
Oceanic tides: A response to differential
force throughout the earth’s history

Oceanic tides arise from a differential force on the earth due to the moon and sun, as the

earth and moon revolve about their common center of mass. I discuss how differential

force arises in an object and then address the earth–moon system. I examine tides at a

global scale, an ocean scale, and a coastal scale. Finally I show how sedimentary rock

layers preserve ancient tidal cycles and provide insight into the earth–moon distance over

the course of the earth’s history.

Carl H. Tape

Advisor: Professor William Titus

Physics Senior Integrative Exercise

May 17, 2001

Submitted in partial fulfillment of the requirements for a

Bachelor of Arts degree from Carleton College, Northfield, Minnesota

1



Author’s note

I decided to transfer my physics undergraduate thesis from Microsoft Word into Latex, in order

to have an easily accessible version. I also added the reference Tape et al. (2003).

A PDF of this document can be downloaded from here:

http://www.gps.caltech.edu/~carltape/research/pubs/thesis/tides_CHT_thesis.pdf

A supplemental set of notes can be downloaded from here:

http://www.gps.caltech.edu/~carltape/research/pubs/thesis/tides_CHT_thesis_supplement.pdf

I would appreciate advice for improvements or any corrections.

Carl Tape

August 2005

carltape@gps.caltech.edu

2



Table of Contents

List of Figures 4

List of Tables 5

1 Introduction 6

2 Tidal force 6

2.1 Newton, gravity, and centripetal acceleration . . . . . . . . . . . . . . . . . . . . . 6
2.2 Differential, or tidal, force defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 A laboratory in free fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The earth–moon system: A vector approach to the two-body general case . . . . . 9
2.5 The earth–moon system: An extension of the vector approach . . . . . . . . . . . . 10
2.6 Equilibrium tide: A potential energy approach to the earth–moon system . . . . . 14
2.7 The tidal effect due to the sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 The effects of the earth’s rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Analogies to other two-body systems: Balls on a turntable and the Bohr atom . . 18

3 The behavior of oceanic tides 20

3.1 Differential force at the global scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Tides at the ocean scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Tides at the coastal scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 The preservation of oceanic tides and tidal cycles in the rock record 23

4.1 A brief background in physical sedimentology . . . . . . . . . . . . . . . . . . . . . 23
4.2 Tidal cycles in the rock record I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Tidal cycles in the rock record II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 The history of the earth–moon system 27

5.1 Conservation of angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 The Roche limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Calculating earth–moon distance from tidal cycles preserved in the rock record . . 30
5.4 Evidence of lunar retreat from the rock record . . . . . . . . . . . . . . . . . . . . 30

6 Summary 32

7 Acknowledgments 33

A The potential energy approach to the 3D case 34

B The one-body and two-body problem 37

C Selected equation derivations 40

D Selected annotated bibliography 45

References 88

3



List of Figures

1 An introduction to tides: the lunar cycle and the tidal bulges . . . . . . . . . . . . 51
2 The earth at rest, without the moon . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3 Free fall toward the (stationary) earth: a rod and a spherical laboratory . . . . . . 52
4 Free-falling laboratory analogy to the earth–moon system . . . . . . . . . . . . . . 53
5 Differential force due to linear motion versus circular motion . . . . . . . . . . . . 54
6 Configuration for the vector approach to the 3D treatment of the earth–moon system 55
7 The force on the earth due to the moon (2D) . . . . . . . . . . . . . . . . . . . . . 56
8 The two-body motion of the earth–moon system . . . . . . . . . . . . . . . . . . . 57
9 The zero-order term of the differential force (f0) . . . . . . . . . . . . . . . . . . . . 58
10 The fixed, rigid earth with ocean covering, under the influence of the f0 “free fall”

term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
11 The first-order term of the differential force (f1) . . . . . . . . . . . . . . . . . . . . 59
12 The “water=moving” component of the tide-producing force on the earth (f1) . . . 59
13 The rigid earth with an ocean covering, under the influence of the tide-producing

force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14 The equilibrium tide: the earth as water-droplet responding to the gravitational

field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
15 The vector-field equivalent of the equilibrium tide . . . . . . . . . . . . . . . . . . . 61
16 The lunar cycle and the neap-spring-neap tidal cycle . . . . . . . . . . . . . . . . . 62
17 Relative equilibrium tide effects of the moon and the sun on the earth . . . . . . . 63
18 Tides at the sun caused by the planets . . . . . . . . . . . . . . . . . . . . . . . . . 64
19 A new configuration of 3D coordinates, incorporating the earth’s rotation about

its spin axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
20 An experiment to demonstrate the tidal bulges using magnets . . . . . . . . . . . . 66
21 Three types of daily tidal patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
22 The worldwide geographic distribution of the three tidal patterns . . . . . . . . . . 67
23 The propagation of the tidal wave components in the Atlantic Ocean . . . . . . . . 68
24 The propagation of the tidal wave in the North Sea . . . . . . . . . . . . . . . . . . 69
25 The world’s largest tides: The Bay of Fundy . . . . . . . . . . . . . . . . . . . . . . 70
26 The tidal bore: a tidal wave in the true sense of the name . . . . . . . . . . . . . . 70
27 Cross-bedding: The preservation of underwater sand dune migration in the rock

record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
28 Roadside outcrop of the Jordan Sandstone near Homer, Minnesota . . . . . . . . . 71
29 The submergence of North America during Upper Cambrian time: Context for the

Homer study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
30 The ebb-flood cycle and the corresponding sediment deposition during the migra-

tion of a sand dune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
31 A tidal bundle sequence: the preservation of the neap-spring-neap tidal cycle in

the rock record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
32 Evidence for the neap-spring-neap tidal cycle at the Homer, Minnesota, outcrop . . 75
33 Coastal tidal setting for the daily deposition of sand and mud as tidal bundles and

tidal rhythmites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
34 Declination and inclination in the earth–moon system . . . . . . . . . . . . . . . . 77
35 The semidiurnal tidal cycle: evidence from modern tides and the rock record . . . 78
36 The neap-spring-neap tidal cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
37 Monthly lunar cycle II: the tropical month . . . . . . . . . . . . . . . . . . . . . . . 80
38 Monthly lunar cycle III: the anomalistic month . . . . . . . . . . . . . . . . . . . . 81
39 The semiannual cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
40 The lunar nodal cycle (regression of the nodes) . . . . . . . . . . . . . . . . . . . . 83

4



41 Fourier transform spectra for ancient tidal sequence data and modern tidal se-
quence data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

42 Conservation of angular momentum of the earth–moon system . . . . . . . . . . . 85
43 Configuration for determining the Roche limit . . . . . . . . . . . . . . . . . . . . . 85
44 Earth–moon distance over the course of the earth’s history . . . . . . . . . . . . . 86
45 The Bohr hydrogen atom and the earth–moon system . . . . . . . . . . . . . . . . 87

List of Tables

1 Astronomical constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2 Gravitational and electric force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5



1 Introduction

The rise and fall of the ocean tides in coastal areas is as commonplace as the sight of the moon

in the sky (Figure 1A). Why does the water rise and fall? We see two tides a day at equal

intervals, so we might infer that the earth is spinning under two “bulges” of water on opposite

sides of the earth (Figure 1B). Intuitively, one might expect a bulge on the side facing the moon,

since it seems to be pulling the ocean toward it, but why the bulge on the opposite side? Most

people have a sense that the tides are related to the moon and gravity, but few can offer an

adequate explanation for the twice-a-day tides. One physicist remarked, “Many teachers are still

not satisfied with the clarity of existing explanations, and students, when their guard is down,

profess to be unable to discriminate it from black magic” (Arons, 1979).

The subject of tides is all-encompassing. Tides are an aspect of several fields of science, in-

cluding astronomy, hydrodynamics, oceanography, climatology, geophysics, and sedimentology.

Tides have been present throughout the earth’s history — preserved in the geologic record by

layers in sedimentary rocks, and preserved in the written record by writers and scientists alike.1

Tides on the earth are not limited to the rise and fall of the sea; the solid earth and the atmo-

sphere experience tides as well.2 An understanding of the mechanism behind tides allows one

to understand, and greater appreciate, the response of the earth. I will begin by describing the

forces that cause tides, which will provide a basis for analyzing the tides of the oceans. I will

finish by examining how layers in sedimentary rocks can record ancient tidal cycles and provide

insights into the history of the earth–moon system.

2 Tidal force

2.1 Newton, gravity, and centripetal acceleration

In 1687 Isaac Newton published the consequences of gravitation in Principia, which included an

explanation of the observed tides in terms of mechanics. Analyzing celestial observations, Newton

discovered the universal law of gravitation, which states that the gravitational force between two

objects is directed along their line of centers and has a magnitude given by

F =
Gm1m2

r2
(1)

where m1 and m2 are masses of each object, r is the distance of separation of the centers of

masses, and G = 6.67 × 10−11 N m−2 kg−2 is the gravitational constant.3 Thus, at the surface

of the earth, a spherically symmetric object of mass m is attracted to the earth’s center of mass

1Darwin (1898, Ch. 4) contains an excellent review of the history of tides. Aristotle noted a relation between
tides and the moon in 350 B.C. (Strahler , 1971, p. 129). The Roman historian Pliny the Elder (A.D. 23–79),
discussing the work of “clever researchers,” remarked on the period of the tides (French and Greenaway , 1986,
p. 179–180).

2There are several books treating earth tides and atmospheric tides: see Appendix D.
3We will assume that the objects have spherically symmetric mass distributions, so we can treat all of the mass

as being concentrated at the object’s center of mass (e.g., Fowles, 1962, p. 112–118).
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with a force

F =
GMem

r2e
= mg (2)

where g ≡ GMe/r
2
e ≈ 9.81 m s−2 (Figure 2) (see Table 1 for a table of constants).

Centripetal acceleration is the inward directed acceleration due to an object moving in circular

motion.4 Any object moving in a circular orbit has a centripetal acceleration directed toward the

center of the circle with magnitude a = v2/r, where v is the speed of the object and r is the radius

of the circular orbit. Circular orbits occur due to (1) the gravitational attraction between objects

(Eq. 1) and (2) the specific initial conditions (velocity and position) that allow two objects to

reach an equilibrium of circular motion. In other words, the gravitational attraction between

two objects will cause them to deviate from linear motion and possibly come into a circular

orbit about each other. For instance, at each instant in time, the earth deflects the moon from

its projected linear trajectory. Two objects in circular orbits are attracted by a gravitational

force alone (Eq. 1); thus, by Newton’s 2nd Law (Fnet = ma), the net force is in the direction

of centripetal acceleration, which is parallel to the line connecting the center of masses of the

two objects. Similarly, two objects moving toward each other in linear trajectories are attracted

by a gravitational force in the same direction, the line connecting the center of masses of the

two objects. Each case is an example of two objects accelerating toward each other under the

influence of gravity alone, a scenario known as free fall.

2.2 Differential, or tidal, force defined

A body of finite extent located in a gravitational field is subject to a differential force. The

gravitational force varies over the extent of the body, since different parts of the object are at

different distances to the source of the gravitational field. Because one of the most apparent

consequences of a differential force are the tides, the term tidal force is used interchangeably

with differential force. A rod falling vertically (Figure 3A) experiences a differential force; thus,

assuming a non-rigid rod, the top of the rod will accelerate downward less than the center of the

rod, which in turn will accelerate less than the bottom of the rod. Relative to the center, the top

accelerates upward, the bottom accelerates downward, and the rod tends to pull apart.

The example of the object in free fall illustrates the concept of differential force, and it is

analogous to the tide-producing situation on the earth. It is helpful to first consider the simplest

scenario — a fixed mass with an object in free fall toward it. The effects of the water, the moon,

the sun, the earth’s rotation, and circular orbits are necessary to understand the observed tidal

patterns on the earth, but they tend to complicate the understanding of differential force.

4The object doesn’t have to be moving in a closed circular orbit to have centripetal acceleration; any nonlinear
path of motion will have a component of centripetal acceleration (e.g., Tipler , 1991, p. 69).
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2.3 A laboratory in free fall

Our laboratory for conducting experiments is an object — for example, a rod, a sphere, or a

spaceship — that is accelerating vertically in free fall toward the center of the earth.5 In each

example, we would not expect Newton’s laws to hold, since our reference frame is accelerating

and is thus non-inertial. We first extend the example of the falling rod to a falling, rigid, spherical

laboratory having uniform mass, and we focus only on the points within the lab in the line of

center to the earth (Figure 3B). As with the rod, the force at the point nearest the earth is

greatest at the bottom of the lab and smallest at the top. Using Equation (2), the force on a test

mass m near the top (A), center (B), and bottom (C) are given by

fA =
FA

m
=

GMe

(d+ r0)2
(3)

fB =
FB

m
=

GMe

d2
≡ g0 (4)

fC =
FC

m
=

GMe

(d− r0)2
. (5)

Simplification, followed by a first-order binomial expansion, leads to

fA =
g0

(

1 + r0

d

)2 = g0

(

1 −
2r0
d

+ · · ·

)

≈ g0 −
2r0 g0
d

(6)

fB = g0 (7)

fC =
g0

(

1 − r0

d

)2 = g0

(

1 +
2r0
d

+ · · ·

)

≈ g0 +
2r0 g0
d

. (8)

We now conduct our experiments inside the accelerating lab. We release three balls, one at

each point. The ball released near the top (A) has an upward acceleration −2r0 g0/d relative to

the center of the spaceship (fA − fB); therefore, it accelerates toward the top of the ship. The

ball released at the center (B) has the same acceleration as the spaceship and remains stationary.

The ball released near the bottom (C) has a downward acceleration 2r0 g0/d relative to the center

of the spaceship (fC − fB); therefore, it accelerates toward the bottom of the ship.

Although it is not obvious, this system is roughly analogous to the differential (tidal) force

on the earth (Figure 4). Replace the earth with the moon and replace the spherical lab with

the earth; the earth is now accelerating toward the fixed moon. The point facing the moon (C)

accelerates toward the moon, relative to the earth’s center (B); this corresponds to the tidal bulge

facing the moon. The point facing opposite the moon (A) accelerates away from the moon relative

to the earth’s center; this corresponds to the tidal bulge opposite the moon. The previous example

shows that circular motion is not required to explain the origin of differential force. Figure 5

compares the differential force due to free fall in linear motion and that due to free fall in circular

motion. The “laboratory” in this case is an initially spherical water droplet that is stretched

in a radial direction toward and away from the earth, which occurs for both linear and circular

5The free-falling laboratory approach is presented for linear motion in Arons (1979, p. 934–935), and for orbital
motion in Ohanian (1976, p. 26–32).
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motion.6

2.4 The earth–moon system: A vector approach to the two-body general case

In discussing the earth’s motion, we will assume that it is not rotating about its spin axis once

every 24 hours; this daily rotation of the earth will be considered in Section 2.8. We will analyze

three systems: the earth by itself, the earth–moon system, and the earth–moon-sun system. So

far we have examined differential force in a one-body,7 one-dimensional analogy of the tides. The

general case, utilizing three dimensions and the two-body approach, is presented well in Barger

and Olsson (1973), which will serve as the basis for this section.

Figure 6 shows the configuration for determining the differential force on a particle (P, mass

m) with small mass on the surface of the earth. Our inertial reference frame is oriented in space

some distance r2 from the center of a reference frame centered at the earth (E, mass Me), such

that the axes of both reference frames are parallel. Point M is a distant body (we’ll call it the

moon, mass Mm) that exerts a gravitational force on the earth. The equations of motion are

described with respect to the inertial reference frame in terms of the position vectors r1, r2, and

r3, which can be used to form a coordinate system relative to the earth:

r = r1 − r2

R = r1 − r3

d = r2 − r3 . (9)

We are concerned with the equations of motion for the earth (E, Me) and for a mass on the

earth’s surface (P, m). The force on P is due to the attraction of the earth (in the r̂-direction)

and to the attraction of the moon (M, Mm). Thus,

Fm = m r̈1 = −
GmMe

r2
r̂ −

GmMm

R2
R̂ (10)

FMe = Me r̈2 = −
GMeMm

d2
d̂ . (11)

Dividing Equation (10) by m, Equation (11) by Me, and then taking the difference, we find

r̈1 − r̈2 = −
GMe

r2
r̂−

GMm

R2
R̂ −

GMm

d2
d̂ , (12)

6Since in the absence of external forces, the surface tension would make the drop into a spherical shape, we
could use the elliptical shape of the droplet to verify that the ship is a non-inertial reference frame (Ohanian,
1976, p. 27). As time progresses, the force on the orbiting droplet remains constant (as does the acceleration);
the ellipsoidal drop is in equilibrium with the earth’s gravity field. As the “falling” droplet approaches the earth
(d decreasing), both the force (Eq. 1, F ∝ d−2) and the differential force (Eq. 39, dF/dx ∝ d−3) on the drop
increase, and the drop is stretched in the d direction (Figure 5).

7See Appendix B for a one-body vs. two-body discussion.
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which, using the second derivative of Eq. 9.1 with respect to time, gives

r̈ = −

(

GMe

r2

)

r̂ − GMm

(

R̂

R2
−

d̂

d2

)

. (13)

We now have an equation for the force per unit mass for a particle on the earth’s surface, at

relative coordinate r (Eq. 13). A qualitative analysis of the equation can provide insights into the

nature of the tide-producing forces. The first term is the force per unit mass due to the earth’s

gravity (see Figure 2). The second term is a differential force — the tide-generating force per

unit mass — representing the difference between the gravitational force due to the moon on the

surface and at the center of the earth. The first component (−R̂GMm/R
2) is directed from the

surface of the earth to the moon (P to M); the second component (d̂GMm/d
2) is always directed

away from the moon in a line parallel to the earth–moon axis (M to E).8

It is important to keep in mind the generality of the scenario in Figure 6: the sphere labeled

earth could be any mass (e.g., a water droplet or the moon), the particle does not have to be

“on the surface” (the spherical mass could have any radius), and the distant mass labeled moon

could be any body (e.g., the sun).

2.5 The earth–moon system: An extension of the vector approach and a

return to the free fall examples

Now we simplify the general case (Figure 6) to the earth–moon system in two dimensions (Fig-

ure 7A). Our coordinate system is centered at the earth, we are looking down on the x′-y′ plane,

the moon is orbiting the earth in a circular orbit with radius d, and we take θ = 90◦ so that

the mass (P, mass m) is in the x′-y′ plane. Point P is thus a particle on the periphery of the

cross-section cut through the earth by the orbital plane of the moon, as shown in Figure 7A.9

We neglect the gravitational attraction at P due to the earth, since it is not part of the tide-

producing force presented in Equation (13).10 The force-per-unit-mass at P due to the moon is

given by

fP =
FP

m
=

(

GMm

R2

)

R̂ , (15)

where R̂ points from the moon to P (see Figure 7B and Figure 6). This force can be resolved

8The fictitious force term is anticipated, since we are in a non-inertial reference frame.
9This scenario is presented in Arons (1979, p. 934–935).

10The reason we can neglect the force on the particle due to the earth becomes evident in the potential energy
approach (Section 2.6). There we can set the gravitational potential equation equal to any convenient value, such
as the gravitational potential at the earth’s surface. This effectively subtracts the potential field at the earth’s
surface.
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into components perpendicular and parallel to the earth’s surface (Figure 7A):

fr =

(

GMm

R2

)

cos(φ+ α) (16)

fφ =

(

GMm

R2

)

sin(φ+ α) . (17)

Using the Law of Cosines on triangle PEM in Figure 7, we have

R2 = d2 + r2e − 2re d cosφ , (18)

which can be rearranged to give

1

R2
=

1

d2

(

1

1 − 2
(

re

d

)

cosφ+
(

re

d

)2

)

. (19)

Noting that re/d ≈ 1/60 (see Table 1 or Figure 8A), we expand 1/R2, sinα, and cosα to first

order in (re/d):
11

1

R2
=

1

d2

(

1 +
2re
d

cosφ+ · · ·

)

(20)

1

R
=

1

d

[

1 − 2
(re
d

)

cosφ+
(re
d

)2
]

−1/2

≈
1

d

[

1 +
1

2

[

2
(re
d

)

cosφ−
(re
d

)2
]]

=
1

d

[

1 +
(re
d

)

cosφ−
1

2

(re
d

)2
]

sinα =
re
R

sinφ =
re
d

sinφ

[

1 +
(re
d

)

cosφ−
1

2

(re
d

)2
]

≈
re
d

sinφ (21)

cosα =
√

1 − sin2 α =

√

1 −
(re
R

sinφ
)2

≈

√

1 −
(re
d

)2
sin2 φ ≈ 1 . (22)

Using these expansions in Equations (16) and (17), we obtain (see Appendix C, p. 41)

fr =

(

GMm

d2

)

[

cosφ−
(re
d

)

(

1 − 3 cos2 φ
)

+ · · ·
]

(23)

fφ =

(

GMm

d2

)[

sinφ+
(re
d

)

(

3

2
sin 2φ

)

+ · · ·

]

. (24)

These are the radial and tangential gravitational field strengths, to first-order approximation,

due to the moon at any point on the earth’s surface. We can represent this force in vector form

as the sum of the zero- and first-order components, being careful to note the sign convention, as

11From Eq. 19 to Eq. 20, we ignore the (re/d)2 term and then use a binomial expansion, just as shown in Eqs. 6–8,
which were derived for the free-falling laboratory.
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shown in the inset of Figure 7A.

f01 = fr01 + fφ01 = fr r̂− fφ φ̂

f01 =
GMm

d2

(

[

cosφ−
(re
d

)

(

1 − 3 cos2 φ
)

]

r̂ −

[

sinφ+
(re
d

)

(

3

2
sin 2φ

)]

φ̂

)

=
GMm

d2

(

[

(cosφ)̂r − (sinφ)φ̂
]

+

[

(re
d

(

3 cos2 φ− 1
)

)

r̂ −

(

re
d

3

2
sin 2φ

)

φ̂

])

(25)

≡ f0 + f1 (26)

where f01 is the force due to the zero-order terms (f0) and first-order terms (f1), which are given

by

f0 =
GMm

d2

[

(cosφ)̂r − (sinφ)φ̂
]

(27)

f1 =
GMm

d2

re
d

[

(

3 cos2 φ− 1
)

r̂−

(

3

2
sin 2φ

)

φ̂

]

. (28)

Before we examine the zero- and first-order components of the tide-producing force, we take

a look at the motion of the earth and the moon, which form a two-body system (Figure 8). (We

will continue to assume that the earth is not spinning about its axis.) The two bodies share a

common center of mass, and they are locked into circular orbits about their common center of

mass. As shown in Figure 8B2, each point within the earth circles the earth–moon center of

mass (C.M.) with an equal radius, a motion described as “revolution without rotation”.12 The

centripetal acceleration is directed to the center of each earth-point’s (P1, P2, and C in Figure 8)

circle of revolution. It is not sufficient to say that the earth revolves about the earth–moon center

of mass; that would suggest that the particles throughout the earth transcribe circles of unequal

radii.

Following the advice of Arons (1979, p. 935), we examine the zero- and first-order vector-

components of f01 separately. We can write f0 in terms of the x-y coordinates by substituting

r̂ = cosφx̂ + sinφŷ

φ̂ = − sinφx̂ + cosφŷ . (29)

into f0 (Eq. 27), which gives (see Appendix C)

f0 =

(

GMm

d2

)

x̂ . (30)

Figure 9 shows a graphical view of the f0 vectors at the earth’s surface; the key is that they always

12This type of motion — “revolution without rotation” — is described in several treatments of tides: Arons

(1979, p. 935), Tsantes (1974, p. 330), Strahler (1971, p. 130). I corresponded with White (White et al., 1993),
who felt that this type of explanation was more harmful than helpful, since the earth does indeed rotate (once
every 24 hours).
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point in a direction parallel to the earth–moon axis. This corresponds to a free-fall acceleration

of the entire rigid earth. In the two-body problem (Figure 8), the f0 force is the centripetal force,

which is equal in magnitude and direction at every point within the earth at any “snapshot” in

time.

To examine the consequence of the zero-order force, we consider a hypothetical one-body

problem: a fixed, rigid, spherical earth, with the moon at a distance. To see the effects of the

zero-order force in this scenario, we add an ocean covering that is free to move under the zero-

order force. Now, note that f0 is an order of magnitude (d/re) greater than f1. If f were the only

force acting on the earth’s surface, then f0 would dominate: the water covering would tend to

pile up on the side facing the moon, forming one, not two, tidal bulges (Figure 10). If we were on

the earth, rotating under the tidal bulge, we would experience a single, enormous, tide each day.

The fact that we typically see two tides per day is evidence that the earth is part of a two-body

system, as it is itself revolving about a common center of mass.

Arons (1979, p. 935–6) addressed some of the confusion of the centripetal force term f0: “In

most developments of tidal theory, as soon as the f0 term appears, it is dropped with some

cryptic comment such as ‘this is shared by the entire earth’ or . . . ‘we subtract the centrifugal

force.’ Such remarks avoid the physics and are unintelligible to most students.” The term is

indeed dropped, because it is a free fall acceleration of the entire rigid earth. This is precisely

what we did with the free-falling (rigid) laboratory in Figure 3B (and Figure 4). In that case, we

subtracted the free fall acceleration of the lab from the acceleration of each ball, since we were

interested in the motion of the ball from the reference frame of the lab. In the present case, we

will subtract the free fall acceleration of the rigid earth from the acceleration of each particle of

water, since we are interested in the motion of the ocean from the reference frame of the earth.

We now focus on the remaining lunar force-per-mass terms relative to the ocean-covered

earth, the first-order terms f1 (Eq. 28). Figure 11 shows a plot of the f1 vectors at the surface

and center of the earth. The tangential component fφ1 — horizontal with respect to the earth’s

surface — is responsible for moving the water, since it is orthogonal to the earth’s gravitational

field (Figure 12). This “ocean-moving” fφ1-component will pull the water from the sides of the

earth (Figure 12). The water will pile up in the regions facing toward and away from the moon

(Figure 13). The radial component f r1 — vertical with respect to the earth’s surface — cannot

shift water around; it can only change the apparent weight of each particle of mass very slightly.13

13We can calculate this effect. Using Eq. 23, the maximum radial (with respect to the earth) force occurs when
φ = 0:

f r1 =
G Mm

d2

h re

d

`

3 cos2 0 − 1
´

r̂

i

=
2G Mm re

d3
r̂ ,

which can be compared to the force-per-mass due to the earth (Eq. 2), which is constant for all φ:

fr1

fG

=

„

2G Mm re

d3

«

/

„

G Me

r2
e

«

=
Mm r3

e

Me d3
≈ 10−5 .
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2.6 Equilibrium tide: A potential energy approach to the earth–moon system

The differential force due to gravity can be examined from a potential energy standpoint (Ap-

pendix A). I find that the potential energy approach, when used alone in deriving the differential

force (e.g., Kibble, 1985), lacks the “visual” confirmation that the vector approach provides (e.g.,

Figure 6 and Eq. 13). But in understanding how the water behaves under the influence of the

differential force and thus in explaining what we observe each day, the potential energy approach

is helpful.14

As Newton first articulated,15 a shell of water covering the earth will form a surface that is in

equilibrium with the net gravitational field. In other words, the equipotential water surface will

be orthogonal to the net gravitational field, and there will be no tangential force on the surface

(Figure 14A). This equipotential surface is referred to as the equilibrium tide. Appendix A

contains a derivation of the equilibrium tide; this section contains some of the consequences.

Based on the general 3D case depicted in Figure 6, we can show (Appendix A) that the

gravitational potential (potential energy per unit mass) at point P(r, θ, φ) on the (distorted)

earth’s surface is given by

Φ(r) = −
GMe

r
−
GMm r2

d3

(

3

2
sin2 θ cos2 φ−

1

2

)

, (31)

Since this is an equipotential surface, we may set it equal to any constant, since adding a constant

to the potential does not affect the force. We choose Φ(r) = −GMe/re, where re is the radius of

the undistorted (spherical) earth:16

−
GMe

re
= −

GMe

r
−
GMm r2

d3

(

3

2
sin2 θ cos2 φ−

1

2

)

, (32)

which can be rearranged to give

r − re =
Mm

Me

re r
3

d3

(

3

2
sin2 θ cos2 φ−

1

2

)

. (33)

We define h(θ, φ) ≡ r−re to be the height of the water displacement due to tides (see Figure 14).

Since h≪ re, we use a zeroth-order approximation17 to obtain

h(θ, φ) =
Mm

Me

r4e
d3

(

3

2
sin2 θ cos2 φ−

1

2

)

. (34)

14Tsantes (1974) treats the equilibrium tide theory using vectors. He incorporates a “reaction force resulting
from the earth’s rigidity” (p. 331) that is perpendicular to the equilibrium surface.

15See Book 1, Proposition 66, Corollaries 19 and 20 of Newton’s Principia (Newton, 1687, p. 582–583).
16This choice of this constant effectively eliminates the gravitational force due to the earth on the particle.
17By definition, r = re + h. Then we can approximate the term in Eq. 33 as follows:

re r3 = re (re + h)3 = r4

e

„

1 +
h

re

«3

= r4

e

„

1 − 3
h

re

+ · · ·
«

≈ r4

e .
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For simplicity, we’ll look at the 2D case with θ = 90◦, a view looking down on the orbital plane

of the moon, as in Figure 14B.18 The tidal range as a function of “longitude”19 is then

h(θ, φ) =
Mm

Me

r4e
d3

(

3

2
cos2 φ−

1

2

)

, (35)

which we can use to plot the equilibrium tide (equipotential water surface). Figure 14 shows the

equilibrium tide and how it depends on astronomical parameters (e.g., earth–moon distance).

The tidal range is the difference between the high tide (height h > 0), which occurs parallel to

the earth–moon axis at φ = 0◦ and φ = 180◦, and the low tide (height h < 0), which occurs

perpendicular to the earth–moon axis at φ = 90◦ and φ = 270◦. Therefore, using Equation (35),

the maximum tidal range20 on an earth covered with water (and void of continents) is predicted

to be

rangeM = h(0◦) − h(90◦) =
3

2

Mm

Me

r4e
d3

≈ 0.36m − (−0.18m) = 0.54m . (36)

To make the shape of the equilibrium tide distinguishable from a circle,21 we must either increase

the mass of the moon or bring the moon closer to the earth. As shown in Figure 14E, the

equilibrium tide is noticeable if the moon’s mass is increased to Mm = 10, 000Me; the tidal range

in this scenario would be (a catastrophic) 436 km.

2.7 The tidal effect due to the sun

The “tidal effect” at body A due to a body i with mass Mi at distance xi from A is defined as

Ti =
Mi

x3
i

. (37)

This is found by analyzing Equation (35) and extracting the terms due to the tide-producing

body (the moon, in that case). It can also be found by differentiating Equation (1),

F =
GMiMA

x2
i

. (38)

to find the change in force over distance:

dF

dxi
= −

2GMi MA

x3
i

. (39)

18Any cross-section of the earth that contains the earth–moon axis would give the same results, because the
problem has cylindrical symmetry about the earth–moon axis. For example, we could take a vertical cross-section
of the earth.

19If the spin axis were perpendicular to the plane of the diagrams in Figure 14, then we could call φ the longitude.
However, we haven’t specified where the spin axis is yet.

20The maximum tidal range will occur at the point on the earth closest to the moon, which, in the 3D example
(Figure 6), occurs when φ = 0◦ and θ = 90◦. In the 2D treatment we have already set θ = 90◦. The plane of the
lunar orbit, shown in Figure 7fig14, will show the maximum tidal ranges.

21The spherical ocean covering would result from the earth at rest, without the moon (Figures 2 and 10a).
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Moving the dxi to the right-hand side, we get

dF =
2GMi MA

x3
i

dxi , (40)

where dF is the magnitude of the differential gravitational force directed along xi, and dxi is the

diameter of body A.22 The tidal effect at body A includes only the body-i-terms, Mi/x
3
i .

23

So far we have not considered the sun. The case presented in Section 2.6 can be easily

extended to consider the effects of the sun. Since the general case (Figures 6 and 7) considers

differential force induced by any single astronomical body, we can replace the moon with the sun.

Replacing the moon constants in Equation (36) by the sun constants, we find that the maximum

tidal range at the earth due to the sun is given by

ranges =
3

2

Ms

Me

r4e
D3

≈
3

2

(3.33 × 105 Me)

Me

r4e
(23460 re)3

=
3

2

(3.33 × 105)

234603
re ≈ 0.24m , (41)

where Ms is the mass of the sun and D is the distance from the earth to the sun.

It is an interesting coincidence that the tidal effect due to the sun is of the same order of

magnitude as the effect due to the moon (Eqs. 36 and 41). In fact, it is a unique occurrence in our

solar system (Kibble, 1985, p. 130). It implies that the sun should be able to enhance or weaken

the tidal effects on the earth due to the moon, depending on the relative positions of the bodies.

The moon will produce bulges that are parallel to the earth–moon axis; the sun will produce

weaker bulges parallel to the earth-sun axis. Figure 16 shows how these effects can interfere

constructively to produce spring tides and destructively to produce neap tides. We should expect

the highest tides (spring tides) and the lowest tides (neap tides) to occur twice each lunar cycle

(Figure 16C). This fortnightly cycle is known as the neap-spring-neap tidal cycle.

We can predict the tidal ranges on the earth due to the combined effect of the moon and the

sun (Figure 17). The equilibrium tidal range during spring tides (syzygy) is 0.78 m and during

neap tides (quadrature) is 0.30 m. Theoretically, you could determine the relative tidal effects of

the moon and sun by measuring the tidal ranges (Figure 17):

Tm

Ts
=

rangem
ranges

=
0.54

0.24
≈ 2.25 . (42)

Another interesting calculation can be derived based on the observation that the sun and

the moon appear as the same size when viewed from the earth (think of a total solar eclipse)

(Good , 2000). Because the angle subtended by each body as seen from the earth is approximately

equal (θm ≈ θs), it turns out that the relative tidal effects depend on only the densities (ρ) (see

22Or dxi could be the separation between two bodies close together, as shown in Figure 43.
23The preceding calculations appear in most treatments of tides in introductory astrophysics texts (e.g., Zeilik

and v. P. Smith, 1987, p. 46).
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Appendix C, p. 42):

Tm

Ts
=

Mm d−3

MsD−3
≈

(

4
3πr

3
mρm

)

(

2 rm

θm

)

−3

(

4
3πr

3
sρs

)

(

2 rs

θs

)

−3 =
ρm

ρs

θ3
s

θ3
m

≈
ρm

ρs
. (43)

Thus the relative tidal effects, which can (in theory) be measured from the tidal ranges (Fig-

ure 17), also give the relative densities of the moon and sun. The actual density ratio is

ρm/ρs ≈ (3340 kg m−3)/(1400 kg m−3) ≈ 2.38, which is in agreement with Equation (42).

One final point regarding the sun is that it, too, experiences a tidal force due to the planets

revolving around it (Olson and Lytle, 2000). The variation in the solar tide over time is com-

plicated but predictable (Figure 18). When the planets and moon are clustered together in the

night sky, we would expect the greatest tidal effect at the sun.24

2.8 The effects of the earth’s rotation

As we have shown, the differential force on the earth results from the earth’s revolution about

the earth–moon center of mass, and it has nothing to do with the rotation of the earth about

its spin axis. But to understand the consequences of the differential force based on our daily

observations of tides, we must consider the earth’s spin.

Our coordinate system, shown in Figure 19, is now centered at the earth (E), which has a

vertical spin axis, such that θ angles correspond to latitude and φ angles correspond to longitude.

The moon is at position M(φm, θm, d), where d is the fixed distance to the earth. A particle is on

the surface at position P(φp, θp, re), where re is the fixed radius of the earth.

Using this coordinate system, we now focus on the equilibrium tide-producing term,

1
2

(

3 cos2 ψ − 1
)

, (44)

which is presented in Equation (35) (see Figures 11 and 14). The angle φ or ψ is the angle

between the direction of the particles and the direction of the moon (angle between EP and EM).

In the 2D case, the angle is labeled φ (Figure 14B); in the 3D case here, ψ is found from the

relationship (see Appendix C, p. 43)

cosψ = cos θp cos θm + sin θp sin θm cos (φp − φm) , (45)

Incorporating this into the equilibrium tide-producing term (Eq. 44), we find, after simplification

24We would also expect a tidal effect on the earth due to all the planets: see inset figure in Olson and Lytle

(2000, p. 109).
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(see Appendix C, p. 44),

1
2

(

3 cos2 ψ − 1
)

= 3
4 sin2 θp sin2 θm cos [2 (φp − φm)]

+ 3
4 sin 2θp sin 2θm cos (φp − φm)

+

(

3 cos2 θp − 1

2

)(

3 cos2 θm − 1

2

)

. (46)

The three quantities of interest in this expression are (1) the latitude of point P, θp, which remains

constant as the earth spins; (2) the longitude of point P, φp, which goes from 0◦ to 360◦ in each

daily rotation of the earth, irrespective of the location of P; and (3) the angular coordinates of

the moon, φm and θm, which vary over the course of a month, as the moon orbits around the

earth: φm goes from 0◦ to 360◦ in ∼28 days.

Each of the three parts of the expanded tide-producing term in Equation (46) produces an

interesting, observable periodic variation (Cook , 1969, p. 73–74). The first term (Eq. 46.1), with

cos 2φp, has a maximum twice over a 360◦ rotation;25 this is the semidiurnal tide component, the

tide that occurs twice a day, with a period of approximately 12 hours. The second term (Eq. 46.2),

with cosφp, has a maximum once over a 360◦ rotation; this is the diurnal tide component, the

tide that occurs once a day, with a period of approximately 24 hours. The third term (Eq. 46.3),

with cos2 θm, has a maximum twice over the period of one lunar revolution; these maxima occur

when θm is closest to θp, that is, when the declination of the moon (θm) is closest to the latitude

of P (θp).

Thus, if the earth did not spin, we would observe a tidal range due to two effects: (1) the

revolution of the earth–moon system in the gravitational field of the sun, which causes the

fortnightly neap-spring-neap cycle, and (2) the fortnightly cycle of the declination moon with

respect to the earth, as shown by the Eq. 46.3 component (see Section 4.3).

2.9 Analogies to other two-body systems: Balls on a turntable and the Bohr

atom

Differential force is not unique to an accelerating mass in a gravitational field. Differential force

will arise in any object of finite extent over which the force varies. For instance, a charged object

accelerating in an electric field is subject to a differential force as well. Field lines — whether

gravitational, electric, or magnetic — are curves that indicate the direction of the force. By

definition, they are perpendicular to the equipotential surfaces (see Figure 15). Electric fields,

like gravitational fields, obey an inverse-square law. One consequence of this is that two-body

motion may arise due to the Coulomb force between charged particles, which occurs with the

proton and electron in the Bohr atom (Appendix B). A comparison of the gravitational and

electric fields is shown in Table 2.

It is possible to demonstrate the tidal bulges in an experiment using magnetic fields (White

25This is assuming that φm is roughly constant over the earth’s 24-hour rotation (φp); in other words, the moon
doesn’t move very much over the course of a day.

18



et al., 1993, G. White, 2001, personal communication). Under certain conditions, the magnetic

field between two bar magnets will obey an inverse-square law, just as the gravitational field and

electric field do (Figure 20A-B). The configuration of the experiment is shown in Figure 20C.

Two cylindrical magnets are positioned symmetrically about the center of a turntable, separated

by distance x, such that an attractive force Fm exists between the magnets. Two large steel

balls, each with mass M , situated on a plate balanced above the ends of the cylindrical magnets

will “polarize” in the manner shown in Figure 20C. Four small steel balls with situate themselves

between the large (magnetized) balls. This is analogous to the zero-order, one-body force of the

earth–moon system (Figures 9 and 10).26

The turntable is turned on and spins with angular velocity ω. The four small balls are free

to move, while the two large balls are essentially fixes. The reduced mass of the two large balls

is m = M/2 (Figure 20D). At a particular angular velocity (see Figure 20B), the attractive

magnetic force between the two large steel balls will equal the centripetal acceleration of the

two-body system (two large steel balls) times the reduced mass: Fm = xmω2.27 At this angular

velocity, two of the small balls swing to the opposite sides of the large balls (Figure 20D). At

greater angular velocities, the four small balls will swing to the outside of the large balls and, at

higher velocities, will fly off the plate. At a still higher angular velocity, the two large balls will

fly off.

This experiment is easier to understand, having discussed the earth–moon system: each large

ball represents the earth or moon; the smaller balls represent the tidal bulges of the ocean

(Figure 20E). With the earth–moon system, the centripetal acceleration of the earth is due to

the gravitational attraction between the earth and moon. The moon exerts a greater pull on

the water on earth facing it than on the water facing away from it. Acceleration relative to the

earth’s center of mass causes water to bulge on both sides. In the turntable experiment, the

moon-ball exerts a greater magnetic force on the ocean-ball in front of the earth-ball than the

ocean-ball in back of the earth (Figure 20E). Centripetal acceleration of the ocean-balls relative

to the acceleration of the center of mass of the earth-ball causes the two ocean-balls to swing to

the front and back of the earth-ball.

26A better one-body analogy would be to have one cylindrical magnet at the center of the turntable and the
other at distance x. Then one large steel ball (earth) would remain fixed while the other (moon) revolved around
it.

27The magnetic force between the large steel balls is assumed to be the same as the magnetic force between the
cylindrical magnets on the turntable. The balls extend the effective length of the cylindrical magnets.
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3 The behavior of oceanic tides

The motion of the water on the earth — whether on a continent-less earth, in an ocean, or in an

estuary28 — is best approached using principles of hydrodynamics. A hydrodynamic approach

must incorporate the global-scale effects of the differential force (equilibrium tide), as well as the

rotation of the earth about its spin axis. We will analyze the consequence of these two aspects,

using hydrodynamic principles only qualitatively.29

3.1 Differential force at the global scale

So far we have dealt with the equilibrium tide: the behavior of a thin water covering over a

completely rigid, spherical (i.e., no continents) earth that is under the influence of a differential

force. At the global scale, the differential force on this ideal ocean due to an astronomical body

would cause the ocean to be deeper in the regions of the earth facing toward and away from the

body and shallower on the sides of the earth, as shown in Figure 13. The earth’s daily rotation

under the tidal bulges will cause the water level to change by a maximum of 0.78 m (Figure 17).

This equilibrium tidal range turns out to be a reasonable prediction for places in the ocean far

from the coast and in deep water, where the water level fluctuates on the order of one meter. But

this 1-m estimate differs by an order of magnitude from the observed tidal ranges from certain

areas on the earth.30 Also, the equilibrium tide does not take into account how the water moves

in the ocean. The equilibrium tide treatment, while helpful in understanding the nature of tidal

forces, does not adequately explain the tidal patterns that we observe on earth. It is helpful to

think of the tidal effects at the scale of an ocean and at the scale of an estuary or an inlet near

the coast.

3.2 Tides at the ocean scale

The differential force on the earth due to the sun and moon create the tidal bulges on the earth.

The rotation of the earth under these bulges is the driving frequency of the daily tides. The

components of this driving frequency can be seen in Equations 46.1 and 46.2, which depend on

the 24-hour rotation about the earth’s spin axis (360◦ cycle of angle φp). The first component

generates a semidiurnal tide, the tide that occurs twice a day, which is typical of most coastal

systems. The second component generates a diurnal tide, the tide that occurs once a day, which

occurs in some coastal systems. The semidiurnal and diurnal components can interfere with each

other to produce more complicated tide known as a mixed tide. All three types of tides — not just

28An estuary is defined as “a body of water partially surrounded by land where fresh water from a river mixes
with ocean water. . .” (Garrison, 1998, p. 531).

29Lamb (1945) is a classic text for hydrodynamics. Introductory oceanography texts, like Garrison (1998), are
nice to get an introduction to how the water behaves, but they use minimal mathematics and physics in their
discussions.

30Some of the largest tidal ranges in the world are found in the Bay of Fundy, Nova Scotia, and in Bristol
Channel, England (Desplanque and Mossman, 2001; Archer and Hubbard , 2003).
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the twice-a-day semidiurnal tide — are found in coastal systems around the world (Figures 21

and 22).

Another consequence of the earth’s rotation is the Coriolis effect.31 The Coriolis effect can

be observed in the propagation of the tidal wave in the oceans (Figure 23). An ocean, such as

the Atlantic, is confined by continents. The tidal wave, for both the semidiurnal and diurnal

components, follows a very complicated path, which is governed in part by the shape of the

ocean basin and in part by the Coriolis force. The direction of propagation of the tidal wave is

counterclockwise in the northern hemisphere (two cases) and clockwise in the southern hemisphere

(three cases).32 In the North Sea (Figure 24), at the next scale down, the propagation of the

tide is complex but remains consistent with the (Coriolis-influenced) counterclockwise motion

observed in the North Atlantic.

3.3 Tides at the coastal scale

Having discussed tides at an astronomical level and at an ocean level, we now turn to the coasts,

where almost everyone first becomes familiar with tides. We begin with a qualitative discussion

of the concept of flux. The flux of water is the volume of water passing through a given cross-

sectional area over a given time.33 The flux at an interface, such as that between a large-diameter

pipe and a small-diameter pipe, is constant. If we decrease the cross-sectional area (water enters

small pipe), then the velocity of the water will increase. Consider the mouth of a river that

flows into the ocean. A tidal wave, with a particular volume and velocity, approaches the mouth

(= small pipe) from the ocean (= large pipe). Part of the tidal wave enters the mouth of the

river, and, since the flux at the mouth remains constant, the velocity of the tidal wave increases.

The addition of volume at the mouth causes the water level to increase. Thus, by passing through

the mouth, the tidal wave increases its velocity (i.e., the “particle velocity”) and raises the height

of water.

What is a tidal wave exactly? It is not just any large wave, such as a tsunami, as is commonly

believed. In discussing the propagation of a tidal wave in the ocean basin, we are referring to the

changing position of the approximate crest of the high tide water level. This tidal wave, with an

31Because the earth rotates with an angular velocity, a particle mass, such as a volume of water, moving on the
surface will experience the Coriolis force. The Coriolis force deflects horizontally moving masses in the northern
hemisphere to the right and deflects masses moving in the southern hemisphere to the left. As a result, ocean-
scale surface currents in the Atlantic and Pacific move in a clockwise direction in the northern hemisphere and
counterclockwise in the southern hemisphere (Garrison, 1998, p. 207). (It is actually quite a bit more complicated
than this. Winds, salinity, and temperature are major factors that determine ocean circulation patterns.) In the
reference frame of the particle, the force appears to be “real.” From the earth’s non-inertial (rotating) reference
frame, it is an apparent force, the consequence of the rotation. If the earth’s angular velocity is ω, and the velocity
of the particle relative to a coordinate system at rest on the earth’s surface is d∗

r/dt, then the Coriolis force is given
by −2mω × d∗

r/dt. The Coriolis force is treated in any classical mechanics text (e.g., Symon, 1961, p. 278–280).
32This is the opposite direction that one might expect, based on the Coriolis force. One explanation (Garrison,

1998, p. 270) for this is that the incoming tidal wave is deflected to the right by the Coriolis force in the northern
hemisphere and “wraps around” the ocean basin in a counterclockwise fashion. In fact, I think it is quite a bit more
complicated, having to do with the superposition of two Kelvin waves, which gives rise to amphidromic circulation
(Marchuk and Kagan, 1989, p. 118–122).

33We’re assuming water is incompressible, which is a good approximation.
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amplitude of less than a meter and a wavelength greater than 1,000 km, would not be noticeable.

But if the tides generated in the ocean are confined into narrow, shallow regions — such as those

near coasts — then the tidal wave will reach an appreciable velocity. In this case, the incoming

tide may actually take the form of an observable wave, in which case the tidal wave is called

a tidal bore. Figure 26 shows a tidal bore from Cook Inlet, south-central Alaska. In southwest

England, people commonly surf up River Severn when anomalously large tidal bores come in

from Bristol Channel. The Bay of Fundy in Nova Scotia has a configuration (Figure 25) that

produces the largest tides on record: a 16.8 m (54.6 ft) tidal range (Archer and Hubbard , 2003)!

The enormous tidal range in the Bay of Fundy is due in part to the geometry of the basin, which

has a resonance frequency approximately equal to the frequency of the lunar tide (Desplanque

and Mossman, 2001).34

34A simple rectangular basin will have a resonance period for the “sloshing” mode given by

T =
π L√
3 g h

,

where L is the length of the basin, h is the depth, and g is the gravity (Crawford Jr., 1968, p. 45). Higher resonant
periods will be equal to the sloshing period divided by the number of nodes in the harmonic (Korgen, 1995, p. 443).
The basin geometry — not just the cross-sectional area — is fundamental in determining how the tide behaves in
a coastal area. See Garrison (1998) or Marchuk and Kagan (1989) for more on water wave propagation.
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4 The preservation of oceanic tides and tidal cycles in the rock

record

The massive tidal ranges in places like the Bay of Fundy or Cook Inlet provide a sense of awe

and appreciation for the tides. Tidal currents in these local settings are on the order of meters

per second and are substantial enough to float boats up the mouths of rivers. These currents

also transport and deposit sediment. In certain tidal systems, the periodic ebb and flood of the

tide can be recognized as a pattern of alternating layers of deposited sediment. Identifying these

patterns in sedimentary deposits of modern systems allows one to apply the same techniques to

layering patterns in sedimentary rock, in hopes of determining the history of oceanic tides over

geologic time.

4.1 A brief background in physical sedimentology

Sediment, such as sand or mud, is carried by water.35 When the sediment is deposited, it

forms a sedimentary structure, which is either removed by other currents or is buried by addi-

tional sediment, which would allow it to be preserved in the rock record. Three mechanisms

for transporting sediment and forming sedimentary structures are currents, waves, and storms.

Sedimentary structures associated with currents tend to be asymmetric in shape (due to unidirec-

tional water motion), structures associated with waves tend to be symmetric (due to oscillatory

water motion), and structures associated with storms tend to be erosional surfaces (removal of

sediment) or massive sediment deposits. Currents, including those generated by tides, will give

rise to asymmetric sedimentary structures. The most common current sedimentary structure

is called cross-bedding. At an outcrop of sandstone, cross-bedding looks like a series of tilted,

near-parallel lines, which are bounded into near-horizontal sets (Figure 27). Cross-bedding is the

preservation of underwater sand dunes migrating across the sea floor. Figure 27 illustrates how

a series of sand dunes on the sea floor might be preserved in the rock record.

4.2 Tidal cycles in the rock record I: The ebb-flood cycle and the neap-spring-

neap cycle at Homer, Minnesota

Figure 28 shows a roadside outcrop of sandstone near Homer, Minnesota.36 The Homer outcrop

contains several sets of cross-bedding, several of which contain thick layers of mud interspersed

in the sandy layers. This feature of cross-bedded sand with mud is one characteristic of deposits

in tidal settings (Nio and Yang , 1991). I will present the results of the Homer study as an

introduction to the ebb-flood cycle and to how tides can be identified in the rock record.

A spatial and temporal context is helpful. The sands at Homer were deposited in a shallow

sea37 covering much of North America approximately 480 million years ago (Ma) (Figure 29).

35To be precise, sediment is carried by a fluid, which may be water or air. In the context of tides, we are
concerned with sediment transport due to water, i.e., ocean currents.

36I spent part of the summer of 2000 studying this outcrop, which became a source of motivation for this paper.
37The term “shallow” is vague because there is very limited information to constrain the depth. The term used
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The notion that tides may have been present at Homer implies that the tidal wave traveled from

the ocean basin over the continent for more than 1,000 km.38

The ebb-flood cycle refers to the familiar rise-and-fall of the water level in a tidal setting. The

ebb current is the outgoing tide; the flood current is the incoming tide. In most systems, one or the

other tidal current will dominate. Figure 30 explains the stages of an (ebb-dominated) ebb-flood

cycle and the corresponding migration of a sand dune during each stage. Our chief observation

is that the volume of sand transported is proportional to the current speed; thus, currents with

the greatest speeds will deposit the most amount of sediment. In reverse, the thickness of the

deposited sand layer should be proportional to the magnitude of the tide. Another observation

is that most sand is transported during the ebb current, little sand is deposited during the flood

current, and only mud — particles much finer than sand — is deposited during the slackwater

period between the ebb and flood. Recall that the ebb-flood cycle may occur once a day, twice a

day, or have a more complicated behavior, depending on the coastal setting (Figures 21 and 22).

The neap-spring-neap cycle may also be preserved in sedimentary deposits. This cycle cor-

responds to the fortnightly variation in the overall strength (tidal range) of the tides (i.e., of

the individual ebb-flood cycles). Figures 31 and 32 show the consequence of this cycle on the

sedimentation. A tidal bundle is the sediment deposited by a migrating dune during one com-

plete ebb-flood tidal cycle (about 12 to 24 hours). A tidal bundle sequence (Figures 32A and

31B) is the sediment deposited by a migrating dune during one complete neap-spring-neap tidal

cycle (about a fortnight). The tidal bundles therefore normally vary in thickness (Figure 32D);

relatively thin bundles — thin sandy layers with mud (Figure 32B) — are deposited during neap

tides; relatively thick bundles (Figure 32C) are deposited during spring tides.

Sedimentary structures — composite mud drapes as well as indicators for both an ebb current

and a flood current39 — together with the variation in tidal bundle thickness, are diagnostic

of tidal deposits (Nio and Yang , 1991). Therefore, the cross-bedding at the Homer outcrop

preserves the record of tides in the layers left by the migration of a dune under tidal currents.

Each tidal bundle sequence is the product of a single fortnightly neap-spring-neap cycle, and

the 26 bundle sequences in the study section (see Figure 32D) therefore represent approximately

thirteen Cambrian months. There is an average of 20 tidal bundles per sequence (corresponding

to the number of ebb-flood cycles per neap-spring-neap cycle), which falls within the expect range

for the shallow sea in the literature is “epeiric” sea, which is short for “epicontinental” sea, literally, a sea above
the continent. The depth was probably at most on the order of a couple hundred meters.

38Whether tides could have reached the interior portions of the continent is controversial, at least in the literature.
Irwin’s model of epeiric sedimentation, which contains no mathematical basis whatsoever, suggests that tides would
have been dampened in the (presumably) shallow seas (Irwin, 1965). A more mathematical treatment of the topic
can be found in Wells et al. (2005); Keulegan and Krumbein (1949); Clark (1982). Tape et al. (2000, 2003)
document evidence of ocean tidal currents in the continental interior.

39To convince yourself that the dune migrated under reversing currents (ebb and then flood), you would ideally
like to find evidence for both directions. Large dunes migrated — presumably under the ebb current (see Figure 29)
— in a southerly direction, and this migration is preserved as the layers seen in Figure 28. I also observed smaller
dunes (called ripples) in portions of the cross-bedding set. These smaller dunes probably formed during the flood
current, as shown in Figure 30. It is difficult to explain reversely dipping layers without having reversing currents.
The flood current dunes provide substantial support to the case for tides at Homer.
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of 14–28 for tidal systems, although the standard deviation is is large (20 ± 7).

4.3 Tidal cycles in the rock record II: Three monthly lunar cycles, the semi-

annual cycle, and the lunar nodal cycle

The examples in Section 4.2 show how a sand dune migrating in a coastal tidal channel may

preserve tidal cycles in its daily depositional sedimentary layers (Figure 30B). Sediment may also

be deposited by tidal currents in water further offshore (Figure 33). This form of deposition

leaves a pattern of very thin, horizontal layers known as rhythmites.40 Just as was the case with

the cross-bedding layers (tidal bundles), the thickness of the rhythmite layer corresponds to the

magnitude of the tide. Measuring the thickness of these layers in a continuous section may reveal

cycles that may or may not be attributable to tides.

The orbital patterns of astronomical bodies in space give rise to the tidal cycles. Tides

record the passage of time in the reference frame of the earth. This reference frame is known

as the celestial sphere, which can be thought of as a projection of the earth’s latitude-longitude

coordinate system into space.41 Consider describing the position of a particle on the earth’s

surface and a body in space. On the earth’s surface, the particle’s polar angle is expressed by its

latitude; in space, the body’s polar angle is given by its declination angle on the celestial sphere.

Several orbital parameters influence the declination of astronomical bodies. Two of these are the

inclination of the earth and the inclination of the moon’s orbital plane. As Figure 34 shows, the

earth is inclined 23◦ with respect to its orbital plane (the Ecliptic), and the lunar orbital plane

is inclined 6◦ with respect to the Ecliptic. As a result, the declination of the sun varies over the

course of the year (think of the seasons), and the declination of the moon varies over the course

of the month.

I will outline six tidal cycles from two spectacular studies of tidal rhythmites (Williams, 2000;

Kvale et al., 1999). Each tidal cycle is explained using three approaches: the orbital configuration

that causes the cycle, the resultant cycle in modern tidal charts, and the evidence of the cycle

in the rock record (see Figures 35–40). The periods of the tidal cycles listed here are based on

modern-day values in sidereal time, that is, time measured with respect to the (fixed) stars.

Figures 35 and 36 show the ebb-flood cycle and the neap-spring-neap cycle, which we in-

troduced already. However, here we invoke the changing declination of the moon. When the

lunar declination is zero, the moon is in the equatorial plane (i.e., on the celestial equator), and

every point on the spinning earth will experience two equal bulges. When the lunar declination

is nonzero, every point on the earth will experience two unequal bulges. Thus for a semidiurnal

tidal system (two ebb-flood cycles per day), one ebb-flood cycle will have a greater tidal range

than the other, a feature known as the diurnal inequality (“dominant tide” vs. “subordinate tide”

40The thickness of rhythmite neap-spring-neap cycles are a few centimeters, whereas the thickness of the sand
dune neap-spring-cycles are up to 100 cm. See Alexander et al. (1998) for a collection of rhythmite studies.

41The celestial equator is the plane (or projection) of the earth’s Equator, and the celestial pole is an extension
of the earth’s spin axis.
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in Figure 35).42 The neap-spring-neap cycle is due changes in the lunar phase and is termed the

synodic month (29.53 days).

Two other monthly lunar cycles can be observed in the behavior of modern tides and in

patterns in the rock record. The second lunar cycle, which causes the tropical month (27.32 days),

is attributed to the inclination of the lunar orbit (Figures 37 and 34). This cycle was anticipated

from the tide-producing term due to the rotating earth (Section 2.8, Eq. 46.3). The third lunar

cycle, which causes the anomalistic month (27.55 days), is attributed to the eccentricity of the

lunar orbit (Figure 38).43

Several tidal cycles longer than a month can be identified in both modern tide charts and in

the rock record. The changing declination of the sun produces the semiannual cycle (182.6 days),

which occurs twice each year (Figure 39). A longer cycle, the lunar apsides cycle (8.85 years), is

due to the 360◦ rotation of the line of apsides (Figure 38A) and can be calculated using monthly

and annual tidal cycle periods.44 An even longer tidal is the lunar nodal cycle (18.6 years), which

is due to the regression of the line of nodes, the line formed by the intersection of the lunar orbital

plane with the earth’s orbital plane (Ecliptic) (Figure 40).

The tidal rhythmite studies, which reveal that daily events can be preserved consecutively for

several years, provide a new appreciation and perspective of geologic time and the rock record.

The tidal studies in the rock record preserve sediment deposited on the time scale of our daily

lives, not geologic time.

42The diurnal inequality (Fenies et al., 1999) depends on latitude, which can be seen in Figure 37A.
43The plots of modern tidal heights in Figure 38B and Figure 39B are the same. But I invoke two different

mechanisms to explain the ∼6-month fluctuation: one when the line of apsides points to the sun (Figure 38A), the
other due to the declination of the sun (Figure 38A). Probably both of these mechanisms are contributing to the
∼6-month cycle in these particular data.

44The lunar apsides cycle was 9.7 ± 0.1 years at 620 Ma, according to tidal rhythmite layers (Williams, 2000,
p. 48). Also see Kaufmann III and Freedman (1999), p. 56–57.
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5 The history of the earth–moon system

The tides on earth are ultimately due to the gravitational attraction between the earth and moon,

which depends on their distance of separation. If the distance of separation changes, then the

differential force on the earth will change, and the tides on the earth should respond accordingly.

The earth–moon distance has not remained constant over the course of the earth’s history. With

the use of lasers, scientists have measured that the moon is retreating from the earth at a rate

of 3.82 ± 0.07 cm/yr (Dickey et al., 1994). Therefore, today the differential force on the earth,

and thus the magnitude of the tides, is getting weaker.

The history of the earth–moon distance is an important debate in science, since it has a direct

bearing on the origin of the moon. If the current lunar retreat rate is projected back in time, then

the moon would have been too close to the earth to maintain its orbit, within a distance known

as the Roche limit (see Section 5.2). A chief question then becomes, “How can we determine the

lunar retreat rate at different times in the earth’s history?”

5.1 Conservation of angular momentum

The magnitude of the oceanic tides is getting weaker due to the oceans themselves. In simplest

terms, the spinning earth “carries” the bulging oceans in front of their preferred position, which

is along the earth–moon axis (Figure 42). This creates an enormous amount of friction between

the oceans and the solid earth. To compensate for the energy loss dissipated by the friction of

the oceans, the earth’s rotation must slow down at the rate of 4.4 × 10−8 s per rotation, which

results in a cumulative loss of time of about 28 seconds per century.45

Conservation of angular momentum explains the relationship between the earth’s rotation and

the earth–moon distance. The angular momentum of the earth–moon system, which is centered

at the earth–moon center of mass, remains constant. The slowing of the earth’s rotation — the

loss of rotational angular momentum — must be accompanied by an equal increase of the angular

momentum of the earth–moon system.

The angular momentum for a mass m orbiting in a circle of radius d with velocity v is given

by

L = d× p (47)

L = dmv sinφ = dmv , (48)

where φ = 90◦ is the angle between d and p for the circular orbit. This one-body derivation can

be extended to the two-body case, using the reduced mass concepts presented in Appendix B.

45This interesting fact is from Barger and Olsson (1973); introductory astrophysics texts typically show some
basic figures for the earth’s decreasing rotational rate (some figures are inconsistent over different texts, but they
give the same order of magnitude). The fact explains why eclipses run systematically 28 s ahead of the calculations
based on observations a century ago.
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We find that the net orbital angular momentum of the earth–moon system is

L = dµv (49)

where µ is the reduced mass of the system, d = dm−de is the relative coordinate, and v = vm−ve

is the relative velocity (Figure 42). Assuming circular orbits, the gravitational and centrifugal

forces balance:

GMeMm

d2
=

µ v2

d
. (50)

Combining Equations (49) and (50), we find

L2 = (GMe Mm µ)d . (51)

Thus, if the earth’s rotational angular momentum decreases, then the net orbital angular momen-

tum L must increase by increasing the distance of separation d. As the earth’s rotation slows,

the moon retreats.

A quote from George Gamow (Gamow , 1962, p. 91) nicely illustrates several concepts of the

earth–moon–sun–ocean interactions.

As a result of gradual recession, the moon will eventually get so far away from the

earth that it will become rather useless as a substitute for lanterns at night. In the

meantime solar tides [tides on earth due to the sun] gradually will slow down the

rotation of the earth (provided the oceans do not freeze up),46 and there will come

the time when the length of a day will be greater than the length of a month.47 The

friction of lunar tides will then tend to accelerate the rotation of the earth,48 and, by

the law of conservation of angular momentum, the moon will begin to return to the

earth. . .

Of course, by this time, the sun will probably have burned out, which would make those lanterns

necessary again.

46Now the sun is exerting a torque on the bulges: see Figure 42, only replace the moon by the sun.
47In other words, the period of the moon’s revolution about the earth (or earth–moon center of mass), presently

about 28 days, will some day be greater than the period of the earth’s daily rotation, which is presently 24 hours.
Computer calculations show that this should occur at an earth–moon distance of 6.45 × 105 km ≈ 101 re (Zeilik

and v. P. Smith, 1987, p. 51).
48Now the moon is pulling on the bulge, so the earth’s rotation increases (see Figure 42).
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5.2 The Roche limit

In 1850, Edouard Roche (1820–1883) demonstrated that a satellite with mass m and radius

rm ≥ 500 km orbiting a planet with mass M ≫ m and radius rM would be torn apart by

differential force if it approached the planet within distance of

xR = 2.44

(

ρM

ρm

)1/3

rM , (52)

where ρm and ρm are the average densities of the planet and satellite, and xR is the Roche limit.

We can derive an approximation of the Roche limit based on the configuration in Figure 43.49 The

“moon” is depicted as two spherical masses, each with mass m and radius r, that are separated

by a distance dx = 2r. There is a mutual gravitational attraction (Eq. 2) between the two masses

given by

F =
Gmm

dx2
. (53)

The earth causes a differential force (Eq. 40) between the two moon-balls given by50

dF =
2GMe m

(x− r)3
dx =

2GMem

x3

(

1 −
r

x

)

−3
dx

≈
2GMe m

x3

(

1 +
3 r

x

)

dx ≈
2GMe m

x3
dx . (54)

This force causes the two moon-balls to separate, as the earth pulls more on the near-ball than on

the far-ball, just as in the example in Figure 4. At the Roche limit, the differential force between

the two balls equals their mutual gravitational attraction:

2GMe m

x3
R

dx =
Gmm

dx2
, (55)

where xR is the Roche limit. Solving for xR, we find

x3
R =

2Me

m
dx3 . (56)

Substituting dx = 2r, m = ρm
4
3πr

3, and Me = ρe
4
3πr

3
e , we get

x3
r =

2 ρe
4
3πr

3
e

ρm
4
3πr

3
(2r)3 =

24ρer
3
e

ρm

xr =

(

24ρe

ρm

)1/3

re ≈ 2.5

(

ρe

ρm

)1/3

re ≈ 2.9 re . (57)

49See Stacey (p. 129–133 1992) for a more rigorous treatment of the Roche limit.
50This is admittedly a bit “hand-wavy,” but it is standard in most introductory derivations (e.g., Hartmann,

1999, p. 60). In the derivation we assume that the two moon-balls are sufficiently far from the earth so that
r/x ≪ 1, and then we keep only the leading coefficient of the binomial expansion (zeroth-order).
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Thus, we have derived Equation (52) and we have shown that for the earth–moon system, the

Roche limit is 2.9 re, which is about 18,500 km. If our moon were to come within this distance,

it would be torn into smaller fragments by the differential force.

5.3 Calculating earth–moon distance from tidal cycles preserved in the rock

record

How are the tidal cycles (Figures 35–40) detected in the rock record and how can they be deter-

mined to an accuracy of two decimal places? First, the thickness of each rhythmite layer in the

rock record is measured (see Figure 41E-F). The lamina thickness is then plotted as a histogram

(such as in Figure 32D), which can be examined using Fourier analysis to extract the cycles.

Figure 41 shows the results from 1580 neap-spring-neap cycle thickness measurements from the

layers in a 600-Ma (Precambrian) rock core from Australia. This particular record preserved an

astounding 60 consecutive (Precambrian) years of daily tidal cycle deposits.51

The periods of the tidal cycles shown in Figure 41 can be used to determine the length of the

number of days per synodic month and the number of days per year at the time the sediment

was deposited (620 Ma). These values can provide an estimate for the earth’s rotational rate

and the distance to the moon. Because the tidal cycles record the time in the earth’s reference

frame, it is necessary to convert the paleoastronomical tidal cycle periods into sidereal times.

Using different tidal cycles (sidereal time), one can make multiple calculations of the earth–moon

distance,52 and these values can be checked with Kepler’s laws for internal consistency.53

5.4 Evidence of lunar retreat from the rock record

Knowing the age of the rock in which the tidal cycle is preserved, one may conclude that ocean

tides were present on the earth at the time the sediment was deposited.54 The presence of ocean

tides can be found throughout the rock record. The oldest evidence of tides is from a sandstone

formation in South Africa dated 3.2 Ga (3.2 billion of years before present).55 (For comparison,

the earth formed about 4.6 Ga.) Evidence of ocean tides has also been recognized in sedimentary

51Although some of the daily tidal events were probably not preserved in the record, the peaks in Figure 41 are
sharp and indicate the lack of “noise” in the data.

52This calculation is usually straightforward, from period to radius (or semi-major axis) of orbit. However, one
must be careful to keep track of what reference frame the cycle is recorded in.

53Williams (2000) is the only rhythmite study that does this check.
54The age of rocks are determined by measuring the amount of radioactive material (e.g., K, Ar, U) in a sample

of rock. There are several other methods for constraining the age of rocks, but the isotopic dating method is the
most accurate, especially for Precambrian and older rocks.

55Moodies Group formations of Eriksson and Simpson (2000).
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rocks with ages 2.4 Ga,56 2.3 Ga,57 0.9 Ga,58 0.62 Ga,59 0.48 Ga,60 and 0.30 Ga,61 among others;

only four studies, however, have a data set good enough (i.e., ‘clean’ and long) to calculate the

earth–moon distance (Figure 44). It is not unreasonable to assume that ocean tides have been

present continuously throughout the earth’s history, at least as far back as 3.2 billion years.

Geological studies can help constrain the lunar retreat rate over the course of the earth’s

history. If every tidal study listed above could provide an earth–moon distance value, then we

could plot one point for each study on a plot of earth–moon distance versus time. This is shown

for four studies in Figure 44. Derivations of tidal energy dissipation62 provide an equation for

the earth–moon distance at an earlier time in the earth’s history:

dt = d0



1 −
13

2

〈

ḋt

〉

d0





2/13

, (58)

where d0 = 3.82 × 1010 cm is the present-day earth–moon distance and
〈

ḋt

〉

is the mean lunar

retreat rate at a time t, which is based on the calculation from the geologic study and the present

day value d0 (Walker and Zahnle, 1986). Although there are few data points, this plot is one of

the only lines of evidence for the lunar retreat rate over the earth’s history. One important note

is that the best-constrained curve (D) suggests that the moon was not within the Roche limit in

the past four billion years, as suggested by the others. Further studies of tidal rhythmite deposits

should help to constrain the lunar retreat rate curve.

56Weeli Wolli banded iron formation of Williams (2000).
57Chaibas formation of Bose et al. (1997).
58Big Cottonwood formation of Chan et al. (1994); Sonett et al. (1996); Sonett and Chan (1998). Sonett et al.

(1996) contains several mistakes with published corrections (e.g., Science, v. 100, p. 1325), which ultimately led to
a re-analysis of the dataset (Sonett and Chan, 1998).

59Elatina formation of Williams (1989b, 2000). See footnote in Appendix D.
60Jordan Formation (Uppermost Cambrian) of Tape et al. (2000, 2003).
61Brazil formation of Kvale and Archer (1990); Kvale et al. (1999). The Mansfield Formation underlies the Brazil

Fm. and also records tidal cycles (Kvale et al., 1989).
62The lunar retreat rate curves are based on energy dissipation due to the friction of the ocean tides. The

equations are discussed in Walker and Zahnle (1986). See also Lambeck (1980).

31



6 Summary

I have found it very difficult to understand tides — from the physics of differential force, to

the propagation of the tidal wave in the ocean, to the astronomical variations that give rise to

tidal cycles. Looking at tides from different perspectives — the physicist, the oceanographer, the

sedimentologist — provides perhaps the best approach to understanding tides. This paper has

covered a large amount of material on tides. I hope that the reader may retain a few key points

about tides, which I have listed below.

1. Differential force (“tidal force”) arises in any object with finite extent accelerating in a

gravitational field. The differential force is the difference between the force on the object’s

center of mass and the force on a part of the object closer or further from the source of

the field. Thus, there is a differential force at the earth due to the combined effects of the

moon, sun, and planets.

2. The tides on the earth are due primarily to the sun and the moon, the most apparent effect

being the neap-spring-neap fortnightly cycle. The relative motion of the sun and moon with

respect to the earth generates tidal cycles with periods ranging from 14 days to 18 years

(and longer).

3. Circular motion is not a prerequisite for tides, but free fall acceleration is. If we stopped

the earth and moon in their orbits, then “let go”, they would accelerate toward each other

in a catastrophic manner, and we would still get the two tidal bulges on the earth (as well

as two on the moon).

4. Rotation of the earth is not a prerequisite for tides. Rotation allows us to “see” the tidal

bulges on a daily period in the form of the ebb-flood cycle, which occurs once or twice per

day (diurnal or semidiurnal), depending on the coastal area. Even without rotation, we

would still “see” the tidal bulges that arise due to the longer-period tidal cycles.

5. On a continent-less, spherical earth, the global ocean’s preferred shape is the equilibrium

tide, which is an ellipsoidal equipotential water surface (i.e., it has two bulges) whose

semimajor axis parallels the earth–moon axis.

6. The equilibrium tide does not account for the complex propagation of the tidal wave in the

ocean basin, which is governed in part by the basin geometry and in part by the Coriolis

effect.

7. The equilibrium tide does not account for the several-meter-scale tidal range in coastal

areas, where the tidal wave is confined into narrow openings and may be influenced by

resonance in the basin.

8. An understanding of the sedimentary deposition in modern tidal systems can be applied to

the rock record to recognize ancient tidal systems in sedimentary layers. Geologic studies
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indicate that oceanic tides have been present for the majority of the earth’s history (at least

over the past three billion years).

9. The sedimentary rock record records tidal cycles with a wide range of periods: 12 hours,

24 hours, 14 days, 28 days, 183 days, 8.8 years, and 18.6 years. The length of the pe-

riod of the cycles is limited by the length of the uninterrupted record of tidally-deposited

sedimentary layers.

10. Friction of the oceans due to tides is slowing the earth’s rotation. The decrease in the earth’s

rotational angular momentum is accompanied by an increase in the net orbital momentum

of the earth–moon system, which is evidenced by an increasing earth–moon distance.

11. Lunar laser ranging shows that the moon is retreating from the earth at about 4 cm per

year (with an error of ±0.07 cm/yr). Geologic studies provide constraints for the lunar

retreat over the course of the earth’s history.
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A The potential energy approach to the 3D case

In this section we derive Equation (31), the starting point for Section 2.6.

Gravitational force, like an electric field force, is a central force, “a force whose line of action

passes through a fixed point or center of force” (Fowles, 1962, p. 80). The work done by a central

force in moving an object does not depend on the path; every central force is thus conservative.

Because gravitational force is conservative, the change in potential energy in moving an object

from point a to point b can be expressed as the negative integral of the work

∆Uab = −

∫ b

a
FG · ds , (59)

where FG is the gravitational force on the object and ds is an infinitesimal displacement vector.

Here we use a potential energy argument based on Barger and Olsson (1973) to supplement

the general case (two bodies, three dimensions) treated in Section 2.4. Rewriting Equation (59)

using vectors, the change in potential energy in moving the object from position rs to position r

is defined as the negative integral of the work:

∆Vrs r = −

∫ r

rs

FG · dr , (60)

where, if we take rs to be sufficiently far away such that V (rs) = 0, we can express the potential

energy at a point as

V (r) = −

∫ r

rs

FG · dr , (61)

Our “tidal equation” (Eq. 13) is expressed in terms of force per unit mass. We therefore define

a gravitational potential as the potential energy per unit mass:

Φ(r) =
V (r)

m
= −

∫ r

rs

F(r)

m
· dr , (62)

Rewriting this expression and using Equation (13), we have

−∇Φ(r) =
F (r)

m
= r̈ = −

GMe

r2
r̂ −

GMm

R2
R̂ +

GMm

d2
d̂ . (63)

We can find the gravitational potential function Φ(r) corresponding to the force F(r) by using

Equation (62) and integrating Equation (63) over a convenient path dr. As Barger and Olsson

(1973) suggest, it is simpler to guess Φ(r) and then verify that it gives the correct force (by

Eq. 63). We’ll take the scenario shown in Figure 6, with the moon situated on the x′-axis at a

fixed distance d from the earth. We have the vector relationship (see Figure 6) R = d+ r, where

d is now constant, even as the position of particle P is varied. The gravitational potential that
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gives the correct force is (Barger and Olsson, 1973)

Φ(r) = −
GMe

r
−

GMm

R
+

GMm x

d2
. (64)

The distance R between the moon (point M, mass Me) and the particle on the earth’s surface

[point P(x, y, z), mass m] is

R2 = (d− x)2 + y2 + z2 = d2 − 2dx+ x2 + y2 + z2 = d2 − 2dx+ r2 , (65)

which can be rewritten as

1

R
=

1

(d2 − 2dx+ r2)1/2
=

1

d
(

1 − 2x
d +

(

r
d

)2
)1/2

. (66)

We can expand 1/R in powers of r/d ≈ 0.017 ≪ 1 by using the binomial expansion

(1 + β)n = 1 + nβ +
n(n− 1)

2
β2 + · · · (67)

with n = −1/2 (then n(n− 1)/2 = 3/8) and

β = −
2x

d
+
r2

d2
, (68)

as follows:

1

R
=

1

d

[

1 −
2x

d
+
(r

d

)2
]

−1/2

=
1

d

[

1 −
1

2

(

−
2x

d
+
r2

d2

)

+
3

8

(

−
2x

d
+
r2

d2

)2

+ · · ·

]

=
1

d

[

1 +
x

d
+

(

3x2 − r2
)

2d2
−

3xr2

2d3
+

3rr

8d4
+ · · ·

]

≈
1

d
+
x

d2
+

(

3x2 − r2
)

2d3
. (69)

In this expansion we retain only the powers of r/d (or x/d) through (r/d)2; the higher order terms

shown are removed in the last step. Using this expansion, the potential (Eq. 64) is approximated

by

Φ(r) ≈ −
GMe

r
+

GMm x

d2
− GMm

[

1

d
+

x

d2
+

(

3x2 − r2
)

2d3

]

Φ(r)

(

+
GMm

d

)

= −
GMe

r
−

GMm

d3

[

−dx+ dx+
3

2
x2 −

1

2
r2
]

= −
GMe

r
−

GMm r2

d3

[

3

2

(x

r

)2
−

1

2

]

. (70)
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Note that we have moved the constant GMm/d to the left side, since the definition of the potential

allows for an arbitrary constant. Transformation from Cartesian to spherical coordinates is

defined by

r = x x̂ + y ŷ + z ẑ = (r sin θ cosφ)x̂ + (r sin θ sinφ)ŷ + (r cos θ)ẑ , (71)

where r2 = x2 + y2 + z2, θ is the polar angle, and φ is the azimuthal angle. Thus, we have

x/r = sin θ cosφ, and Equation (70) becomes

Φ(r) = −
GMe

r
−
GMmr

2

d3

[

3

2
sin2 θ cos2 φ−

1

2

]

. (72)

Setting this equation equal to a constant will give an equipotential surface known as an equilib-

rium tide. See Section 2.6.
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B The one-body and two-body problem

The two examples used in the paper to explain differential force and the nature of the earth–moon

system are the one-body problem — the earth fixed with the moon revolving around it (or vice

versa) — and the two-body problem — the earth and moon both revolving about a common

center of mass. As an example of the differences, we will derive the period of revolution for the

moon in both cases. For simplicity we assume circular orbits in both cases.

In the one-body case, the moon revolves about earth with a circular orbit of radius d. (In

other words, we are assuming the earth is infinitely massive.) The moon’s velocity is equal to its

circumference of orbit, divided by its period: v1 = 2π d/T1. The net force on the moon is equal

to the earth’s gravity. Thus, we equate Newton’s second law, using centripetal acceleration and

the velocity in terms of period,

Fnet = Mm a = Mm
v2
1

d
=

Mm

d

(

2πd

T1

)2

=
4π2 dMm

T 2
1

. (73)

with the gravitational attraction:

Fnet = FG

4π2dMm

T 2
1

=
GMeMm

d2

(T1)
2 =

4π2 d3

GMe
. (74)

Equation (74) is an expression of Kepler’s third law. Note that the period of the moon’s orbit

does not depend on its mass, but only on the mass of the central body and the distance to the

central body.

The two-body problem for the earth–moon system is outlined in Figure 45, where the inertial

reference frame — the earth–moon center of mass — is assumed to be fixed. The moon and the

earth make one revolution about the earth–moon center of mass in time T2, with circular orbits of

radii dm and de, respectively. The equation of motion for the moon is (Symon, 1961, p. 178–181)

FG = µ d̈ , (75)

where FG is the gravitational force between the earth and moon (the net force), µ is the reduced

mass of the earth–moon system,

µ =
MmMe

Mm +Me
, (76)

and d is the relative coordinate (see Figure 45). Substituting the gravitational force and the
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centripetal acceleration into Equation (75), we get

GMm Me

d2
= µ

(

v2

d

)

. (77)

Substituting the reduced mass (Eq. 76) and the velocity v = 2πd/T2 into Eq. 77, we get

G

d
=

1

Mm +Me

(

2πd

T2

)2

. (78)

After simplification, we find that the period of lunar revolution in the two-body problem is given

by

(T2)
2 =

4π2 d3

G (Mm +Me)
. (79)

This period is slightly shorter than in the one-body case (Eq. 74):

T2

T1
=

√

√

√

√

d3

Mm+Me

d3

Me

=

√

Me

Mm +Me
=

(

1 +
Mm

Me

)

−1/2

.

Plugging in the constants (Table 1) into Equations (74) and (79), the one-body lunar period is

about 27.4 days and the two-body period is about 27.3 days. The earth will have the same period

of revolution about the earth–moon center of mass as that of the moon (Figure 8).

The Bohr model of the hydrogen atom offers an analogy to the orbital motion in the earth–

moon system. In the Bohr model, a single electron with negative charge −e and mass me orbits

a single proton with positive charge +e and mass mp ≈ 1800me. The Coulomb force on the

electron, F = ke2/r2 (Table 2), allows it to maintain a circular orbit of radius r. The Bohr

derivation63 yields an expression for the allowed energy levels for the electron

En = −ER/n
2 . (80)

where n is the energy level and ER is the Rydberg energy constant given by

ER =

(

ke2
)2

2
(

h
2π

)2 me =

(

2π2k2e4

h2

)

me , (81)

where h is Plank’s constant. Because the mass of the proton is much greater than the mass

of the electron (mp ≈ 1800me), the Bohr model is approximated as a one-body problem, with

the proton fixed in space. In actuality, the proton and electron revolve about a common center

of mass (two-body problem).64 To find the Rydberg energy in the two-body problem the mass

63This analogy is suggested in Arons (1979, p. 936). The Bohr model is treated in almost any physics text (e.g.,
Taylor and Zafiratos, 1991, p. 130–139).

64The resultant energy levels of the hydrogen atom are therefore reduced by about 1 part in 1800 as a result of
this correction. The discrepancy is small but detectable on a spectrometer (Taylor and Zafiratos, 1991, p. 138).
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of the electron must be replaced with the reduced mass, which gives a corrected, “two-body”

Rydberg energy constant (Eq. 81) of

ER =

(

2π2k2e4

h2

)

memp

me +mp
. (82)

Just as the two-body lunar revolution period was a more accurate description of the moon’s

behavior, the two-body Rydberg energy constant should predict the energy values of the hydrogen

atom better than the “one-body” Rydberg energy constant (Eq. 80).
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C Selected equation derivations

Taylor series for a few selected functions

The tides literature is filled with Taylor series expansions; although the language may come in

many forms — “small-angle approximation”, “binomial expansion/series/approximation”, “Tay-

lor series/approximation” — but they can be easiest understood in terms of Taylor series65.

A one-dimensional Taylor series is a series expansion of a real function f(x) about a point

x = x0 is given by

f(x) = f(x0) + f ′(x0) (x− x0) +
f ′′(x0)

2!
(x− x0)

2 +
f (3)(x0)

3!
(x− x0)

3 + · · · . (83)

A Maclaurin series is a Taylor series expansion of a function f(x) about x0 = 0. For example,

the Maclaurin series for sinx, cos x, and tanx are given by

sinx = x−
x3

3!
+
x5

5!
− · · · for all x (84)

cos x = 1 −
x2

2!
+
x4

4!
− · · · for all x (85)

tan x = x+
x3

3
+

2x5

15
+ · · · for |x| <

π

2
(86)

Note that, to first order,

sinx ≈ tan x ≈ x, (87)

which is known as the “small-angle approximation”.

From the binomial theorem, we have the Maclaurin series

(1 + x)r = 1 + rx+ 1
2r(r − 1)x2 + 1

6 (r − 1)(r − 2)x3 + · · · for |x| < 1 (88)

(1 − x)−r = 1 + rx+ 1
2r(r + 1)x2 + 1

6 (r + 1)(r + 2)x3 + · · · for |x| < 1 (89)

Note that, to first order, these series are both equal to 1 + rx.

65In fact, only special cases of the binomial series, such as Equations (88) and (89), give the Taylor series.
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Equations (23) and (24)

We’ll show Equation (23) first. Expanding the cosine term in Equation (16) and substituting

Equations (20)–(22) gives

fr =

(

GMm

R2

)

cos (φ+ α)

= GMm

(

1

R2

)

(cosφ cosα− sinφ sinα)

≈

(

GMm

d2

)(

1 +
2re
d

cosφ

)

(

cosφ− sinφ
(re
d

sinφ
))

=

(

GMm

d2

)(

cosφ−
re
d

sin2 φ+
2re
d

cos2 φ− 2
(re
d

)2
cos2 φ sin2 φ

)

=

(

GMm

d2

)(

cosφ−
re
d

((

1 − cos2 φ
)

− 2 cos2 φ
)

− 2
(re
d

)2
cos2 φ sin2 φ

)

=

(

GMm

d2

)

(

cosφ−
re
d

(

1 − 3 cos2 φ
)

+ · · ·
)

,

where, in the last step, we have ignored the (re/d)
2 term (as before).

Equation (24) follows a similar derivation:

fφ =

(

GMm

R2

)

sin (φ+ α)

= GMm

(

1

R2

)

(sinφ cosα+ sinα cosφ)

≈

(

GMm

d2

)(

1 +
2re
d

cosφ

)

(

sinφ+
(re
d

sinφ
)

cosφ
)

=

(

GMm

d2

)(

sinφ+
re
d

cosφ sinφ+
2re
d

cosφ sin φ+ 2
(re
d

)2
cos2 φ sinφ

)

=

(

GMm

d2

)(

sinφ+
3re
d

cosφ sinφ+ 2
(re
d

)2
cos2 φ sin φ

)

=

(

GMm

d2

)(

sinφ+
re
d

(

3

2
sin 2φ

)

+ · · ·

)

,

where, in the last step, we use sin 2φ = 2cos φ sinφ and again ignore the (re/d)
2 term.

Equation (30)

We insert Equation (29) into Equation (27) and simplify:

f0 =
GMm

d2

[

(cosφ)̂r − (sinφ)φ̂
]

=
GMm

d2
[cosφ (cosφx̂ + sinφŷ) − sinφ (− sinφx̂ + cosφŷ)]

=
GMm

d2

[(

cos2 φ+ sin2 φ
)

x̂ + (cosφ sinφ− cosφ sinφ) ŷ
]

=

(

GMm

d2

)

x̂ .
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Equation (43)

As seen from the earth, the angle subtended by each body is given by (Table 1; Figure 8A)

tan(θm/2) =
rm
d

≈ 0.0045 and tan(θs/2) =
rs
D

≈ 0.0046 . (90)

Since these values are very small, we can make the approximation tan θ ≈ θ (Eq. 87) and rewrite

them as

θm ≈
2 rm
d

and θs ≈
2 rs
D

, (91)

which can be rearranged to give

d ≈
2 rm
θm

and D ≈
2 rs
θs

. (92)

These expressions are used in Equation (43).
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Equation (45)

See Figure 19B. The angle between re and d is ψ. The points P and M can be expressed in

Cartesian coordinates or spherical coordinates: P(xp, yp, zp) or P(re, φp, θp) and M(xm, ym, zm) or

M(d, φm, θm), where θ is the polar angle (colatitude) and φ is the azimuthal angle (longitude).

Using the substitutions for spherical coordinates (see Figure 19A and Eq. 72), the derivation of

cosψ follows:

cosψ =
re · d

|re||d|

=
xpxm + ypym + zpzm

red

=
(re sin θp cosφp) (d sin θm cosφm) + (re sin θp sinφp) (d sin θm sinφm) + (re cos θp) (d cos θm)

re d

= cos θp cos θm + sin θp sin θm (cosφp cosφm + sinφp sinφm)

= cos θp cos θm + sin θp sin θm cos (φp − φm) .

The angle ψ is the angle between the directions marked by (φm, θm) and (φp, θp).
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Equation (46)

Following Cook (1969, p. 72–73), we plug Equation (45) (derived above) into Equation (44),

omitting the 1
2 factor for now:

3 cos2 ψ − 1

= 3 [cos θp cos θm + sin θp sin θm cos (φp − φm)]2 − 1

= 3
[

cos2 θp cos2 θm + 2cos θp cos θm sin θp sin θm cos (φp − φm) + sin2 θp sin2 θm cos2 (φp − φm)
]2

− 1

= 3
[

cos2 θp cos2 θm + 1
2 sin2 θp sin2 θm [cos 2 (φp − φm) + 1]

+ 1
2 (2 cos θp sin θp) (2 cos θm sin θm) cos (φp − φm)

]

− 1

= 3 cos2 θp cos2 θm + 3
2 sin2 θp sin2 θm [cos 2 (φp − φm) + 1] + 3

2 sin 2θp sin 2θm cos (φp − φm) − 1

= 3 cos2 θp cos2 θm + 3
2

(

1 − cos2 θp

) (

1 − cos2 θm

)

− 1

+ 3
2 sin2 θp sin2 θm cos 2 (φp − φm)

+ 3
2 sin 2θp sin 2θm cos (φp − φm)

= 1
2

(

3 cos2 θp − 1
) (

3 cos2 θm − 1
)

+ 3
2 sin2 θp sin2 θm cos 2 (φp − φm)

+ 3
2 sin 2θp sin 2θm cos (φp − φm) ,

where in the last step we have done the following, with a = cos θp and b = cos θm:

3 a2b2 + 3
2(1 − a2)(1 − b2) − 1 = 3 a2b2 + 3

2(1 − b2 − a2 + a2b2) − 1

= 3 a2b2 + 3
2 − 3

2 b
2 − 3

2 a
2 + 3

2 a
2b2 − 1

= 9
2 a

2b2 − 3
2 a

2 − 3
2 b

2 + 1
2

= 1
2

(

9 a2b2 − 3 a2 − 3 b2 + 1
)

= 1
2

(

3 a2 − 1
) (

3 b2 − 1
)

.

Finally, multiplying by 1
2 gives Equation (46):

1
2

(

3 cos2 ψ − 1
)

= 3
4 sin2 θp sin2 θm cos [2 (φp − φm)]

+ 3
4 sin 2θp sin 2θm cos (φp − φm)

+

(

3 cos2 θp − 1

2

)(

3 cos2 θm − 1

2

)

.
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D Selected annotated bibliography

Introduction to tides

• Darwin (1898). Probably the most oft-cited treatment of tides. Great historical chapter
on the development of tidal theory.

• Gamow (1962). A layman’s introduction to the basic physics of tides, highlighted by simple
illustrations and interesting facts about tides (see quote on p. 20).

• Strahler (1971). A classic, extensive earth sciences text with a good chapter on tides
(Ch. 9). The physics aren’t deep, but the tidal charts, showing actual daily tidal ranges for
semidiurnal, mixed, and diurnal systems, are good.

• Garrison (1998). It’s great to have a different perspective on the tides. This looks at tides
and tidal phenomena at the scale of the ocean (as opposed to and astronomical scale or a
coastal scale).

• Pugh (1988). I will cite this as a text not to read. This oft-cited text is one of the sloppiest
treatments of tides (Ch. 3), and the figures are terrible.

Differential force and classical mechanics

• Newton (1687). It’s worth seeing what the founding father of tides had to say. Prinicipia is
overwhelming and includes at least two sections on tides: Book 1, Proposition 66, Corollaries
19 and 20 (p. 582–583) and Book 3, Proposition 24, Theorem 19 (p. 835–839). The first
section outlines the equilibrium tide theory, which is explained (to varying degrees of clarity)
in almost every physics treatment of tides.

• Barger and Olsson (1973). Section 7-2, “The Tides”, is a superior description of tides, and
one that I used as a basis for several sections (e.g., Section 2.5, Appendix A). I bought
the book and would be happy to pass along a photocopy of the tides section to anyone
interested.

• Marion and Thorton (1995). The section on tides (5.5, p. 204–210) appears to be based
upon that of Barger and Olsson (1973).

• Ohanian (1976). Section 1.6 (p. 26–32) is a great explanation of tidal forces, and how an
astronaut in free fall can prove he is in a non-inertial reference frame by examining the
distorted shape of a water droplet in the spacecraft.

• Kibble (1985). Excellent treatment of tides in section 6.6 (p. 129–132). Kibble approaches
tides from a potential standpoint, whereas I emphasized the force approach, which uses
vectors.

• White et al. (1993). This possibly the only article that outlines a laboratory experiment
to demonstrate the origin of the tidal bulge. The inverse-square force in the experiment
is magnetic, and the centripetal acceleration is due to a record player turntable. Personal
communication with White clarified some points.

• Misner et al. (1973). The bible of gravitation. Presents the tide-producing force in Ch. 1
(p. 29–44) and introduces a treatment involving differential geometry involving the Riemann
curvature tensor and the fiducial geodesic (yikes!).

• Tsantes (1974). Equilibrium tidal theory derivation using vectors and hydrodynamic prin-
ciples.
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• Horsfield (1976). Derives the three components of the tides due to the earth’s rotation (see
my Section 2.8).

• Arons (1979). This article is a must-have. A substantial part of this paper contains ideas
from Arons. He has a unique way of presenting tides and avoids all mention of fictitious
forces.

• Olson and Lytle (2000). This is an interesting article about how other planets in the solar
system influence the tides on the sun. It ties in historical events — alignment of planets in
the sky — with (relatively large) predicted solar tides (see “Conjugations that changed the
wold,” same issue). Also addresses tides on earth.

Ocean tides, hydrodynamics, and wave theory

• Lamb (1945). Classic hydrodynamics text, cited in most hydrodynamic treatments of tides.

• Seligmann and Steinberg (1975).

• Symon (1961). Standard classical mechanics text, containing a very good treatment of
hydrodynamics (p. 313–337).

• Archer and Hubbard (2003). An overview of the 13 highest tidal areas in the world. The
final rankings: (1) Bay of Fundy, (2) Bristol Channel (SW England), (3) Ungava Bay
(NE Canada), (4) Gulf of St. Malo (NW France), (5) Straits of Magellan, (6) Cook In-
let (southern Alaska), (7) Sea of Okhotsk (eastern Russia), (8) eastern English Channel,
(9) northwest Australia, (10) west-central England, (11) Gulf of Cambay (eastern India),
(12) Gulf of Mezan (NW Russia), and (13) the Yellow Sea (China/Korea).

• Desplanque and Mossman (2001). A very good treatment of the Bay of Fundy tides, the
largest in the world.

• Korgen (1995). An interesting, non-mathematical treatment of an awesome phenomenon.
It addresses the concepts of the resonant frequency of a basin and of modes of oscillation.
It also points out a relationship between tidal currents and seiches.

• Dronkers (1964); Schureman (1941); Marchuk and Kagan (1984, 1989). Here are a few
sources on the harmonic analysis of ocean tides. In essence the behavior of the tidal wave
in the ocean depends on the numerous driving frequencies that arise from the earth–moon
system. I didn’t cover much of this in the paper.

Physical sedimentology and the preservation of tidal layers in the geological
record

• Allen (1985). Perhaps the best source on physical sedimentology. “How do bedforms
move?” (Section 4.7, p. 67–71) is a great section for understanding the relationship between
the process of sand dune migration and the preservation of sand dune migration in the rock
record (cross-bedding sets).

• Reineck and Singh (1980). The preeminent text on sedimentary geology, with emphasis on
clastic deposition (i.e., sand and mud, as opposed to carbonate deposition, which is from
fossils). 638 figures!

• Nio and Yang (1991); Dalrymple (1992); Visser (1980). Three great articles on how the
daily and monthly tidal cycles are preserved in sedimentary systems and how one can
identify tidal patterns in the sedimentary rock record.
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• Runkel (1994); Byers and Dott Jr. (1995). The two main articles on the Jordan Sandstone,
which contains a 485-Ma record of tides, as found in our study.

• Tape et al. (2000). A more detailed description of our Jordan Sandstone study, which
documents 13 months of Cambrian tides near Winona, Minnesota. Our study was formally
published in Tape et al. (2003).

• Irwin (1965); Clark (1982). Tides are generally believed to have not been present in the
shallow seas covering the Midwest during Late Cambrian time, as suggested by these two
papers. Our study of the Jordan Sandstone (Tape et al., 2003) suggests that tides were
present. A more informative title for Clark (1982) might be “Epeiric tides in Lower Or-
dovician North America: Evidence from the Shakopee Dolomite, southern Minnesota”.

Tidal cycles in the rock record and the history of the earth–moon system

• Williams (2000). This is one of the most amazing articles I’ve ever read. It reviews
a landmark study site of a Precambrian (620 Ma) rhythmite sandstone that records a
60-year (continuous) record of tidal deposits. It utilizes Fourier analysis to find monthly,
semiannual, annual, and 18-year cycles, and it applies Kepler’s laws to verify that the cycles
are internally consistent. Great references, too. The review paper extends the findings of
Williams (1989b,a).66

• Kvale et al. (1999). Good explanations of the various 28-day tidal cycles that arise from
certain parameters of the moon’s orbit: eccentricity, declination with respect to earth, and
phase as observed from earth. Good figures synthesizing modern tides, the rock record, and
lunar cycles. Fourier analysis applied to lamina thickness patterns. However, I think their
explanation for the semiannual tidal cycle (their Figure 6A, my Figure 39) is incorrect, so
try to reason out the tidal cycles for yourself and don’t accept their explanations on faith.

• Rosenburg (1997). Synthesizes the results of several geologic studies, including those dis-
cussed in the two papers above, in discussing how the lengths of the day and year have
changed over time. It doesn’t have much to do with dinosaurs.

• Eriksson and Simpson (2000). The oldest evidence of ocean tides on earth: sedimentary
layers 3.2 billion years old.

• Zeilik and v. P. Smith (1987).

• Hartmann (1999). Nice, simple mathematical treatment of differential force and the Roche
limit (p. 57–60).

• Dickey et al. (1994). A feature article on lunar laser ranging, summarizing real-time mea-
surements of several astronomical parameters, including the present-day lunar retreat rate
(3.82 ± 0.07 cm/yr).

• Walker and Zahnle (1986). Discusses and derives the tidal energy dissipation equations
(my Eq. 58).

66The story of the Elatina Formation is an interesting one, and it contains an important lesson. Williams
originally attributed the source of the the cyclic pattern in the sedimentary layers to sunspot cyclicity (Williams,
1981, 1985). The mistake highlights the importance of ascribing the time interval of each sedimentary layer, e.g.,
1 layer = 12 hours. In the words of Williams: “If each lamina of the Elatina series is regarded as an annual
increment, the cyclicity displayed by that series bears strong empirical similarity to sunspot cyclicity, with a
lamina-cycle representing a single sunspot cycle. . . Nonetheless. . .a tidal rather than a solar-climatic control of
deposition must now be preferred as it can explain not only the Elatina cyclicity but also the new evidence of more
complex lamina-cycles containing up to 25 or more laminae provided by the Reynella siltstone and the Chambers
Bluff tillite” (Williams, 1989b, p. 41).
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• Condie (1997). Contains a very good overview of the four models of the origin of the moon
(p. 250–254).

• Stacey (1992). A basic introduction to some geophysical concepts, including tides (Sec-
tion 3.4, “Tides and Tidal Friction”, p. 115–133). Contains a substantial mathematical
treatment of the Roche limit. For the most part, the figures are poor.

Earth tides and atmospheric tides

• Wilhelm et al. (1997). A synthesis of various tidal phenomena — including earth tides,
atmospheric tides, and ocean tides — based on a conference in Germany.

• Harrison (1985); Melchior (1966). Solid earth tides.

• Chapman and Lindzen (1970); Volland (1988). Atmospheric tides.

Mathematical Physics

• Harper (1976); Wong (1991); Griffiths (1999); Danby (1988); Taff (1985). Mathematical
physics is essential for understanding the mathematics behind the development of the grav-
itational potential. Spherical harmonics, Legendre polynomials, and Laplace’s equation
are addressed in Harper (p. 172–181), Wong (p. 216–250), Griffiths (p. 137–149), Danby
(p. 112–120), and Taff (p. 6–14). In some cases they discuss gravitational force between
masses; other times it is the electric force between charges. In both cases, the force goes as
r−2 and the math is essentially the same.
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Table 1: Astronomical constants.

Notation Description Value

G gravitational constant 6.67 × 10−11 N m2 kg−2 [kg−1 m3 s−2]

Earth (E)

Me mass 5.97 × 1024 kg = 81.3 lunar masses

re mean radius 6.371 × 106 m

D mean distance from sun 1.496 × 1011 m (= 1 AU)

ρe mean density 5520 kg m−3

Moon (M)

Mm lunar mass 7.35 × 1022 kg = 1 lunar mass

rm mean radius 1.738 × 106 m

d distance to earth 3.844 × 108 m = 60.3 earth radii

Sun (S)

Sm solar mass 1.99 × 1030 kg = 333,000 earth masses

rs radius 6.96 × 108 m

ρs mean density 1400 kg m−3

Earth–Moon

Center of Mass (C.M.)

MCM = Me +Mm mass 6.044 × 1024 kg = 1.012 earth masses

mean distance to center of earth 4.671 × 106 m = 0.73 earth radii

mean distance to center of moon 3.7973 × 108 m = 59.54 earth radii
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Table 2: A comparison of the gravitational and electric force.

Gravitational Electrical

Particle mass m1 and m2 charge q1 and q2
test mass m test charge q

Force Equation FG12
= −

(

Gm1 m2

r2

)

r̂12 FE12
=

(

k q1 q2
r2

)

r̂12

Field Equation G =
FG

m
E =

FE

q

Conservative Force curl FG = 0 curl FE = 0

Potential Energy VG(r) = −

∫ r

rs

FG · dr VE(r) = −

∫ r

rs

FE · dr
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Earth

Sun

quadrature

Last quarter

syzygy

Full moon

quadrature

First quarter

syzygy

New Moon

Earth

tidal bulge

Moon

tidal bulge

Ocean covering

1A

1B

lunar orbit

Figure 1: An introduction to tides. A. The lunar cycle, showing the position of the moon at
four different times and the corresponding view of the moon from the earth (the lunar phase).
Syzygy is a generic term for the alignment of three bodies; quadrature is a generic term for the
three bodies forming a right angle. B. Because we see two rise-and-falls of the tides each day,
we might infer that the earth is spinning through two bulges of water on opposite sides. Dotted
sphere is an undistorted ocean covering.
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Figure 2: The earth at rest, without the moon. All the forces at the surface of the (perfectly
spherical) earth are equal in magnitude and directed toward the center of mass of the earth. Fm

is the force on a particle of mass m, which can also be expressed as f , the force per mass, which
is equivalent to acceleration, in this case.
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Figure 3: Free fall toward the (stationary) earth. A. The earth will exert a greater gravitational
pull at point C of the rod than at point B or A. Thus, a differential force arises in the rod and
tends to stretch the rod away from its center (point C) in both directions. B. A free-falling,
rigid-shelled, spherical laboratory, in which we run a series of experiments. We drop a ball at
points A, B, and C, and interpret what happens (see Section 2.3) After Arons (1979).
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Fixed Moon

(infinitely massive)

ocean tidal bulge

ocean tidal bulge

arrows =

acceleration relative

 to center of Earth (lab)

Earth (lab)

center of

mass

entire Earth (lab)

in free fall to moon

(linear motion)

Figure 4: Free-falling laboratory analogy to the earth–moon system. The laboratory in Figure 3B
is replaced by the earth, and the earth is replaced by the moon. The acceleration of the balls
relative to the center of mass of the lab (Figure 3B) corresponds to the acceleration of the oceans
relative to the earth. The relative acceleration of the oceans causes the tidal bulges.
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Earth

drop of water

drop of

water

d

changes in time

constant in time

("dropping" the spaceship from height d)

Case 1: LINEAR MOTION

(spaceship orbiting at radius d)

Case 2: CIRCULAR MOTION

(mass Me)

G Me=
d
2

f

G Me=
d
2

f
d

v
2

=

Figure 5: Differential force due to linear motion versus circular motion. Our scenario is a water
droplet in a spaceship in the gravitational field of the earth, which is at rest. (In other words,
the mass of the earth is much, much greater than the mass of the spaceship). For each case,
the solid arrows indicate the direction of the spaceship’s motion, and the open arrows indicate
the direction of the acceleration of the spaceship and water droplet (i.e., the direction of the
force-per-mass due to earth). At time t = 0, the Case 1 spaceship is released from rest, and the
Case 2 spaceship orbits the earth with speed v at distance d. The shape of the drop in Case 2 will
remain constant in time. The shape of the drop in Case 1 will elongate in time (see Section 2.3).
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Figure 6: Configuration for the vector approach to the 3D treatment of the earth–moon system
(after Barger and Olsson, 1973). The labeling system is specific to the earth–moon system,
although the configuration applies to a general case: M and E could be any bodies, and P could
be any point in space (not necessarily the “surface” of body E). The earth’s coordinate system
(r,d,R) is non-inertial, since the earth (E, at position r2) could be accelerating with respect to
the inertial reference frame.
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Figure 7: The force on the (non-rotating) earth due to the moon (2D). This view of the earth–
moon system is looking down on the orbital plane of the moon and the cross-section this plane
cuts through the earth. A. Configuration, variables and axes (after Arons, 1979). B. Plot of the
force-per-mass at the surface and at the center of the earth. Compare with Figure 3B, which did
not take into account the transverse dimension of the object with respect to the gravitational
field. The force-per-mass f can be approximated as the sum of zero- and first-order components,
which are plotted in Figures 9 and 11. Note that R̂ points from the moon to a point on the
earth.
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Earth: Revolution without rotation, as observed from the stars

Earth-moon center of mass (C.M.) = Axis of revolution
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Figure 8: The two-body motion of the earth–moon system. Our reference frame is the stars, and
the view is one looking down on the orbital plane of the moon and the cross-section this plane
cuts through the earth. The rotation of the earth about its spin axis is neglected here. A. Earth–
moon system, drawn to scale. B1. Three snapshots of the earth–moon systemat times t0 (red),
t1 (green), and t2 (blue). Over the course of one revolution about the earth–moon center of mass,
each particle within the earth, such as P1 or C, transcribes a circle about the earth–moon center
of mass (C.M.). The radius of these circles is always constant as a result of the earth’s revolution
without rotation from the reference frame of the stars: any vector normal to the earth’s surface
always points in the same direction (i.e., toward the same stars). The zero-order centripetal force
f0 always points to the center of these circles, and therefore parallel to the earth–moon axis,
as is shown for the circles centered at C.M. and C1. B2. Three dotted circles show three paths
followed by certain particles of the earth (P1, P2, C). Each particle makes a circle with a radius
of 4671 km, the approximate distance from the center of the earth to the center of mass of the
earth–moon system (C to C.M.). After Arons (1979).
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Earth

G Mm
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f0 = x

E M

P f0

f0r

f0φ

Figure 9: The zero-order term f0 (and components r and φ) of the differential force. In the two-
body problem, the zero-order term of the lunar attraction is a centripetal force that is constant at
every point throughout the rigid earth, as shown in Figure 8B1. Thus the entire rigid earth is in
a state of free fall under this force. Imagine what would happen to a thin covering of (non-rigid)
water on the surface (Figure 10).

Without Moon

Tidal bulge

Ocean covering

(not fixed)

Moon

With Moon

ocean covering

Earth

(fixed, rigid)
Earth

(fixed, rigid)

Figure 10: The fixed, rigid earth with ocean covering, under the influence of the f0 “free fall”
term. If the earth were fixed in space (hypothetical one-body scenario), then only the free-moving
ocean covering would feel the f0 force. Water would pile up on the side facing the moon, and we
would experience a single, enormous tide per day (see Section 2.5).
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Figure 11: The first-order term f1 (plus components) of the differential force. The tangential
component f1φ is responsible for shifting the water covering the earth (see Section 2.5).
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Earth

φ̂(sin 2φ)

φ = 45°

Figure 12: The “water-moving” component of the tide-producing force on the earth: f1φ.

A. Two-dimensional view, plotting −(sin 2φ)φ̂ on the surface. Since the earth–moon system
has cylindrical symmetry about the earth–moon axis, a 2D view suffices, as long as we are not
concerned with the rotation of the earth about its spin axis. B. Three-dimensional view of the
tide-producing force. The moon illuminates half of the earth and is directly overhead at point V.
After Darwin (1898).
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Earth

(rigid)
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Figure 13: The rigid earth with an ocean covering, under the influence of the tide-producing
force f1. The tide-producing force f1 pulls water from the sides, causing water to pile up in
regions facing toward and away from the moon.
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Tidal range = 1,745 km

Mass of Moon Mm = 40,000 Me
OR
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Figure 14: The equilibrium tide: the earth as water-droplet responding to the gravitational field.
See Section 2.6. A. The surface of water will orient itself orthogonal to the gravitational force, so
as to minimize its potential. B. Orbital configuration and variables of the earth–moon system.
C. Relevant equations, which are used in D-F. The range expression gives the difference between
the highest high tide and the lowest low tide. D-F. Four Mathematica plots of equilibrium tide
surfaces based on the equation to calculate the tidal height h(φ). The black circle and dotted
line is the ”water-earth” without the moon; the gray ellipse is the equipotential surface formed
under the gravitational field. In D the parameters are to scale; the equilibrium tide range is
0.54 m, which approximates that which is observed in the deep oceans, far from coasts. This
tidal distortion is of course not visible. To show the shape of the bulge, we increase the mass of
the moon or bring the moon closer (decrease d).
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15

Figure 15: The vector-field equivalent of the equilibrium tide. The gravitational field lines are
always perpendicular to the equipotential surfaces, as shown in Figure 14A. Field lines represent
the force-per-mass on a particle and can be thought of as a vector field. Dotted circle is the
undeformed earth; solid ellipse is the equilibrium tide surface in Figure 14G.
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Figure 16: The lunar cycle and the neap-spring-neap tidal cycle. A. The equilibrium tide on
the earth is due to the combined effects of the sun and the moon. B. The sun and moon interfere
destructively in quadrature, when the sun diminishes the tidal bulges caused by the moon, which
are always parallel to the earth–moon axis. The resulting tides, with the lowest tidal range of
the month, are known as neap tides. Spring tides occur in syzygy, when the sun enhances the
tidal bulges parallel to the earth–moon axis. There are two neap-spring-neap tidal cycles per
lunar cycle. C. Four stages of the lunar cycle, showing the lunar phase at each position and the
resultant tidal bulge. Without the sun, there would not be a neap-spring-neap tidal cycle, since
the moon would create a uniform bulge on both sides of the earth that would always be parallel
to the earth–moon axis.
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Moon

Sun

Moon – Sun (Neap tide)

Moon + Sun (Spring tide)

0.36 m –0.18 m 0.54 m

0.16 m –0.08 m 0.24 m

0.20 m –0.10 m 0.30 m

0.52 m –0.26 m 0.78 m

Astronomical Body
Maximum high tide

height on Earth [h(0°)]

Maximum low tide

height on Earth [h(90°)]

Maximum tidal range

on Earth [h(0°) – h(90°)]

Figure 17: Relative equilibrium tide effects of the moon and the sun on the earth. The values
in the table are derived from Equations (36) and (41); they can be used to calculate the relative
tidal effects of the sun and the moon on the earth. One could determine the relative tidal effects
of the sun and moon by measuring the spring tide tidal range and then the neap tide tidal range
14 days later. The average of these ranges [(0.78 + 0.30)/2 = 0.54] is the range due to the moon;
the variation from the average [(0.78 − 0.30)/2 = 0.24] is the range due to the sun.
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Tidal Field at the Sun Caused by Nine Planets
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Figure 18: Tides at the sun caused by the planets. The planets generate tidal forces on the
sun. The main contributors to the tidal force at the sun are Jupiter, Venus, Mercury, and
Earth+Moon. The earth also experiences a differential force due to the planets, although it is
not significant, compared to the tidal effects generated by the moon and sun. The “tidal effect”
at body A (in this case, the sun) due to a body i with mass Mi at a distance xi from body A is
defined above (see Section 2.7); each planet will have a tidal effect at the sun. After Olson and

Lytle (2000).
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Figure 19: A new configuration of 3D coordinates, incorporating the earth’s rotation about its
spin axis. Spin axis is vertical (z′ axis); moon is not confined to the equatorial plane, as originally
assumed (Figure 6). The angle between re and d is ψ. A. 3D view. B. 2D view. The viewing
plane is not necessarily the view of the lunar orbital plane, as in Figure 7. See Section 2.8.
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Figure 20: An experiment to demonstrate the tidal bulges using magnets (White et al., 1993).
A. Setup to determine the force between two magnets. B. Plot showing the inverse-square nature
of the magnetic force, including experimental data points (White et al., 1993). C. With the
turntable at rest, the force between the magnets is similar to the one-body example (Figure 9).
D. At angular speed ω, such that mω2x = Fm, as shown in B, the magnetic force between
the large balls is equal to the centripetal acceleration. ➀ Magnetic force on large balls equals
centrifugal force. ➁ Magnetic force on small balls exceeds centrifugal force. ➂ Centrifugal force
on small balls exceeds magnetic force. E. The earth–moon analogy, with force-per-mass arrows
(relative acceleration) at points within the “earth” and the “moon”.
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Figure 21: Three types of daily tidal patterns. The earth’s rotation under the differential force of
the moon and sun causes the semidiurnal and diurnal components of the tide. A semidiurnal tide
has two rise-and-falls each day, while a diurnal tide has a single rise-and-fall per day. In coastal
systems either one component may dominate (A or B) or a combination of the two components
may occur (C). See global distribution in Figure 22. After Garrison (1998).
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21B
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Figure 22: The worldwide geographic distribution of the three tidal patterns. Most of the
world’s coasts have semidiurnal tides. Note that the Atlantic coasts experience predominantly
semidiurnal tides, although both the semidiurnal and the diurnal components are present, as
shown in Figure 23. After Garrison (1998).
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Figure 23: The propagation of the tidal wave components in the Atlantic Ocean (after Strahler ,
1971). Lines indicate the high tide in lunar hours; time t = 0 is the moon’s meridian passage (i.e.,
over the longitude marked by Greenwich, England). Cotidal lines represent the line of the high
tide — the crest of the tidal wave — which one can imagine “starting” at t = 0. The tidal wave
rotates counterclockwise in the northern hemisphere and clockwise in the southern hemisphere,
always about a point that does not fluctuate with height, known as an amphidromic point. Solid
circles indicate coastal regions experiencing high tide at t = 0, and then at t = 2. Positions of
cotidal lines and amphidromic points are approximate. The semidiurnal (twice-a-day) and the
diurnal (once-a-day) components together produce the resultant tidal wave.
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Figure 24: The propagation of the tidal wave in the North Sea (after Dalrymple, 1992). The solid
cotidal lines show the times of high water in lunar hours and indicate the direction of propagation
of the tidal wave. The tidal range (dotted co-range lines) increases outward from each of the three
amphidromic points, points where the water level remains approximately constant (i.e., points
that do not experience the tide). In each of the three cases, the sense of motion of the tidal wave
is counterclockwise.
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Figure 25: The world’s largest tides: The Bay of Fundy. The largest tidal range on record was
recorded in this bay (see box in Figure 23B) at 16 m (54 ft). One reason for the great range is
that the resonant frequency of the Fundy basin is approximately equal to the frequency of the
daily lunar tide. Dashed lines show the approximate tidal range; solid lines show the approximate
high tide level at certain times (crest of the tidal wave). After Garrison (1998).
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Figure 26: The tidal bore: a tidal wave in the true sense of the name. In certain areas, such
as the Bay of Fundy or Cook Inlet, the incoming tide (the flood current) can be observed as an
actual wave, known as a tidal bore. This tidal bore is from Cook Inlet, Alaska, March 9, 1993.
The lunar phase was one day past full, generating spring tides (see Figure 16). The undisturbed
water on the left will soon be overtaken by the incoming tidal wave. The wave was moving a few
miles per hour; we drove alongside the road to watch it.
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Figure 27: Cross-bedding: The preservation of underwater sand dune migration in the rock
record. One way a migrating sand dune could be preserved in the rock record is if one dune, or a
series of dunes, fills in a pit left by a storm. In the pit the energy of the water is much lower, and
the dunes filling in the scour pit are protected from the more turbulent (erosive) currents above.
Here, three advancing dunes, one right after the other, each form a cross-bedding set. This is the
postulated mechanism for the formation of three cross-bedding sets at Homer, Minnesota.
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Figure 28: Roadside outcrop of the Jordan Sandstone near Homer, Minnesota. (line-sketch
from a wide-angle lens photo). The schematic shown in Figure 27 shows how the cross-bedding
patterns in the outcrop may have formed. The advancing side of the dune is the layer that is
preserved in the rock record. Cross-bedding set of interest (between arrows) is well-exposed for
58 m (exposure is 95 m in total); the thickness of each cross-bedding layer was measured in order
to try to determine whether tidal currents influenced deposition. As indicated by the height of
the cross-bedding set (person for scale), the dunes were at least 1 m tall. Bold layers indicate
thick layers of mud. See Figure 29 for a continental context.
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Figure 29: The submergence of North America during Upper Cambrian time: Context for the
Homer, Minnesota, study. During Upper Cambrian time, a vast, presumably shallow (<500 m
deep) sea covered much of North America, which was situated near the Equator and rotated from
its present-day position (determined by paleomagnetic data and plate tectonic reconstructions).
Tidal energy generated in the ocean basin apparently reached at least as far inland on the
continent as Homer, Minnesota. ➀ = a very approximate shoreline during Cambrian time; ➁ =
approximate continental margin during Cambrian time (edge of craton); ➂ = present shoreline;
➃ = present continental margin. Arrows indicate paleocurrent direction (south at Homer; see
Figure 28). Sedimentary rock units include sandstone (stippled pattern; derived from deposited
sand), limestone (bricks pattern; derived from CaCO3 microfossils and precipitation), and shale
(dashed pattern; derived from deposited mud). After Dott Jr. and Batten (1981).
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Figure 30: The ebb-flood cycle and the corresponding sediment deposition during the migration
of a sand dune. A1. Velocity profile for the ebb-flood cycle, which may have a period of 12 hours
(semidiurnal tidal cycle) or 24 hours (diurnal tidal cycle). In many systems, either the ebb or
the flood may dominate; our profile is an ebb-dominated ebb-flood cycle. As indicated by the
dashed line, low tide occurs during Stage 2, and high tide occurs during Stage 4. A2. Current
speed profile and sediment volume transport profile for an ebb-dominated ebb-flood cycle. Sand
is transported as bedload when the current speed U(t) exceeds the threshold velocity of sand
movement Usand. The volume of sand transported is proportional to the stippled area under the
curve [U(t)−Usand]3. Due to the asymmetry of the tidal currents, much more sand is transported
by the peak ebb current (Stage 1) than by the peak flood current (Stage 3). Mud is deposited
when the current speed drops below the threshold velocity of mud deposition Usand. Periods of
mud deposition are represented by the bold segments on the x-axis (Stage 2 and Stage 4). Sand
is not transported, nor is mud deposited, in the time intervals between stages. B. Schematic of
sand dune migration during one ebb-dominated ebb-flood cycle. The dune is always underwater.
During the peak ebb current stage, the dune migrates, and back-flow ripples (A in figure) form
on the lower slipface due to eddy currents; co-flow ripples (B) form in the bottomset of the dune.
During the peak subordinate current stage, ripples (C) migrate across the bottomset of the dune,
and the mud and some of the sand from the upper slipface of the dune is eroded to form a
reactivation surface (D). When the ebb current resumes (bottom of diagram, repeat Stage 1) at
the start of a new ebb-flood cycle, mud is removed from the upper reaches of the dune. After
Nio and Yang (1991); Allen (1982).
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Figure 31: A tidal bundle sequence: the preservation of the neap-spring-neap tidal cycle in the
rock record. A. Qualitative sketch of the presumed tidal fluctuation over a fortnightly period
during the time of deposition (480 Ma) of the sands near Homer, Minnesota. The tidal fluctuation
is greatest during spring tides and smallest during neap tides (see Figure 16). B. Schematic of
a tidal bundle sequence at the Homer outcrop, such as the one in Figure 32A. The tidal bundle
sequence is made up of a number of tidal bundles; it consists of the sediment deposited during a
complete neap-spring-neap tidal cycle, whereas a tidal bundle consists of the sediment deposited
during a complete ebb-flood cycle (Figure 30). A bundle sequence is recognized primarily as the
interval between two composite mud drapes, whereas a tidal bundle is recognized as an individual
sand lamina. C. Histogram (real data) of measured bundle thicknesses for the bundle sequence
indicated in Figure 32D. Thicker bundles generally correspond to deposition during spring tides.
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Figure 32: Evidence for the neap-spring-neap tidal cycle at the Homer, Minnesota, outcrop. A. A
tidal bundle sequence contains the amount of sand and mud deposited during the fortnightly neap-
spring-neap tidal cycle. At the Homer outcrop, they are recognized as the interval between two
composite mud drapes (Figure 31B). B. Mud and thin sandy layers (very thin tidal bundles) are
deposited during neap tides, forming composite mud drapes. C. Thick layers of sand are deposited
during the spring tides, forming the thickest tidal bundles. D. Tidal bundle layer thicknesses for
the 58-m section of cross-bedding at Homer (Figure 28). The thickening and thinning pattern of
sandy layers, punctuated by periodic composite mud drapes, can be identified in this histogram
of tidal bundle thickness. Tidal bundle number runs consecutively from n = 1 (oldest) to n = 531
(youngest); the gap in the histogram is a physical gap of poor exposure in the outcrop. Each
black line corresponds to a tidal bundle; each gray line (below the x-axis) corresponds to the
position of a composite mud drape. The volume of sediment between the composite mud drapes
was deposited during a fortnightly neap-spring-neap tidal cycle. Tick mark spacing on x-axis is
n = 5; N = neap tide, S = spring tide.
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Figure 33: Coastal tidal setting for the daily deposition of sand and mud as tidal bundles and
tidal rhythmites. The ebb tidal current (outgoing tide) dominates the main tidal channel, in
which large sand dunes may migrate (top inset; Figure 31B). The dunes migrate the most during
spring tides, which preserve thicker sandy layers known as tidal bundles. Mud will accumulate
on the dunes during neap tides, which preserve mud drapes and thin sandy layers (tidal bundles).
The fortnightly migration period of the dune preserves the neap-spring-neap cycle. In the qui-
eter waters (gray region), mud and sand are deposited in thin, horizontal layers known as tidal
rhythmites (bottom inset). Farthest offshore, only mud is deposited; closer in, the deposition of
sand, silt, and mud is influenced by the daily tides and may preserve neap-spring-neap cycles
(box in inset). Isobaths are depth contour lines. After Williams (2000).
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Figure 34: Declination and inclination in the earth–moon system. Declination is the angle
between the object and the celestial equator. In this example, the declination of the moon is
23.4◦ + 5.9◦ = 29.3◦; the lunar declination varies over the course of the month. Inclination angles
are fixed (on the monthly and yearly time scale). The inclination of the earth, or in other words,
the changing declination of the sun, is the source of the seasons. Changing declinations of the
sun and the moon give rise to various tidal cycles (even if the earth did not rotate).
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Figure 35: The semidiurnal tidal cycle: evidence from modern tides and the rock record. A. The
differential force due to the sun and the moon produce two bulges on opposite sides of the earth.
B. The earth’s daily rotation under the two tidal bulges causes the semidiurnal cycle. Because of
the non-zero lunar declination, one tide (i.e., one ebb-flood cycle) tends to be higher (dominant)
than the other (subordinate). C. Evidence of the daily cycle in the rock record, shown by the
alternating thickness of 300-Ma sedimentary layers. After Kvale et al. (1999).
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Figure 36: The neap-spring-neap tidal cycle (one half of lunar cycle I): evidence from modern
tides and the rock record. There are two neap-spring-neap cycles per synodic month. A. Polar
view of lunar orbit. Tides are highest at syzygy and lowest at quadrature (see Figure 16).
B. Predicted high tides for Kwajalein Atoll, Pacific Ocean, showing the effects of changing lunar
phase. C. Lamina thickness measurements, with the neap tides and spring tides labeled. Compare
with Figures 36 and 37. After Kvale et al. (1999).
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Figure 37: Monthly lunar cycle II: the tropical month. A. Edge-on view of the lunar orbital
plane showing the moon at its extreme declinations and above the earth’s equator in its lunar
orbit (crossover). At crossover there is no difference between dominant and subordinate tides.
B. Predicted high tides for Kwajalein Atoll, Pacific Ocean. Notice how the crossover position
moves relative to the spring tides. C. Evidence of crossover in lamina thickness measurements
from a sedimentary rock. After Kvale et al. (1999).
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Figure 38: Monthly lunar cycle III: the anomalistic month. A. Polar view of the lunar orbital
plane showing the moon at perigee and apogee. The tides are strongest when the moon is closest
(perigee). B. Predicted high tides for Saint John’s, New Brunswick (1991), showing the effects of
several anomalistic months (see Figure 25). The pattern in the semimonthly inequality makes it
possible to distinguish this from the neap-spring-neap cycle. C. Evidence of the phase flip from
neap-spring-neap cycle thickness measurements. B and C after Kvale et al. (1999).
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Figure 39: The semiannual cycle. A. The declination of the sun over the course of the year
produces the semi-annual cycle (182.6 days). B. Predicted high tides for Saint John’s, New
Brunswick (1991) (see Figure 25), showing the semiannual cycle (dashed lines). The timing of
the semiannual cycle is much more complicated than solar-declination-0◦ = highest-spring-tides,
as suggested here. C. The semiannual cycle in the sedimentary record is more prominent than
the tide charts because the volume of sediment responds as a cubic function to the water level
(Figure 30A2). B and C after Kvale et al. (1999).
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Figure 40: The lunar nodal cycle (regression of the nodes). A. Schematic of the regression of the
nodes, which accounts for the 18.6-year lunar nodal cycle (present-day value). See also Figure 34.
B. Annual mean tidal range for Boston for 1922–1970, which is dominated by the lunar nodal
cycle. C. Evidence for the lunar nodal cycle from the rock record. The 60-year Elatina (620 Ma)
rhythmite record reveals two complete lunar nodal cycles. Plotted here is a smoothed curve of
the neap-spring-neap cycle thicknesses. B and C after Williams (2000).
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Figure 41: Fourier transform spectra for ancient tidal sequence data (rock record) and modern
tidal sequence data (tidal charts). Power spectral densities are normalized to unity for the
strongest peak in each spectrum. Top row is data from Precambrian (ca. 620 Ma) rocks with
tidal rhythmite layers (A, 60-year record = 1580 neap-spring-neap cycle thicknesses; C, 4.2-year
record = 1337 diurnal lamina thicknesses); bottom row is from ocean tidal charts (B, 20-year
record; D, 2.8-year record). Left column is fortnightly neap-spring-neap cycles: neap-spring-neap
cycle thickness of laminae (A) or the average of the two highest readings for each spring tide
period (B). Right column is daily ebb-flood cycles: diurnal laminae thickness (C) or the the
average of the two highest daily readings (D). Top (E, F) shows photos of the actual rhythmite
cores, corresponding to the cycles. Both the rock record and the tidal charts reveal the expected
frequencies with sharp spectral peaks. See the labeled tidal cycles in Figures 36–39; see Williams

(2000) for information on the annual oscillation. After Williams (2000).
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Figure 42: Conservation of angular momentum of the earth–moon system. The rotating earth
spins the ocean tidal bulges in front of the earth–moon axis by an angle δ. The moon exerts a
torque on the bulges, which slows the earth’s rotation. The loss in the earth’s rotational angular
momentum is accompanied by a gain in net orbital angular momentum of the earth–moon system.
See Section 5.1.
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Figure 43: Configuration for determining the Roche limit. The moon is depicted as two spherical
bodies touching each other. At an earth-“moon” distance of the Roche limit (xR), the mutual
gravitational attraction of the two moon-masses is equal to the differential force due to the earth.
The earth exerts a greater force on the near moon-body than on the far moon-body. If the
“moon” comes any closer to the earth, it will be pulled apart by the differential force, just like
the balls in Figure 3A (inset). See Section 5.2.
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Figure 44: Earth–moon distance over the course of the earth’s history, as suggested by different
rates of tidal energy dissipation (after Williams, 2000). Four tidal energy dissipation rate curves
based on geologic data combined with modern measurements. Geologic data points are from
Williams (1989a, 2000) (2), Sonett and Chan (1998) (△), and Kvale and Archer (1990); Kvale

et al. (1999) (3). Curves A, B, and C predict a close earth–moon encounter within the last
three billion years. The Roche Limit (Section 5.2) is the distance from the earth where the
moon would be torn apart by differential force (Edouard Roche, 1820–1883). A. Curve based
on the present lunar recession of 3.82 cm/yr, which is determined from interferometric laser
measurements (Dickey et al., 1994). B. Curve based on a mean lunar recession rate of 3.16 cm/yr
over the past 0.5 billion years, which is determined from paleontological data (Lambeck , 1980);
the Big Cottonwood datum coincides with this curve. C. Curve consistent with Elatina datum
(see Figure 41). D. Curve consistent with Elatina datum and the preferred Weeli Wolli datum;
shaded area shows the error region for the curve, based on the Weeli Wolli datum. This curve is
the only one that does not predict a catastrophic close encounter between the moon and earth.
See Section 5.4.
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Figure 45: The two-body problem configuration. The earth and the moon, attracted by a
gravitational force, revolve about a common center of mass, their period of revolution being
about 28 days. The proton and the electron in the Bohr atom, attracted by an electrostatic
force, revolve about a common center of mass. Relative sizes and distances are exaggerated in
both cases. See Appendix B.
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