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Abstract Digitized images of the drawings by J.C. Staudacher were used to
determine sunspot positions for the period of 1749–1796. From the entire set of
drawings, 6285 sunspot positions were obtained for a total of 999 days. Various
methods have been applied to find the orientation of the solar disk which is not
given for the vast majority of the drawings by Staudacher. Heliographic latitudes
and longitudes in the Carrington rotation frame were determined. The resulting
butterfly diagram shows a highly populated equator during the first two cycles
(Cycles 0 and 1 in the usual counting since 1749). An intermediate period is
Cycle 2, whereas Cycles 3 and 4 show a typical butterfly shape. A tentative
explanation may be the transient dominance of a quadrupolar magnetic field
during the first two cycles.
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1. Introduction

Sunspots typically appear at latitudes between 10◦ and 40◦ heliographic latitude.
At the beginning of the solar cycle, latitudes tend to be relatively high, while the
appearance locations of sunspots shift to low latitudes as the cycle goes on. A
plot of the spot appearance latitudes versus time leads to the butterfly diagram
(Maunder, 1904). The diagram is typically plotted starting in 1874 with the
Greenwich drawings of the solar disk. The shape of the appearance latitude as
a function of time has not significantly changed since. Regular updates of the
butterfly diagram are provided by Hathaway in publications and in the Internet
(see e.g. Hathaway et al., 2003).

It is desirable to extend the butterfly diagram into the past. Especially after
the Maunder minimum, the butterfly diagram may tell us about the character-
istics of the solar dynamo when it was coming back to normal after an activity
lull with very few sunspots seen between 1645 and 1715.

There is a considerable set of drawings of the solar disk made by Johann
Staudacher from 1749 to 1796. The total set of 848 drawings were digitized and
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described by Arlt (2008, hereafter Paper I). The drawings contain information
about 1031 days in the above period, with several days combined in one drawing,
and notes about days when nothing was seen (the number has slightly increased
since Paper I, because of additional notes taken into account). For 999 of them,
sunspots were plotted. Note that Wolf (1857) was aware of Staudacher drawings
and counted the sunspots for his sunspot number time series which is still used
today. But the positions have never been determined since.

In this study, we present sunspot positions for 999 of the drawings by Stau-
dacher and present the first butterfly diagram obtained for the 18th century.
Section 2 evaluates the direction of the rotation in the drawings which appeared
to have changed during the entire observing period of 47 years. Section 3 deals
with the various methods to derive the orientation of the solar equator, and
Section 4 describes the actual position measurements once the equator is given.
Section 5 shows the results of the coordinate determinations in form of a butterfly
diagram and discusses its features and limitations. Finally, Section 6 discusses
possible implications for the theory of the solar dynamo.

2. Rotational direction

Even though the rotation is obvious in many sequences of drawings over sev-
eral days, there is still an ambiguity between a “normal” image and a mir-
rored, upside-down image. The two cases are geometrically distinct only by the
inclination of the solar rotation axis against the ecliptic, which is far less obvious.

While the rotational direction was from right to left – according to a mirrored,
upright projection image – in all images until the end of 1760, spots appear to
move from left to right starting in 1761. An obvious occasion is already the pair
of observations of 1761 Feb 20 and Feb 24. If the images were still projected,
north must then be at the lower border. The observation of 1761 May 25 has
indeed “Süd” (south) at the upper solar limb.

Did Staudacher stop using the mirrored image of the projection, or did he
turn the images by 180◦? The eclipse of 1753 is an upright but mirrored image,
just as the sunspot drawings. The eclipse of 1769 is a mirrored image, turned
by 180◦ which is consistent with the upside-down sunspot drawings starting in
1761. The eclipse of 1791 does not show the direction of the motion of the Moon,
but the geometry and the indications of south pole and north pole, which are
assumed to point to the celestial ones, are very consistent with a mirrored and
rotated image, just as it was in 1769.

The assumption of rotated, but still mirrored images is backed up by further
annotations with compass directions which are listed in Table 1. These are –
together with the lunar motion in solar eclipse drawings – all the indications
available, and we assume that all images are mirrored throughout the period
of 1749–1796. Before any of the operations described in the following sections,
all images were mirrored. The change in orientation may mean that Staudacher
used a Keplerian telescope until 1760 and a Gregorian starting in 1761, but this
is speculation.
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Table 1. Orientation indications given by Staudacher besides solar
eclipses.

Date North East South West

1760 Sep 26 top right

1761 May 25 top

1762 May 04 left top

1762 May 05 left top

1762 Nov 21 bottom left

1762 Nov 23 bottom right

1770 Jul 10 top-right

1773 Aug 14 bottom-left top-left

1773 Oct 17 bottom-left

1774 Jun 16 bottom-right bottom-left

1774 Jul 10 bottom-left

1775 Jun 08 bottom-right

1777 May 31 bottom-right

1785 Apr 17 bottom-right

3. Position angles of the disks

There is no single way of fixing the orientation of the drawings. We have to
rely on various methods with various uncertainties. An automatic method to
obtain the sunspot positions is not applicable. All the sunspot positions have
been determined manually with a few IDL routines specially programmed for
the Staudacher images, and the knowledge about how sunspot groups typically
appear on the sun (today). The various ways of obtaining the solar equator are
described in the following subsections. Four IDL programmes were written for
the methods in Sections 3.1, 3.2, 3.4, and 3.5.

3.1. Rotation fitting

The method which is very frequently used in this study is the rotational fitting
of observations which are a few days apart. If these show at least two common
sunspot groups, the two disks can be turned against each other, in order to
achieve a pattern motion consistent with the solar rotation. The more sunspot
groups are common to the drawings of both days, the more reliable is the fit.

Due to the possible drawing errors by Staudacher, a fully automatic fit has not
been applied. Given two images with not more than about 6 days time difference,
one associates spots on one image with spots on the other. The optimum position
angles for both drawings is determined numerically from these spot pairs. If more
than one pair is available, there is, in general, a unique best fit. Figure 1 shows
an example of superimposed drawings of two consecutive days. The spots coming
from 1767 Sep 03 are dark grey, the spots of 1767 Sep 04 are shown in lighter
grey. The second drawing is rotated in order to match the spot motion best.

We denote individual spot positions in the n-th drawing by Staudacher with

L
(n)
i (φ(n)), B

(n)
i (φ(n)) where i runs over the spots drawn for a specific day. These
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are functions of the actual position angle φ(n) chosen for the transformation of
pixel coordinates into heliographic coordinates. The longitudes Li refer to the
center-of-disk meridian until we get to the Carrington frame in Subsection 4.2.
We use n = 1 and n = 2 referring to any given pair of drawings in the following.
We need to find the optimum position angles φ(1), φ(2) for any pair of images
chosen.

The optimization requires a solar surface rotation profile, and we base the
following procedure on the sideric rotation frequency

Ωsid(B) = 14.358− 2.87(sin2 B − sin2 15◦) (1)

in degrees per day, which was derived using sunspot positions, and where B is
the heliographic latitude (Balthasar, Vazquez, and Wöhl, 1986). We approximate
the synodic rotation frequency by Ωsyn = Ωsid−0.9867−0.0333 cos(λ⊙−283.4),
where λ⊙ is the solar longitude of the observing time. In the following, the
synodic period P = 360◦/Ωsyn is used.

A modified least squares fit delivers the best choice of the two position angles.

For any given pair of φ(1) and φ(2), the positions (L
(1)
i (φ(1)), B

(1)
i (φ(1))) and

(L
(2)
i (φ(2)), B

(2)
i (φ(2))) are computed. In defining a norm for the optimization,

the latitude differences were chosen to enter the error sum with a fourth power
rather than as squares in order to give higher weight to the latitudinal fit as
compared with the longitudinal one. Since the rotation profile – only known
precisely from the last ∼ 120 yr – may have been slightly different in the past,
it is wise to give lower weight to the rotation period. The resulting position
angles also looked subjectively better fitted than with equal powers. The square
longitude differences are compared with the theoretically expected longitude
shift ∆Ltheor according to (1):

∆Ltheor =
2 · 360◦∆t

P (B
(1)
i ) + P (B

(2)
i )

, (2)

where ∆t is the time difference between the two observations. The equation
shows that the average rotation period according to the two different latitude
representations is used. The function which is actually minimized is thus

f(φ1, φ2) =
∑

i

(

B
(1)
i − B

(2)
i

)4

+ cos2 Bavg

(

L
(1)
i − L

(2)
i − ∆Ltheor

)2

, (3)

All these coordinates B, L, and Ltheor depend on the position angles φ(1) and
φ(2) which are varied in order to find the best fit. Since for arbitrary position
angles, the corresponding latitudes of the same spot in the two different drawings
are not the same, we use Bavg as the average of these two “representations”.

3.2. Rotation matching

There are quite a few occasions when there is at least a pair of dates for which
a single spot is drawn. If these are directly stacked with transparency, one may
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Figure 1. Rotation matching example of the two superimposed drawings of 1767 Sep 3 (dark
spots in top panel) and 4 (grey spots in bottom panel). The images are rotated against each
other, and scaled to have the same size. Note that all images were mirrored since they are the
result of the projected Sun.
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have the impression that the equator is indicated by their connection line. But
again, the position angles of the two drawings may differ (and they do severely).
The rotation matching applied here is a special case of a rotation fit and delivers
from zero to two exact solutions for the position angles.

Let us consider the position angle φ(1) of the first drawing. At a given φ(1)

there are generally two position angles φ(2) of the second drawing for which
the spot falls onto the same latitude as in the first drawing. The azimuthal
difference between the longitude L(1) in the first drawing and the longitude L(2)

in the second drawing plus the time difference between the two observations
gives us a measure for the corresponding rotation period.

The φ(2) for which the “rotation period” is closest to the expected rotation
period according to Balthasar, Vazquez, and Wöhl (1986) is selected and delivers
Pmatch(φ

(1)). The other match is discarded. This search of φ(2) for a given φ(1) is
repeated for all possible φ(1) = 0 to 2π. The “rotation periods” obtained are com-
pared with the true rotation period (assuming it has not changed significantly
since the 18th century). A function Pmatch(φ

(1))−P (B) is obtained, where B is
again the heliographic latitude (note that B in both drawings are equal now).
This can have a single minimum where there is an Pmatch(φ(1)) getting close to
P , or it can have two exact solutions where the period difference vanishes. If
two solutions matching the rotation period of the corresponding latitude exactly
are found, the one for which sunspot latitudes fall below 50◦ was chosen. This
also includes additional spots in the drawings which have no counterpart in the
other image. This makes the final result a bit less objective, but the increase in
the number of available observations was considered more important.

3.3. Direction lines

A number of drawings show lines drawn by pencil apart from a horizontal line
often appearing to align images in rows in the book. There is a total of 188 days
for which such additional lines are drawn; most of them are not annotated.
Eight of them have markings referring to the ecliptic, 10 others have compass
directions as annotations (plus the first four drawings in Table 1 with compass
directions but no lines). These are too few to conclude anything about the value
for finding the orientations of the drawings; some of them even contradict the
distribution of the spots so drastically, that we assume they are not meaningful
for our purposes. The lines might not even be inserted by Staudacher himself
actually.

3.4. Alignment by sunspot groups

As long as solar activity is not at minimum, the orientation of sunspot groups
often provides a fairly accurate guess of the solar equator, especially if there
are two or more groups. The uncertainty essentially comes from the statistics
of the tilt angles of groups themselves. Howard (1996) determined the average
group tilt against the equator to be about 4◦, withe the preceding spots being
closer to the equator than the following ones. The scatter, however, is about 25◦

around that value. A single group thus provides limited orientation accuracy,
but a second group decreases the uncertainty a lot.
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3.5. Orientation by time of day

Finally, the drawings also indicate that Staudacher often placed his drawing
paper fairly well aligned with the horizon behind the telescope. Times of day
are given for observations starting in 1760. Starting with 1763, the orientations
appear to be consistent enough with an angle with the horizon. We start us-
ing this indication of the drawing orientation occasionally – if no other way
of determining the position angle was available – in 1763 first. There was no
common reference time in Europe in the 18th century yet, because of the lack
of communication means. People in cities and villages most likely referred to a
reference clock which was adjusted according to astronomical events and thus
showed something close to local time. We assumed that Staudacher’s clock times
are local time for Nuremberg.

Obtaining the drawing orientation from the time of day is the only method
where the geographical location of Staudacher matters. We assume a geograph-
ical longitude of λ = 11.08◦ W and latitude of φ = 49.45◦ N for the spherical
transformations. The total position angle of the solar rotation axis against the
direction to the zenith is determined from the tilt of the celestial equator against
the horizon, the tilt of the ecliptic against the equator, and the tilt of the solar
equator against the ecliptic for the given date and time. The orientations of
173 drawings were primarily based on the time of day. For other drawings, if for
example the spot distribution was used primarily, the time of day helped as an
additional support of other estimates made for the solar equator.

3.6. Additional remarks

The partial solar eclipse of 1769 June 4 was noted as observed on June 3.
This seemed to indicate that Staudacher used astronomical dates starting at
noon (cf. Paper I). However, the spot motion on consecutive days has nowhere
shown a discrepancy with dates starting at midnight. An example is the pair of
drawings on 1764 February 16, at 14h, and 1764 February 17, at 10h. While an
astronomical day count would imply that these two observations are 1.6 days
apart, the spot motion clearly shows that a difference of 0.8 days is much more
likely.

In some cases, two position angles were about equally plausible. The sunspot
positions of both orientations were kept in the file of positions. The positions are
stored in daily blocks separated by blank lines. The results of two position angles
are identified by two blocks with the same date (plus verbal remarks). Because
of the limited accuracy of the drawings, we are seeking statistical results rather
than results on individual spots. When these data are used, one should make
sure a considerable set of positions is involved.

4. Sunspot positions

4.1. Heliographic latitudes

Once the orientation of the solar equator is defined, an “observed” heliographic
coordinate system is established over the drawing. The following operations have
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all been worked out with IDL’s map routines which are part of any recent IDL
installation. Note that the drawings are not necessarily precisely circular. Most
of the distortions led to elliptical drawings with a longer vertical axis and a
shorter horizontal one. The ellipticity is taken into account by measuring both
the horizontal and the vertical extent of the circle drawn directly on the screen.
Since IDL allows for non-circular spherical grids, the setup of the surface map
was straight-forward.

Setting up the coordinate system requires the determination of the tilt of the
sun against the observer. Because of the small inclination of the sun’s equator
of 7.25◦, we can use an approximation for the annual variation of the tilt and
apply

B0 = 7.25◦ cos(λ⊙ + 15◦) (4)

to obtain the latitude of the center of the solar disk, there λ⊙ is the solar
longitude for eq. J2000.0. The error compared with the much more complex
IAU2000 rotation model (Seidelmann et al., 2002) is 0.35◦ at maximum. The er-
ror in heliographic longitude is one order of magnitude smaller. The heliographic
positions (Lobs, B) were then measured on the screen with the pixel accuracy of
the digitized images which is between 0.16◦ and 0.26◦ in the center of the solar
disk depending on the size of the photographic reproductions. Note that the
longitude Lobs still refers to the central meridian at the time of the observation;
the conversion into the Carrington frame is described in the following Subsection.

A subjective quality tag q is assigned to each day, essentially evaluating the
quality of fixing the equator. The ranking uses q = 1 for very good, q = 2
for mediocre quality, and q = 3 for unreliable positions. A rotational fitting
typically delivers q = 1; in a number of cases, the fit was not fully convincing
and received q = 2. Orientations obtained from group alignments typically have
q = 3, if several groups were available or the distribution in general supports a
particular orientation, the quality was set to q = 2. We have to keep in mind
though that these position angles are based on the knowledge of spot distribution
and roughly horizontal alignment of bipolar groups as they are observed today.
These characteristics may have been different at Staudacher’s time. The position
angles solely taken from the time of day received q = 3.

4.2. Heliographic longitudes

The longitudes of all the positions measured refer to the meridian going through
the center of the solar disk. The positions need to be converted into the Carring-
ton rotation frame in order to obtain longitudes comparable to modern positional
information. We need to compute the heliographic longitude of the center of the
solar disk for any given time in 1749–1796. The method described by Meeus
(1985) is applied and was implemented in the IDL routines of the Applied Physics
Laboratory at Johns Hopkins University (sun.pro as of 1991 Jul 24). The al-
gorithm shows slight deviations from the IAU2000 rotation model (Seidelmann
et al., 2002) of up to 0.33◦ when going back to 1749. This is the model used by
the HORIZONS ephemerides system at JPL with which we compare here. The
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deviation is entirely linear, and we apply a correction

L0,JPL = L0,JHU + 0.00111(2008− Y ) + 0.041 (5)

to the IDL routine, where L0,JPL and L0,JHU are the sub-observer heliographic
longitudes of JPL and JHU respectively, and Y is the year AD. The heli-
ographic longitude L in the Carrington rotation frame is now simply L =
(Lobs +L0,JPL)mod 360◦. For the observations without any note about the time
of day (mostly before mid-1761), local noon was assumed, corresponding to
11h16m UT.

5. The butterfly diagram

The distribution of 6285 sunspot positions versus time and latitude is shown in
Figure 2. The duration of spots is set artificially to 50 days in order to increase
the visibility of the data without altering the results. Since in this first analysis,
only the spot positions were measured and not the individual spot sizes, the
latitudinal half-width of the spots is also artificial and was set to ∆B = 2◦. The
i-th spot at latitude Bi is distributed in latitude b by a simple quadratic function

di(t, b) = 1 −

(

b − Bi

∆B

)2

, (6)

where di is a density function of time and latitude; it is set to zero outside
Bi ± ∆B. The spots in Figure 2 thus have a total width of 4◦. All these spot
densities are added for a single distribution d(t, b) =

∑

i
di(t, b).

The top panel shows the distribution of all positions measured, i.e. with a
quality tag of q ≤ 3. The middle panel shows only positions with q ≤ 2 while
the lower panel shows q = 1 spots exclusively. The times marked with “Solar
activity minima” are the times of lowest activity according to the sunspot area
measurements presented in Paper I. The minimum times resulting from the Wolf
number series may be somewhat different.

The striking feature of Figure 2 is the deviation of the spot distribution from
the butterfly shape during the period of 1749–1766. These are Cycles 0 and 1
in the cycle counting based on the Wolf numbers. The solar equator is much
more populated by sunspots than we know it today. Also the migration toward
lower latitudes is less obvious, especially for Cycle 1 which is well covered by
observations. The following Cycle 2 also shows a populated equator but the
butterfly shape appears to be already in transition to the typical distribution
which is then exhibited by Cycles 3 and 4.

The findings are apparently not altered when selecting only the more reliable
positions shown in the middle and lower panel of Figure 2.

6. Discussion

Positional measurements of sunspots observed by Johann Staudacher in the
period of 1749–1796 are presented. The data provide us with a butterfly diagram
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Figure 2. Butterfly diagram as derived from the drawings by Staudacher in 1749–1796. The
solar minima were taken from the sunspot area time series of Paper I. The top panels shows all
spot positions, the middle panel only spots with medium and high accuracy, the lower panel
only high accuracy.
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of almost five solar cycles covered. The distribution shows a surprising behaviour.
The first two cycles (Cycle 0 and 1) exhibit a different behaviour than the one
we know from the “modern” butterfly diagram as recorded since 1874. The
highly populated equator indicates the presence of a dynamo mode which is
symmetric with respect to the equator. We do not have the magnetic polarities
though. Nevertheless, a polarity change across such a populated equator seems
very unlikely.

An interesting option is a differential rotation different from today. The as-
sumptions made for the rotational fits and matches will then be less suitable. It
is unlikely that the differential rotation changed dramatically during the 18th
century, but it will be an interesting topic for future research to actually derive
the rotation profile from the spot drawings.

The results presented here may also be affected by a gradual change of observ-
ing skills and knowledge of Staudacher. The precise reproductions of the solar
eclipses – with the first one drawn in 1753 – indicate, however, that Staudacher
projected the image directly on the paper he used for drawing. Such direct copies
are likely to be fairly accurate at different stages of knowledge and experience.
While there is certainly some development of skill in detecting small sunspots,
the positional accuracy should remain fairly constant.

The sunspot cycle has not always shown sunspots as frequent as during the
last 250 years. Strongly reduced activity was observed in the Maunder minimum
period from about 1645 to 1715. The very few spots were then mostly present
on the southern hemisphere (Ribes and Nesme-Ribes, 1993), apart from very
few exceptions, until 1711. The cycle near the end of the Maunder minimum
starting in about 1713 shows both hemispheres being populated again, with a
considerable number of spots below 10◦ heliographic latitude. Two activity cycles
are missing before the results presented here take over. It was recently suggested
that the north-south asymmetry may also be relevant for the prolonged Cycle 4
(Zolotova and Ponyavin, 2007).

A number of dynamo models show the appearance of grand minima as a result
of nonlinear effects between the magnetic fields and the differential rotation
(Tobias, 1997; Küker, Arlt, and Rüdiger, 1999; Bushby, 2006). Recent mean-
field models with a meridional circulation controlling the solar cycle have been
successful in constructing solar-like activity cycles (Dikpati and Charbonneau,
1999). The butterfly diagram is thought to be a direct consequence of the
equator-ward flow at the bottom of the solar convection zone in these models.
An interesting fact is the close excitation limits of the dipolar and quadrupo-
lar dynamo modes in these flux-dominated mean-field dynamos (Dikpati and
Gilman, 2001). A transient dominance of the quadrupolar (symmetric with re-
spect to the equator) mode can either be explained by the chaotic nature of
a deterministic system (Weiss and Tobias, 2001) or by stochastic variations in
the turbulence characteristics (Brandenburg and Spiegel, 2008). Such variations
have led to distortions of the butterfly diagram very similar to the ones observed
by Staudacher in the 18th century. The observations utilized here support the
idea that the solar dynamo is modulated by nonlinear interactions between the
dipolar mode – dominant at the present time – and a mode of quadrupolar
symmetry.
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Since the inspection and analysis requires a lot of man power, we have derived
here only the positions of the individual spots, but have no information on the
sizes of individual spots. There is very likely information still hidden in the
individual areas, but we have to postpone these measuring efforts to a future
project. The sunspot positions of 1749–1796 are available on request from the
author.
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