e

Three Centuries of Validated
Monthly Sunspot Groups Numbers

Leif Svalgaard

Stanford University

Jan. 2020
Sun-Climate Symposium 2020, Tucson, AZ

A Synthesis

2020-01-25  https:/Three-Centuries-of-Validated-Sunspot-Group-Numbers.pdf 1



We are Beginning to Understand the
Complicated Physics of that ‘Great System’

A Systems Approach: Everything Must Fit

................ .

von Zeipel’s Theorem = ' Solar Convection |
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Faraday wrote to R. Wolf on 27th August, 1852: “| am greatly obliged and delighted by
your kindness in speaking to me of your most remarkable enquiry, regarding the
relation existing between the condition of the Sun and the condition of the
Earths magnetism. The discovery of periods and the observation of their accordance
in different parts of the great system, of which we make a portion, seem to be one
of the most promising methods of touching the great subject of terrestrial magnetism...
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These are exciting times for Solar Physicists



Outline

 Observed EUV, Solar Microwave, and
Magnetic flux records



Sources of EUV Data: SEM, SEE, EVE
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<102.7 nm to ionize molecular Oxygen
J + _

This reaction creates and maintains
the conducting E-region of the
lonosphere (at ~105 km altitude)

Solar Spectrum (W/m2)inm

Integrated EUV Flux below 103 nm
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The detectors on the TIMED and SDO
satellites agree well until the failure of
the high-energy detector on EVE in
2014. We can still scale to earlier levels
[open symbols]. 2016 not yet correctedl.



Creating an EUV (<103 nm) Composite

Analysis of EUV (below 103 nm) Measurements
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SEE and EVE agree nicely and we can form a composite (SEE,EVE) of them.

SEM is on a different scale, but we can convert that scale to the scale of
(SEE,EVE). The scale factor [green line] shows what to scale SEM with to

match (SEE,EVE) [SEM*, upper green curve], to get a composite of all three

(SEM*,SEE,EVE) covering 1996-2016, in particular the two minima in 1996
and 2008.
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Magnetic Flux from MDI and H

Ml

Match F10.7 Microwave Flux

F10.7 Microwave Flux Matches Unsigned LOS Magnetic Flux on Solar Disk
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2002 2009
Disk Total Magnetic Flux vs. EUV
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There is a ‘basal’ level at solar minima. Is this the case at every minimum?
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EUV Composite Matches F10.7
and Sunspot Numbers
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Magnetic Flux from MWO Tracks
MDI-HMI and the F10.7 Flux
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MWO magnetic flux from digital magnetograms can be put on the MDI-HMI
scale and, just as MDI-HMI, tracks the F10.7 flux very well.




Magnetic Flux back to 1976 and
the Sunspot Group Number (SS16)
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Magnetic Flux is Linear Function of Sunspot Group Number
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Scaling MWO to MDI-
HMI and WSO to the
result yields a good
measure of the LOS
unsigned full disk
magnetic flux which
turns out to be a
linear function of the
Sunspot Group
Number (S&S 2016).

Even at the limit of
zero Groups there is
still a significant
amount of solar
magnetic flux as
needed to explain the

interplanetary flux. .,



What do we have so far? #1

We can construct an observed EUV composite
back to 1996

We can construct an observed Magnetic Flux
composite back to 1976

The EUV matches the Magnetic Flux

The Microwave Flux [1-10 GHz] matches the
EUV, Magnetic Flux, and Sunspot Number

The magnetic flux matches the Sunspot Group
Number linearly

There Is no good evidence of activity at solar
minima being different between minima the past
/70 years

11



Outline

* Deriving EUV [etc] from Geomagnetic
Dally Variations

12



The Diurnal Variation of the
Direction of the Magnetic Needle
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Zenith Angle Dependence Discovered

arc min
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Mormalization Factor for r¥Y

The Magnetic Signal |
at Midlatitudes .

Geomagnefuc A current system in the ionosphere
Observatories is created and maintained by solar
EUV radiation

The effect in the Y-component is rather uniform for latitudes between 20° and 60©
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The Shape of the Magnetic
Signature Is Remarkably Stable

Diurnal Variation of Geomagnetic East Component for 2008

UT Day Hour UT Next Day

Here we walk around the Globe to show that the variation [deviation from the
mean] is the same from station to station, only differing slightly in amplitude,
thus lending itself to straightforward normalization [e.g. to Niemegk, NGK]. 17




Normalized Observed Diurnal Ranges of the
Geomagnetic East Component since 1840

Range of Diurnal Variation of East Component for all Stations (129 of them)
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We plot the yearly average range to remove the effect of changing solar zenith
angle through the seasons. A slight normalization for latitude and underground
conductivity has been performed. Data used comprise 48 million hourly values.18



The Physics of the Daily Variation

Dynamo

lonospheric Conducting Layers
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than has hitherto

Winds moving the charges across the magnetic field
creates a dynamo current, whose magnetic effect we
can observe at the surface as Graham discovered

electrons are high

enough.
But why? 19

been supposed.”
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Electron Density due to EUV

The conductivity at a given height is proportional to the

J electron number density Ne. In the dynamo region the
+ = jonospheric plasma is largely in photochemical

GE + hb - E}E +é€ equilibrium. The dominant plasma species is O*2, which

is produced by photo ionization at a rate J (s™') and lost

through recombination with electrons at a rate a (s™),

(r
ﬂ;— +e” - 0+0 producing the Airglow.\

< 102.7 nm

The rate of change of the number of ions N;, dN,/dt and
in the number of electrons N,, dN./dt are given by dN,/dt
=Jcos(x) - a N; N, and dN./dt = J cos(x) - a N, N..
Because the Zenith angle y changes slowly we have a
guasi steady-state, in which there is no net electric
charge, so N; = N, = N. In a steady-state dN/dt = 0, so
the equations can be written 0 = J cos(x) - a N?, and so

finally N = \/(J at cos(x))

Since the conductivity, 2, depends on the number of electrons N, we expect that 2
scales with the square root V(J) of the overhead EUV flux with A < 102.7 nm. 5,




Theory tells us that the conductivity [and thus rY] should vary
as the square root of the EUV [and F10.7] flux, and so it does:
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Reconstructions of EUV and F10.7

Reconstruction of F10.7 Flux and EUV < 103 nm Flux
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The Observational Facts are Not New

THE AMERICAN JOURNAL OF SCIENCE AND ARTS. Second Series

ART. XVI.-Comparison of the mean daily range of the Magnetic Declination,
with the number of Auroras observed each year, and the extent of the black
Spots on the surface of the Sun, by ELIAS LOOMIS, Professor of Natural
Philosophy in Yale College. Vol. L, N0.149. Sept. , pg 160.

This comparison seems to warrant the following propositions :

1. A diurnal inequality of the magnetic declination, amount-
ing at Prague to about six minutes, i1s independent of the
changes in the sun’s surface from year to year.

2. The excess of the diurnal inequality above six minutes as
observed at Prague, is almost exactly proportional to the amount
of spotted surface upon the sun, and may therefore be inferred
to be produced by this disturbance of the sun’s surface, or

both disturbances mayv be aseribed to a common cause.

19t century ‘Inequality’ = deviation from [i.e. ‘not equal to’] the mean 24




Loomis’ Evidence for his Proposition
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What do we have so far? #2

The Regular Diurnal Variation of the Geomagnetic Field
depends on the Solar Zenith angle and Solar Activity,
e.g. as given by the Sunspot Number (Wolf, Gautier,
1852) and has been widely observed at many
geomagnetic observatories since its discovery in 1722

The Amplitude of the Diurnal Variation is strictly
proportional to the of the EUV [and F10.7]
Flux

We can reconstruct EUV and F10.7 [and similar indices
like Mg Il & Ca Il] back to the 1740s, and thus also the
Total Magnetic Flux http://www.leif.org/research/Reconstruction-of-
Solar-EUV-Flux-1740-2015.pdf

All our solar indices show that solar activity [magnetic
field] is nearly constant at every solar minimum [apart
from tiny residuals] for the past 275 years

26



Outline

* Deriving Solar Wind Magnetic Field from
Geomagnetism and Sunspots

27



Geomagnetic Storms Caused by Sun

But the Aurorae are Due to that “Other
Cause” (The Solar Atmosphere)

As are also the great Solar Observations of Flares
magnetic disturbances W‘; n:u "
associated with them. o

x®

perturbations superimposed on the
daily variation also varied in phase
with the newly discovered Sunspot
Cycle.
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Electric Current Systems in Geospace

Different Current Systems &= Different Magnetic Effects _~ - MAGNETOSPHERIC FIELD |
%
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We can now invert the Solar Wind — Oppositely charged particles trapped in the

Magnetosphere relationships... Yap Allgn Belts drift in opposi'fe .directions 129
giving rise to a net westward ‘Ring Current’.



‘Different Strokes for Different Folks’

* The key to using geomagnetism to say
something about the sun is the realization
that geomagnetic ‘indices’ can be constructed
that

, SO can be used to
disentangle the various causes and effects

* |n the last decade of research this insight
(e.g. Svalgaard et al. 2003) has been put to
extensive use and a consensus has emerged

30



The IDV Geomagnetic Index

Since the daily variation is fairly regular from day to
day we can eliminate it by considering the difference
between the fields on consecutive days

Further suppression of the daily variation can be
achieved by working only with the field during night
hours or the average over a whole day

That led to the definition of the Interdiurnal Variability
Index [IDV] as the

which has been found to be related to the
neliospheric magnetic field impinging on the Earth

DV [from several stations] is a Global index
DV is a modern version of the u-measure (Bartels)

31



Applying the relationship we can reconstruct

HMF magnetic field B with Confidence:

InterDiurnal Variability Index IDV and Reconstructed Heliospheric Magnetic Field B
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HMF B related to Sunspot Number

1:}4MF Strength B as a Function of SQRT(Sunspot Number) | The main sources of the equatoria|

components of the Sun’s large-scale
magnetic field are large active regions.
If these emerge at random longitudes,
their net equatorial dipole moment will
scale as the square root of their
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Network Field and Solar Wind Field

Range rY and HMF B at 1 AU
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The magnetic field in the solar wind (the Heliosphere) ultimately arises from the magnetic field
on the solar surface filtered through the corona, and one would expect an approximate
relationship between the network field (EUV and rY) and the Heliospheric field, as observed.

For both proxies we see that there is a constant ‘floor’ upon which
the magnetic flux ‘rides’. | see no good reason that the same floor

should not be present at all times, even during a Grand Minimum.
34



Coronal Brightness Correlates with
Heliomagnetic Field at 1 AU

Correlated Variations of Coronal Brightness Index and Heliomagnetic Field Strength
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What do we have so far? #3

Consensus reconstruction of Heliospheric magnetic field
B for centuries past

HMF B also has a ‘floor’ at every solar minimum,
probably including the Maunder Minimum, and certainly
the Dalton and modern Minima.

The solar cycle variation of B above the floor is probably
controlled by the CME rate [varying with Square Root of
the sunspot number]

There is a good relationship between HMF B and the
Network Magnetic Field [EUV from diurnal geomagnetic
variation, rY]

In particular, there Is no clear secular increase in solar
activity the past 300 years
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Magnetic Flux back to 1976 and
the Sunspot Group Number (SS16)

30

Magnetic Flux is Linear Function of Sunspot Group Number
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Scaling MWO to MDI-
HMI and WSO to the
result yields a good
measure of the LOS
unsigned full disk
magnetic flux which
turns out to be a
linear function of the
Sunspot Group
Number (S&S 2016).

Even at the limit of
zero Groups there is
still a significant
amount of solar
magnetic flux as
needed to explain the

interplanetary flux. .-



New Wolfer Backbone (Monthly)
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Svalgaard & Schatten (2016) used a 'backbone’ method to reconstruct the Sunspot Group Number since
1610. Five backbones where used, centered and anchored on the Wolfer Backbone, which then defines
the scale of the series. Backbones are constructed by scaling observers directly to the primary observer
(e.g. Wolfer) without daisy-chaining through intermediary observers thus avoiding accumulation of errors.
Each observer is scaled to Wolfer and we check that the relation is linear with insignificant offset, defining
a k-value. The data is taken from Svalgaard (2019) for the newly digitized Ztrich drawings (ETH) and
from Vaquero et al. (2016) for all other observers. To improve the time resolution (better determination of
error bars) the new Wolfer Backbone has monthly resolution rather than the previous one's yearly values.

With a few exceptions (e.g. RGO) we use ALL the data from ALL observers



How Well Can We Reconstruct
Wolfer’'s Count From Wolf’s?

14 4 Wolfer 1876-1803

Monthly Means

R =10.9335

y="1.6138x
R%=0.931
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Comparison Wolfer Group Counts and Scaled Wolf Counts
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Learning curve...
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Aperture 37 mm X20

We can reproduce the
Wolfer count from
Wolf (ST) with only
7% ‘unexplained’
variance

The relationship is
linear and proportioré%l



Early Regressions to Wolfer

Comparison Wolfer Group Counts and Scaled Tacchini Counts
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Just as for Wolf, the reproduction
of Wolfer is very good ( only 5%
unexplained variance.

Comparison Wolfer Group Counts and Scaled Schmidt Counts
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Same for Schmidt in Athens...
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Later Regressions to Wolfer
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Compilation of Early Observers

Observed and Reconstructed Monthly Group Numbers on the Wolfer Scale
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Composite of All Observers, Il

1920-1930

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

930-1940

Yearly average ['f\';léw
Yearly average (Old)

When they match

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

Using the scaling factors (k-values) for the best fit for each observer they are all
put on the Wolfer Scale and plotted with different colors per observer for each
decade. The 1-o error (bottom yellow curve) is calculated as the standard
deviation for the month divided by the square-root of the number of observers.
Large blue dots show the yearly average group number (GN). Yellow circles show
the old (S&S16) yearly GNs. 43




Composite of All Observers, Il
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Composite of All Observers, |

1860-1870
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New Wolfer BB Agrees with Old

Wolfer Group Number Backbones

GN

Yearly Values
R?=0.998

Yearly BB (S&S 2016) Monthly BB (S 2019)
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This Figure compares the yearly GNs for the old Wolfer Backbone (red curve) and the new
Backbone presented here (blue curve). The two agree within their respective error bars.
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Sporer Backbone Around Cycle 11
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All Linear Relationships ...

Schwabe Backbone V2
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Composite Sunspot Group Number Series

Normalized Sunspot Group Number Backbones
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,4 . Relationship rY vs. Group Number The Schwabe, Spoérer, and RGO backbones

' overlap with the anchor Wolfer Backbone and can
thus be scaled to the reference Wolfer Backbone.
The scaling is found to be linear to high accuracy.
The new composite is statistically indistinguible
y=04333 (x-32.123) from the published S&S 2016 composite
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The four individual new backbones each have the
e same relationship with the geomagnetic diurnal
003% 40 45 %0 % 60 8 ) rgnge variation [at left with different colors] 51
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Reconstructions of EUV, F10.7, and GN

Reconstruction of F10.7 Flux and EUV <103 nm Flux
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New Composite Sunspot Group Number Series Compared to the Geomagnetic Diurnal Variation
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As the Group Number and the EUV both depend simply on the solar magnetic field
it is no surprise that they agree. If they did not, you would have to explain why nex.




The Backbone Method, pro et con

Limited to observers with long-term [and good] records in order to get a
good enough regression [selection effects?]

How to deal with non-linear regressions [if any] and with missing data

No accumulation of errors within the backbone [only one comparison with
the primary observer, i.e. no daisy chaining]

Possibility of undetected intra-backbone drifts
Refusal of some people to grasp the basic idea

Each backbone can be treated as an independent unit: changes to one do
not impact the others

Because several observers contribute to each average [e.g. yearly or
monthly], error bars can be estimated

A small (about 3) number of backbones limits the effect of daisy chaining
from one to the next, especially if the ‘middle’ one is chosen as the
reference scale, so don’t have many ‘mini’-backbones

Each solar minimum [with almost no spots] provides a ‘reset’ of the errors
preventing the oft claimed run-away ‘monotonic’ increase with time

Constructing a backbone is a fair amount of work, e.g. with quality control
There are probably more cons...
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The Simple Average of ALL Observers is as
Good as Our Carefully Constructed Backbones

14

RGO Backbone GN vs. Plain Average Group Number
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Observer #418 (MWO Central Disk) is, of course, omitted

As already remarked in
S&S16 “It is remarkable that
the average number of
groups by all observers with
no normalization at all
closely matches the number
of groups reported by H&S
showing that their elaborate
and obscure normalization
procedures have almost no
effect on the result.”

This is also true for our
backbones, meaning that
we could simply dispense
with the normalization with
its perceived potential

problems. 54



The Simple Average of ALL Observers is as
Good as Our Carefully Constructed Backbones

This holds also for the
Schwabe Backbone. When

Schwabe Backbone GN vs. Plain Average Group Number
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] o small.

14 Raw Average GN

" 1 ) ; ) : : ; . . | SO, It seems that we have a

nice non-parametric, non-
overlapping, non-k-value

Raw Average GN of ALL Observations

4000 | regression, no selection
Schwabe Backbone N per 1 3500 . .
| Year effect, no ranking, no pair-
T 3000

12500 | WISe comparison, no ADF- or

12000 | PDF-based, non-whatever

T 1500 .

11000 | Method for constructing a

+s00 | backbone including

1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 eStImatlng Its time Varylng

error bars [from the spread

of the observations] 55

[ QR N T S R N L = T I = - T s
11 1 1 1 1 1




The Simple Average of ALL Observers is as Good
as Our Carefully Constructed Backbones

For the RGO and Schwabe
Raw [ALL] averages we were
lucky that the two ‘observers’
[RGO and Schw.] evidently
were [seeing and] reporting
group numbers close to the
typical [and hence average]
observers of their time:

Spérer Backbone GN vs. Plain Average Group Number
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But it doesn’t have to be so for all our backbone observers. Sporer is an
example, seeing slightly more [reddish curve] than the average observer®



Full Sporer Backbone 1841-1928

Sporer Backbone GN vs.Plain Average Group Number (Full)
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The difference between Spdrer and the overall
average seems to increase with time after 1880.

Before 1881, Sporer’s group
count was 4% larger than
average, but abruptly that
changed by 1881 so that
Sporer’s count became
iIncreasingly smaller than
average as time went on.

The simplest explanation
would be that Spoérer changed
his telescope and/or his way of
counting groups. On the other
hand, other backbones show
the same discontinuity around
1881, suggestive of the (at first
sight unlikely) possibility that
observers at large after 1880
were using better telescopes
and/or had developed a better
understanding of what is a
group. o/



The 1881 Discontinuity

Schwabe Backbone GN vs. Plain Average Group Number

Raw Average GN of ALL Observations
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More Backbones vs. Raw Averages

Locarno Backbone GN vs. Plain Average Group Number

Raw Average GN of ALL Observations
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W-index, Rz, rY and GN Correlations

Bartels' W-index vs. rY 0 Range rY as a Function of SQRT(EUV)
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Reconstructions of EUV and F10.7

Reconstruction of F10.7 Flux and EUV < 103 nm Flux
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Outline

« Comparing the Solar Flux(es) to the
Sunspot (and Sunspot Group) Numbers.
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Composite Normalized Sunspot
Group Number Series

Normalized Sunspot Group Number Backbones

14
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_ : Yearly Val
E Sporer Cycle 11 is large early values -
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,4 . Relationship rY vs. Group Number The Schwabe, Spoérer, and RGO backbones
' overlap with the anchor Wolfer Backbone and can
thus be scaled to that reference Backbone. The
scaling is found to be linear to high accuracy. The
new composite is statistically indistinguishable
y=04333 (x-32.123) from the published S&S 2016 composite

R?=0.9629

GN Yearly Values
1840-2019
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10

The four individual new backbones each have the
e same relationship with the geomagnetic diurnal
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Choose the Lesser Miracle

Any researcher [nn] who claims he has a method to dowse or divinate solar activity
can express his result as a time series of Group Numbers (GN[nn]), or
equivalently of Sunspot numbers (SN[nn]), with yearly resolution. GN derived from
the diurnal variation (GN[rY]) are the values we would expect, assuming that the
terrestrial response has not undergone a dramatic [~40%] change in 1881. So we
must expect GN[nn] = GN[rY] within their respective error bars. If it is not, we have

two possibilities:

A: Researcher nn is mistaken and his method does not work as claimed, or
B: The response of the terrestrial upper atmosphere to solar activity changed
dramatically in 1881 (this would be an unexpected, new solar-terrestrial effect)

David Hume (in Section X of Enquiry Concerning Human Understanding [1748])
argued that a rational person should never believe that a miracle (he is using the
word ‘miracle’ in the everyday sense, meaning something that is merely out of the
ordinary) had actually taken place unless it would be a greater miracle that the
person reporting the miracle (i.e. that GN[nn] is not = GN[rY]) is simply mistaken.
We should always believe whatever would be the lesser miracle, which in our case
would be choice A.
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The Diurnal Variation Shows the
1881 Discontinuity Very Clearly

Diurnal Variation rY and Plain Average of Group Numbers
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RZ = (.964
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14

a transitional period 1881-1910. Thi
means that one cannot assume the
statistical properties of the latter

population to hold about the former.

The ratio between slopes is 1.39

We see the same two populations: one
before 1881 and one after ~1910 with

S
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Four Speculative Populations of GNs
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The different populations are the result both of evolving technology, e.g achromatic

lenses, and of improved understanding of the definition of a group (blue curve). The
diurnal variation (reddish curves) of the East component of the geomagnetic field
relies primarily on measurements of an angle [the Declination] and as such does not
require calibration and thus does not evolve with time. We speculatively identify four
populations as shown above.

Because of the evolving populations, the backbones themselves [no matter how

constructed] must be normalized to a common standard [Wolfer’s].
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Fundamental Issue: What Is a Group?

Definition has

changed over time - Wolf (1857)

counted only one
group on that day.

Modern observers
|(Cortesi, even me)
Jwould count at

least three groups.

Ve

Staudach

100 2001.10.34. 323
/

T L S. CorTes

Contrary to common belief, counting
spots is easy, counting groups is hard

T ‘
— : Corte5| counted 8 groups.

\\\\ Early observers would likely

Locarno M &7 127 have counted only 5 groups
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Construct Telescopes with the Same
Flaws as Typical 18" Century Ones
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Modern Observers See Three Times as
Many Spots as The Old Telescopes Show

Comparing Sunspot Relative Numbers Observed by ATS and 'Modern' Observers
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Brewing Consensus:. GN vs. SNv2

Comparison Sunspot Group Number and Relative Sunspot (Wolf) Number
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It is clear that the series before, say, 1750 needs more work




[he Waldmeler Effect = :
e vwa eler ecl ls
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Waldmeier Effect

H&S GSN* before 1885

SSN Version 2

H&5 GSN™ after 1885

Growth Rate of Sunspot Cycles
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Group Number to Magnetic Flux

LOS Total Solar Disk Unsigned Magnetic Flux as a Function of Sunspot Group Number
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Three Centuries Magnetic Flux and TSI

Estimated LOS Total Solar Disk Unsigned Magnetic Flux
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Cosmic Ray Modulation by HMF

Inferred Cosmic Ray Modulation Parameter
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A New Paradigm (Different Populations)

« We shall therefore argue that the set of new Group
Number series resembling the H&S series actually
accurately represents the archived raw observational
data (assembled first by Wolf and later by H&S and
today curated by Vaquero)

* And that the secular increase (from one population to
the next) in archived Group Numbers is due to
evolving technology and understanding of what makes
a group, rather than to errors and mistakes committed
by the researchers

« And that the true evolution of solar activity can only be
validated by agreement with other manifestations of
said activity (often derisively called ‘proxies’) of which
there are many

76



Conclusions

« From the fact that all reconstructions agree for the 20t
century one must conclude that the different methods
basically work and that therefore it is not productive to
argue which is ‘better’ or which has severe errors or
uses ‘unsound procedures’.

 The Revised Sunspot Number (v2) and the Svalgaard &
Schatten (2016) Group Numbers vary as several solar-
activity proxies for at least the last 300 years,

e supporting the New Paradigm that there are at least two
different ‘populations’ of observed Group Numbers [with
a dividing year in the 1880s]. Not taking this into account
produces =40% artificially lower numbers [that should
not be used] for most of the 19" century and further
back.
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Abstract

Svalgaard & Schatten (2016) used a 'backbone' method to reconstruct the Sunspot Group
Number since 1610. Five backbones were used, centered and anchored on the Wolfer
Backbone, which then defines the scale of the series. Backbones are constructed by scaling
observers directly to the primary observer (e.g. Wolfer) without daisy-chaining through
intermediary observers thus avoiding accumulation of errors. To improve the time resolution
(with better determination of error bars) the new Backbones have monthly resolution rather
than the previous one's yearly values. There seems to be several different ‘populations’ of
sunspot group counts by observers over time. One cannot blindly assume the statistical
properties of one population to hold about the other. Speculatively we identify four populations
the last 400 years. One major population belongs to years before 1881 followed by another
major one after ~1915, separated by a transitional period between 1881 and ~1915. Those
major populations differ by ~40%. The difference is poorly understood, but may be due to
evolving telescope technology and/or increasing understanding of what constitutes a group.
The average number of groups over a year by all observers with no normalization at all
closely matches (i.e. are proportional to) the yearly numbers of groups in backbones
constructed within each population showing that elaborate normalization procedures have
almost no effect on the result. This means that we can dispense with the normalization
altogether; although adjacent, overlapping backbone segments still have to be stitched
together by par-wise comparison. So, it seems that we have a nice non-parametric, non-
overlapping, non-k-value-regression, non-selection-effect, non-ranking, no pair-wise
comparison, no ADF- or PDF-based, non-whatever method for constructing a backbone
segment including estimating its time-varying error bars (from the spread of the observati@as).



