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Cosmic ray variations 
Solar Cycle length
Magnetic polarity reversal
Heliospheric current sheet
Precursory features

What 14C and 10Be tell about the Maunder Minimum

Precursory features

Any similarity to the last solar cycle minimum?  
Any information on rotation? 
Any impact on climate?   



14N + n →14C + p

Air shower in the atmosphere

Galactic cosmic  rays

14C and 10Be : Proxy of past cosmic ray variations 
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Here are the transitions of the solar cycles during the past millennium.
These are the raw data of carbon-14 obtained , and these are the annual data, and the frequency analyses of the data
For each shaded area give these value as the mean length of the eleven-year solar cycle, and so they are changing in time
Associated with the centennial scale variation, such as Maunder, Spoerer and Medieval.

These curves here are the reconstructed sunspot number based on carbon-14 or beryllium-10 with decadal time resolution
And had not ve revealed the long-term changes in solar activity in the past, but there had been two 




Onset of the Maunder Minimum  
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Maunder Minimum (1645-1715 AD)
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Vaquero et al., 2011

Two 12-13 year cycles before the onset

Miyahara et al.,2010

Fig1. Wavelet spectrum of carbon-14

~27 yrs for two cycles~9 yrs

Vaquero et al., 2011

Both suggest gradual onset



Spoerer Minimum (1416-1534 AD)

13-yrs

(a)14C content in tree rings
�Miyahara et al.,�

(b) Wavelet Spectrum of 14C

Miyahara et al., 2010
Onset of the Spoerer Minimum

Stretched solar cycle
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(c) Band pass filtered 14C
dotted�1-25yrs
solid: 10-25yrs

Two 13yr cycles before the onset



Two lengthened cycles
before the onset of the Maunder Minimum

First lengthened cycle 
>    weaker polar field

Second lengthened cycle
>     both weakened polar field

& slower meridional circulation

~27 yrs for two cycles~9 yrs

Vaquero et al., 2011
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Cosmic ray variation at the Maunder Minimum

Tree ring: 
No dating error
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� 1-year scale enhancements
� 30-50% higher at negative polarity
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There is another parameter controling cosmic ray flux at the earth,
That is the polarity of solar dipole magnetic field. The sun has dipole magnetic field as the earth,
But is flipped every ten years at maximum of decadal solar cycle.

It change the large-scale circulation of cosmic rays in the heliosphere,
And thus cause the slight change in the shape of variation at every other cycle.
Here is the observed cosmic rays at the past 50 years, 
Showing some asymmetry between the even cycles and the odd cycles, which result in the 22-year component.
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Based on 
Kota&Jokipii, 1983; 2003

Flattened current sheet and cosmic-ray spikes
GCRs

Earth

The Sun

Earth

The Sun GCRs

Miyahara et al.,2009

Tilt angle: 0 degree
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Any similarity to the last solar cycle minimum?

Closer to AD1954….
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Modern:
26.24 days  (Synodical) (Sidereal : 24.47days�

Maunder Minimum:
25.3~26.1 days (@1642-1644, Eddy1976)
27 days (@1642-1644, Abarbanell1980�
27.5 days (@1684+1686, Ribes1993)
27.5 days (@1684, Sidereal:25.5days, Flamsteed1684)
28.5±0.5days (@1684, Vaquero2002)

Rotation rate at the Maunder Minimum (equatorial)

ModernMaunder

Abarbanell1980

speed

latitude

Maunder



Myou-hou-in Nikki (diary)
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Weather records around the Maunder Minimum
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Lightening “27-day” cycle (very preliminary)

After the Maunder Minimum (AD1723-1727)�

�

�

�

��

��

������������������ �����
25-26day

Maunder Minimum�cycle minima�

26.7day

Co
un

t

Modern 

!" !# $" $# %" %#"!%&
'("(!After the Maunder Minimum (AD1723-1727)

27-28day

�� �� �� �� �� ��

�

�

If the altitude of Active region is known
> Estimation of rotation rate at known latitude

If not known,
solar cycle variation of active regions
(larger variation)

Duration between events
Co

un
t

Duration between events

High latitude
active region?



Possible pathways for 
solar influence on climate change
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Here is the schematic picture how the change of solar activity can affect the cliamte.
One is the irradiance change, that is the change in the primal source of heat. 
And the second is the spectral irradiance, which is Ultra Violet in this case, that promotes the chemical reaction and produce ozone in the stratsphere.
And there is another factor controling the chemical reaction, that is solar wind particles, which produce nitric oxide and in this case destruct ozone.

And the other possibility is the galactic cosmic rays, whose flux has been controlled by solar magnetic activity.
They produce cosmic ray air shower, the shower of charged particles in the atmosphere, so they may increase the nuclei of cloud or charge the aerosols
To promote the cloud formation.

The variability of cosmic rays is very large, and it is almost 20 percent over decade, but
The process is very complex and has not been clarified, and being one most unknown factor in this chart.
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~4 sigma
Humidity anomaly

Superposition of four 1-year spikes for 14C (GCR) and 18O (climate)

Yamaguchi, Yokoyama, Miyahara et al., PNAS, 2010

No time lag!  

GCR anomaly 



What 14C and 10Be suggests for the Maunder Minimum

Solar Cycle length � �14 years
Magnetic polarity reversal   :  YES  (�28-year period)

Onset :  two preceding 12-13 year cycles

Cosmic ray variations :  Strong 28-year component

Heliospheric current sheet   :  More flattened 

Summary�

Heliospheric current sheet   :  More flattened 

Any impact on climate?   :  YES! (possibly through GCR)

Any similarity to the last solar cycle minimum?  :

More extreme situation at the Maunder Minimum

Any information on rotation? : 

Lightening data as well as sunspot record may help



Possible influence of solar rotation on clouds 
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R= 0.26
p = 4.04562e-06

Cosmic rays (inverted, blue) vs OLR

F10.7 radio flux (red) vs OLR

Comparison between cosmic rays, solar radio flux with OLR
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Red: Solar flares (Coronal Mass Ejections (CMEs))
Black: Current sheet passage 
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AD 2000  (solar max)*+,- ./+,- .0+,1 ./+,1 *+,1 +,2+,3.4,3+,.4,52+,5 6+74++74
*+,- ./+,- .0+,1 ./+,1 *+,1 +,2+,3.4,3+,.4,52+,5 +4.+

Correlation Correlation 
coefficientcoefficient

Lags (days)Lags (days)

Response to GCRs is local, but localized  to the areas that can control
Hadley cell, monsoonal activity, and  cyclone activity etc. 
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R= - 0.42
p = 5.99209e-12

Cosmic rays (inverted, blue) vs OLR

F10.7 radio flux (red) vs OLR
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Solar differential rotation
Differential Rotation Butterfly diagram

Red �F10.7 solar radio flux
Blue : galactic cosmic rays
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1982Aug-1983July1981Aug-1982July

Influence of QBO on 27-day signal in OLR? 
Hong, Miyahara et al., JASTP, 2011

Year AD

Large 27-day variability
at the 11-year solar cycle maxima

> Separation of the duration by

�Solar Max/Min
�QBO phases



QBO East/ Solar Max QBO West/ Solar Max

QBO East/ Solar Min QBO West/ Solar Min

Influence of QBO on tropospheric cloud? 
Hong, Miyahara et al., JASTP, 2011

> QBO influence on tropospheric cloud activity

ØStronger Stratosphere-Troposphere interaction at solar max?
(which might contribute to 2-9yr short-term climate variability)





Solar modulation of cosmic rays & Drift effect  

Jokipii&Kota 2007
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Important parameters for the pattern of cosmic-ray variation
1. Solar polarity
2. Tilt angle of heliospheric current sheet

Heliosphere
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Solar modulation of Galactic Cosmic Rays (GCRs)

�Charged particles (mainly protons)
�Accelerated at supernova remnant

HeliosphereHeliosphere

@ ~ edge of the heliosphere

Webber & Higbie 2010

@Earth    

�diffusion
�advection by solar wind
�drift

GCR

B

CME

Parker spiral
(Wavy current sheet)

Solar wind

Now I would like to talk a little about the modulation of cosmic rays in the heliosphere.

The galactic cosmic rays are attenuated in the heliosphere, and Voyagar 1 satellite has
Measured the energy spectrum of the cosmic rays through the heliosphere. 
Here is the energy spectrum of cosmic rays, and here is the spectrum at the edge of the heliospehre
And here is for the earth. 
Since the shielding ability is not constant,  the intensity of cosmic rays change by 20 to 30 percent over solar cycle.

The cosmic rays are modulated by diffusion and the advection by solar wind, but also the large scale circulation of the cosmic rays in the heliosphere
caused by the drift effect along the wavy current sheet plays important role.
Since the direction of the circulation will inverted when solar dipole magnetic field is reversed, so we the flux of the cosmic rays 
At the earth is dependent on the polarity of solar dipole magnetic field. 
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Carbon-14 in annual tree rings

Here are the transitions of the solar cycles during the past millennium.
These are the raw data of carbon-14 obtained , and these are the annual data, and the frequency analyses of the data
For each shaded area give these value as the mean length of the eleven-year solar cycle, and so they are changing in time
Associated with the centennial scale variation, such as Maunder, Spoerer and Medieval.

These curves here are the reconstructed sunspot number based on carbon-14 or beryllium-10 with decadal time resolution
And had not ve revealed the long-term changes in solar activity in the past, but there had been two 



