Building a Sunspot Group Number Backbone Series

Leif Svalgaard Stanford University

$3^{\text {rd }}$ SSN Workshop, Tucson, Jan. 2013

Why a Backbone? And What is it?

Building a long time series from observations made over time by several observers can be done in two ways:

- Daisy-chaining: successively joining observers to the 'end' of the series, based on overlap with the series as it extends so far [accumulates errors]
- Back-boning: find a primary observer for a certain [long] interval and normalize all other observers individually to the primary based on overlap with only the primary [no accumulation of errors]

When several backbones have been constructed we can join [daisy-chain] the backbones. Each backbone can be improved individually without impacting other backbones

Carbon Backbone

The Backbones

- SIDC Backbone
- Waldmeier Backbone
- Wolfer Backbone
- Schwabe Backbone
- Staudach Backbone
- Earlier Backbone(s)
[????-2013]
[????-????]
[1841-1945]
[1794-1883]
[????-????]
[1610-????]

Sources of Data

- The primary source is the very valuable tabulations by Hoyt and Schatten of the 'raw' count of groups by several hundred observers
- In some cases [especially Wolf and Schwabe] data has been re-entered and re-checked from Wolf's published lists, as some discrepancies have been found with the H\&S list

The Wolfer Backbone

Alfred Wolfer observed 1876-1928 with the 'standard' 80 mm telescope

Rudolf Wolf from 1860 on mainly used smaller 37 mm telescope(s) so those observations are used for the Wolfer Backbone

Normalization Procedure, I

What we do not do:

- Compare only days when both observers actually observed. This is problematic when observations are sparse as during the early years.
- Compare only days when both observers actually recorded at least one group. This is clearly wrong as it will bias towards higher activity.

What we do:

- We compute, for each observer, the monthly mean of actual observations [including days when it was indeed observed that there were no groups].
- We compute, for each observer and for each year, the yearly mean of the average counts for months with at least one observation.

Normalization Procedure, II

For each Backbone we regress each observers group counts for each year against those of the primary observer, and plot the result [left panel]. Experience shows that the regression line almost always very nearly goes through the origin, so we force it to do that and calculate the slope and various statistics, such as $1-\sigma$ uncertainty and the F-value. The slope gives us what factor to multiply the observer's count by to match the primary's. The right panel shows a result for the Wolfer Backbone: blue is Wolf's count [with his small telescope], pink is Wolfer's count [with the larger telescope], and the orange curve is the blue curve multiplied by the slope. It is clear that the harmonization works well [at least for Wolf vs. Wolfer].

Schmidt, Winkler

Weber, Spörer

Tacchini, Quimby

Broger, Leppig

Konkoly, Mt. Holyoke

Etc... Dawson, Guillaume, Bernaerts, Woinoff, Merino, Ricco, Moncalieri, Sykora, Brunner,...12

The Wolfer Group Backbone

If we average without weighting by the F -value we get very nearly the same result as the overlay at the left shows

The Schwabe Backbone

Schwabe received a 50 mm telescope from Fraunhofer in 1826 Jan 22. This telescope was used for the vast majority of full-disk drawings made 1826-1867.

For this backbone we use Wolf's observations with the large 80 mm standard telescope

Wolf, Shea

Schmidt, Carrington

Spörer, Peters

Pastorff, Weber

Hussey, Stark

Tevel, Arago

Flaugergues, Herschel

The Schwabe Group Backbone

Joining two Backbones

Comparing Schwabe with Wolfer backbones over 1860-1883 we find a normalizing factor of 1.55

Comparison Backbone with GSN and WSN

How do we Know HMF B?

Staudach Observations

Zucconi, Horrebow

Staudach Backbone

