magnetic declination in

' the 1740s.

10 1 12 13 | The datais available and
days, Apil 1741 -~ I'm trying to find time to
_ ST | work on them.

Hjorter's measurements of the magnetic declination at Uppsala during April 8-
12 1741 (old style). The curve shows the average variation of the magnetic
declination during April 1997 at nearby Lovo (Sweden).

33



Observations in the 1760s

John Canton [1759] made ~4000
observations of the Declination on
603 days and noted that 574 of
these days showed a ‘regular’
variation, while the remainder (on
which aurorae were ‘always’ seen)
had an ‘irregular’ diurnal variation.

arc min Diurnal Variation of Declination Year 1759

1 2 3 4 5 6 7 8 9 10 11 12
Moanth
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Observations in 1787-1805

George Gilpin sailed on the arcmin Gilpin - Daily Range Declination London
Resolution during Cook's 20 ;

second voyage as assistant to [\

William Wales, the astronomer. Uy

Gilpin was elected Clerk and 10 v u i il A Iy {il ﬂ 8
Housekeeper for the Royal L{ U V y U
Society of London on 03 March 5 T v
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Wolf's Series of Declination Ranges

Wolf's Range of Declination vs. Range rY (This Study)
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Next Task: to critically resolve the discrepancy (in oval)
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Progress in Reconstructing Solar
Wind Magnetic Field back to 1840s

InterDiurnal Variability Index IDV and Reconstructed Heliospheric Magnetic Field B
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Even using only ONE station, the ‘IDV’ signature is strong enough to show the effect
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Different Ways of Reconstructing HMF B

HMF Strength B as a Function of SQRT(Sunspot Number)
10

HMF B as a Function of IDV
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Comparison of HMF Reconstructions
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Brotal (Schwadron et al. theory)
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with my set of

parameters
with a ‘Floor’

von Neumann: “with
four parameters | can
fit an elephant, and
with five | can make
him wiggle his trunk”

This model has about
eight parameters...

39



Range rY as a Function of SQRT(EUYV)
70
ryY ear eans
: nT Y199|1%g1014 H I\/I F B Scales
40 .
_ with the Sqgrt of
20 4 V= 22 062x%
RZ = 0.9452
. SQRT(cEUV/10")
e o the EUV Tlux
0.0 0.5 1.0 15 2.0 25 3.0
Range rY and HMF B at 1 AU
fn 10
o " To1e
. n
nl '1 'II . 1g
A0 1 |[ ] o 17
.' 'l\ v D 1Y \ \ ' \‘ ;
40 - '1 |' T
! b / \" . \..- j 41 5
30 - 4 4
YIT
20 - =r 3
B2~ EUV Flux 2
10 1 1
EI 1 1 1 I 1 I I I []
1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

40




Conclusions

We can reconstruct with confidence the solar EUV flux
[and its proxy F10.7] back to 1840

The reconstructed EUV flux confirms the discontinuities
In the Sunspot Records reported by Clette et al., 2014

There iIs more geomagnetic data earlier than 1840, and it
now seems important to acquire and process the earlier
data.

The EUV flux is concordant with the revised Sunspot
Number and the Solar Wind Magnetic Flux

There i1s no Modern Grand Solar Maximum

Some of this may still be controversial. Aggressive and
serious opposition is welcome
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Abstract

Solar EUV creates the conducting E-layer of the ionosphere, mainly by photo ionization
of molecular Oxygen, governed by the so-called Chapman function. Solar heating of the
lonosphere creates thermal winds which by dynamo action induce an electric field
driving an electric current having a magnetic effect observable on the ground, as was
discovered by G. Graham in 1722. The current rises and sets with the Sun and thus
causes a readily observable diurnal variation of the geomagnetic field, allowing us the
deduce the conductivity and thus the EUV flux as far back as reliable magnetic data
reach. High quality data go back to the 1840s and less reliable, but still usable, data are
available for the hundred years before that. R. Wolf and, independently, J-A. Gautier
discovered the dependence of the diurnal variation on solar activity, and today we
understand and can invert that relationship to construct a reliable record of the EUV flux
from the geomagnetic record. We compare that to the F10.7 flux and the sunspot
number, and find that the reconstructed EUV flux reproduces the F10.7 flux with great
accuracy and that the EUV flux clearly shows the discontinuities of the sunspot record
identified by Clette et al, 2014.
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